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Abstract: The climate, mainly the water availability and temperature, drives the renewal of biomass in seasonal forest ecosystem, 
and the greenness and leaf area of its canopy are responsive by climate variations. This study verified models to explain the 
phenomenon of leaf production and deciduousness by time, with LAI (Leaf Area Index), NDVI (Normalized Difference Vegetation 
Index) and climate variables, on period 2011-2016. The data were obtained in satellite images and in plots installed at forest 
monitoring sites, visited monthly. The analysis incorporated the water balance. Three equations were compared, two already 
published and the equation that was adjusted in this work. The model was improved and validated with new variables and data. It is 
possible to estimate the fall and renew of leaves biomass in semideciduous forests with reasonable precision. 
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1. Introduction 

Leaf production and deciduousness are phenomena 

that occur with a little temporal overlay in 

semideciduous forests, because it is a typology 

conditioned by tropical climatic seasonality, with a 

period of intense summer rains, and another of severe 

drought, dependent of the dynamics of soil water and 

change of temperature [1]. 

The sprouting and leaf growth, the senescence and 

the leaf fall are crucial for forestry ecosystem 

maintenance and for survival through the nutrient 

cycling sustained by deciduousness. The fall of leaves, 

branches, flowers and fruits supply organic material to 

the surface layer of the soil, nourishing the plant 

species. Using this process, nutrients are deposited 

and mineralized, maintaining the soil fertility in these 

ecosystems [2-4]. 

The type of vegetation (floristic diversity) and the 

environmental conditions (temperature and water 

stress) influence the distribution, quantity and quality 

of these materials, which form the litterfall [5-7]. 
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The quantity of material that falls from the canopy, 

forming the litterfall, reaches a rate of tons per 

hectare/year. The forest starts producing leaves again 

in rainy season beginning, renewing the lost biomass. 

Potithep, S., et al. [8] and Kale, M., et al. [9] 

stablished two stages in deciduous tropical forests, 

leaf growth and senescence. 

In order to understand the year-to-year cycling 

pattern of the carbon in the terrestrial ecosystems, 

attempts to detect the vegetation phenological patterns 

by remote sensing had been made, especially after the 

release of the MODIS (Moderate Resolution Imaging 

Spectroradiometer) sensor, with calibration quality 

and the products provided, such as LAI (Leaf Area 

Index) and fAPAR (fraction of Absorbed 

Photosynthetically Active Radiation) [10-12]. 

One part of this carbon is in deciduousness 

phenomenon that can be modeled by means of 

relationships with climatic, biophysics and orbital 

variables, allowing estimates of leaf fall [13] and 

annual CO2 capture estimates [14]. However, this 

modelling still needs improvement, which is the 

objective of this work. 

2. Material and Methods 

D 
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declination in degrees (Decl); individual density (ind·m-2); basal area (B); average tree height (H); Shannon index (H’); 
Simpson dominance index (C) and period of collects. 

Site Plot X (m) Y (m) Z (m) Decl (o) D (arv./m2) B (m2/ha)
Tree 
height (m)

H’ C Collec. Dlw 

51 1 588,363 7,851,128 713 10.2 0.08 15 10.4 2.73 0.05 2011/12 

2 588,352 7,851,142 724 7.2 0.10 36 11.8 2.55 0.08 2011/12 

61 1 588,458 7,851,281 736 14.1 0.08 16 8.7 2.19 0.11 2011/12 

2 588,441 7,851,313 735 11.2 0.10 26 12.0 2.20 0.15 2011/12 

3 588,434 7,851,334 729 7.0 0.08 18 11.7 3.03 0.02 2011/12, 2015/16

81 1 589,268 7,853,121 707 6.2 0.19 33 9.0 2.88 0.07 2011/12, 2014/15

2 589,289 7,853,140 707 7.0 0.17 30 9.4 2.85 0.07 2011/12 
 

In order to measure the deciduousness data, it was 

used permanent plots of the inventory, to gather of the 

deposition of litterfall in the nets. The collections were 

carried out monthly in the approximate period of 30 

days. The dry leaves variable (g·m-2) is the average of 

the five nets in each plot. The leaf area (m2 of leaf × 

m-2 of soil) was measured with the LAI 2200 Plant 

Canopy Analyzer [18]. The procedures were described 

by Costa, T. C. C., et al. [14]. 

It was selected three Landsat TM 5 images, as they 

coincide with their final reception, complementing the 

period with seven images of the IRS LISS3 (Indian 

Remote Sensing Satellite), a sensor with characteristics 

closer to Landsat. The main differences between them 

are the spatial (30 m and 24 m pixel) and radiometric 

(8 and 7 bits) resolutions, and a small difference in the 

range of the spectral bands. In 2013, it was used 

Landsat 8 OLI images with radiometric resolution of 

16 bits, and shorter amplitude band compared with 

Landsat TM 5, mainly in near infrared band. 

The geometrical correction was performed in 

Geotiff Examiner software, with the aid of the graphic 

software Inkscape, using a reference point to dislocate 

the images. This form of correction was more precise 

compared to the polynomial corrections, even with 

RMS smaller than ½ pixel. In order to extract NDVI 

(Normalized Difference Vegetation Index) in each 

permanent plot, it was digitalized a rectangle of nine 

pixels centralized in the central point of the permanent 

plot. For Landsat 8 OLI images, geometric corrections 

were not necessary. 

The atmospheric correction was performed with an 

ATMOSC (Atmospherically Correcting model) 

module of Idrisi Taiga@, using the full model [19]. 

The Dn Raze (portion of the spectral response caused 

by the interference of the atmosphere by scattering 

and absorption of the radiation in digital number 

format) [19] was obtained through the smaller spectral 

response of the visible and near infrared bands, in 

points of the lakes on region, compared with Gürtler, 

P. S. J.’s [20] procedure. It was based on the 

atmosphere correction method of Chavez, S., et al. 

[21]. All images have visibility above 10 km 

(information from air traffic control service bulletin of 

Confins Airport, State of Minas Gerais, Brazil). 

The atmosphere optical dimension is the sum of the 

main components Rayleigh scattering, aerosols 

scattering and absorption, water vapor and typical 

ozone absorption. The Rayleigh scattering was 

adjusted to local height with atmospheric pressure 

data. The water vapor component was obtained for the 

NIR (Near Infrared), in function of the relative 

humidity [19] using the linear relation [14]. 

The quantity of diffuse energy in relation to the 

total energy was estimated by SPECTRAL2 model, 

described in Bird, R. E. and Riordan, C. [22], with the 

following input parameters: AOD (Aerosol Optical 

Depth) = exp(-altitude (km)/1.2) × 0.2; albedo; turbity 

coefficient; column ozone, in centimeters; PWV 

(Precipitable Water Vapor), in cm, calculated with 

Abdullrahman Maghrabi and Dajani formulas [23]; 

pressure of air (mha); and usual variables (satellite 
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time in hour, decimal minute), degree and azimuth of 

surface. 

2.3 Monitoring Period 

It was analyzed three variables: dry leaf weight 

(g·m-2·period-1), LAI (m2·m-2) and NDVI, from 2011 

to 2016 (Table 2). The measures were made on 

approximate days of the month. 

In order to obtain data on the same days of the   

dry leaves collected, NDVI and LAI data were 

interpolated using the dates. It did not measure    

the absence of some data in the periods because of 

project closure (end of support in data collection). 

Besides, an unforeseen malfunction of the Lai 2200 

happened, which resulted in the lack of data between 

April and July 2016. Regarding the few NDVI data, 

the justification is the use of only high quality images. 

2.4 Improvement of Dry Leaf Weight Modeling 

It was compared results of three equations, 

published in Costa, T. C. C., et al. [13, 14], and those 

developed in this work. 
 

Table 2  Data of dry leaves weight, LAI and NDVI, of the Landsat 5 TM (08/20/11-09/21/11), IRS (02/08/12-10/05/12), e 
Landsat 8 OLI (08/09/13-09/13/16) images, with respective days of the year. 

Per. 
Leaves 
(g/m2)  

LAI 
(m2/m2)  

NDVI 
 

Per. 
Leaves 
(g/m2) 

 
LAI 
(m2/m2) 

 NDVI  

Date Day Date Day Date Day  Date Day Date Day Date Day 

1 07/15/11 196 3 08/27/14 239 08/14/14 226 08/12/14 224 

08/15/11 227 08/20/11 232  09/26/14 269 09/16/14 259 08/28/14 240 

09/13/11 256 09/13/11 256 09/05/11 248  10/28/14 301 10/20/14 293 09/13/14 256 

10/18/11 291 10/19/11 292 09/21/11 264  11/26/14 330 11/19/14 323 10/15/14 288 

11/16/11 320 11/16/11 320  12/23/14 357 12/15/14 349 12/18/14 352 

12/14/11 348 12/12/11 346  01/29/15 394 01/23/15 388   

01/16/12 381 01/15/12 380  02/27/15 423 02/27/15 423   

02/14/12 410 02/10/12 406 02/08/12 404  03/27/15 451 03/27/15 451   

03/15/12 440 03/13/12 438 03/03/12 428  04/29/15 484 04/30/15 485   

04/15/12 471 04/17/12 473 04/20/12 476  05/27/15 512 05/29/15 514 05/27/15 512 

05/14/12 500 05/08/12 494  06/28/15 544 06/26/15 542   

06/15/12 532 06/20/12 537 07/01/12 548  07/28/15 574 07/17/15 563 07/30/15 576 

07/15/12 562 07/13/12 560 07/25/12 572 4 08/28/15 240 08/21/15 233 08/15/15 226 

08/14/12 592 08/14/12 592  09/30/15 273 09/25/15 268 09/16/15 258 

09/13/12 622 09/13/12 622 09/11/12 620  10/30/15 303 10/29/15 302 10/02/15 274 

10/17/12 656 10/05/12 644  11/30/15 334 11/25/15 329   

2 08/15/13 227 08/09/13 221  12/29/15 363 12/18/15 352   

09/16/13 259 09/26/13 269  01/29/16 394 01/25/16 390   

10/15/13 288 10/28/13 301  02/26/16 422 02/27/16 423   

11/18/13 322 11/13/13 317  03/28/16 453 04/01/16 457   

12/17/13 351  04/28/16 484     

01/27/14 392 01/16/14 381  05/30/16 516     

02/17/14 413  06/30/16 547     

03/17/14 441  07/29/16 576     

04/22/14 477 04/22/14 477    08/19/16 597 08/17/16 594 

05/20/14 505 06/09/14 525        

06/18/14 534 06/25/14 541        

07/21/14 567 07/11/14 557        
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3. Results and Discussion 

The region where this experiment was carried out 

has tropical climatic seasonality. Its rainy season 

ranges from October to March, and the dry season, 

from April to September. Fig. 2 presents the water 

balance for the period of study. The difference 

between surplus and deficit of the water was not made 

because in this case the short sequence of days 

without rain is not visible in data analysis. This 

condition is important in analysis because hydric 

deficit has relation with deciduousness in summer 

period. 

In Table 3, it can see the correlations of LAI with 

climate variables. LAI correlates with NDVI (Fig. 3), 

relative humidity, rain, evapotranspiration, deficiency 
 

 
Fig. 2  Accumulated daily climatic water balance of Thornthwaite. Note: DEF (Deficiency) and EXC (Surplus) water to 
CAD = 150 mm, establishing the same accumulation period of the fallen leaves. 
 

Table 3  Pearson correlations between LAI (m2·m-2); Dlw (Dry leaf weight (g·m-2·period-1)); NDVI (v - ifp)/(v + ifp); 
Maximum Temperature °C (TMax); Minimum Temperature °C (TMin); Relative Humidity % on 12h (RH12) and on 18h 
(RH18); Ppt (Rain); ETR (Reference Evapotranspiration); DEF (Water Deficiency (mm)); EXC (Water Excess (mm)); speed 
wind on 12h (SpWin12) and on 18h (SpWin18). (ns: non-significant at 0.05 of probability, n = 84). 

Variables LAI Dlw NDVI TMax TMin RH12 RH18 Ppt ETR DEF(-) EXC SpWin12

Dlw -0.53 

NDVI 0.52 -0.28 

TMax ns 0.01 ns 0.00 0.47 

TMin 0.54 -0.70 0.54 0.34 

UR12 0.53 -0.58 ns 0.05 -0.62 0.35 

UR18 0.55 -0.70 ns 0.17 -0.43 0.65 0.90 

Ppt 0.41 -0.47 ns 0.17 ns -0.19 0.66 0.65 0.78 

ETR -0.54 0.57 ns -0.01 0.64 -0.23 -0.93 -0.82 -0.50 

DEF(-) 0.70 -0.71 ns 0.20 -0.42 0.43 0.89 0.82 0.49 -0.93 

EXC 0.34 -0.35 ns 0.11 -0.24 0.52 0.63 0.70 0.97 -0.49 0.43 

SpWin12 -0.47 0.49 ns -0.05 0.58 ns -0.10 -0.86 -0.67 -0.42 0.88 -0.83 -0.42 

SpWin18 -0.37 0.55 ns -0.16 0.38 -0.28 -0.62 -0.66 -0.23 0.69 -0.64 ns -0.17 0.71 

(-): negative values. 
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Fig. 3  Relations between NDVI and LAI in sites 51, 61 and 81. 
 

and surplus hydric. LAI also correlates with wind 

speed and dry leaves, but with opposite signal, in 

consistent way as well. 

LAI had bigger correlation with dry leaf than NDVI 

(Figs. 4 and 5). The values of NDVI do not have great 

precision yet due to lower image resolutions and 

because image processing does not remove all 

atmospheric interference of the signal. 

LAI has a strong relationship with the 

deciduousness in this forest typology. The increase of 

LAI indicates that the sprouting and growth of leaves 

increase until a maximum, synchronously with the 

reduction of deciduousness, when it reaches a 

minimum, and the reduction of leaf area starts, 

synchronously with the increase of the deciduousness. 

In this stage, the deciduousness drives the reduction of 

LAI, because in this period the leaf production 

practically stops. 

Figs. 6-9 show graphical relationships between dry 

leaf and climate variables to sites 51, 61 and 81. 

Deciduousness phenomenon explains the expected 

relationships. The dry leaves have significant 

correlation with all variables, exception to maximum 

temperature (Fig. 6). The large correlations of dry 

leaves occurred with minimal temperature and hydric 

deficiency variables (Figs. 6 and 8) is the main cause 

of deciduousness. 

On site 81, NDVI of images of Landsat 8 OLI was 

saturated a few times (Fig. 5), perhaps due to large 

values of green biomass. NDVI saturation in dense 

plant coverage affects the relation between LAI and 

NDVI, which occurs especially in ombrophilous 

typologies. The site 81 is classified as rain forest by 

IBGE, and is predominantly classified as Seasonal 

forest always green by Costa, T. C. C., et al. [24]. 

Another possible cause of NDVI saturation is amplitude 

changes of red and near infrared bands in Landsat 8. 

Roy, D. P., et al. [25] verified that, in Landsat 8, 

NDVI is in average 5% bigger than in Landsat 7. 

2.5 Regression Model 

The deciduousness relationship with each descriptor 

variable (LAI, NDVI, temperature, relative humidity, 

evapotranspiration, rain, water balance and wind 

speed) generated the better equation with polynomial 

model on Eq. (1), with R² = 80.7%. 

ଵሻି݄ݐ݊݉.ሺ݃.݉ିଶݓ݈ܦ ൌ 26.0807  19.5211 ൈ

ܫܣܮ െ 50.0720 ൈ ܫܸܦܰ െ 4.2752 ൈ ݊݅ܯܶ 

0.3567 ൈ ܷܴ18 െ 0.1356 ൈ ܨܧܦ െ 21.47 ൈ

18ܹܵ݊݅ െ 1.7907 ൈ ଶܫܣܮ  77.6983 ൈ ଶܫܸܦܰ െ

0.0965 ൈ ଶ݊݅ܯܶ  0.00388 ൈ ܷܴ18ଶ  0.000795 ൈ

ଶܨܧܦ  10.3549 ൈܹ݅݊ܵ18ଶ  (1) 
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Fig. 4  Relation between dry leaf weight (g·m-2·period-1) and LAI (m2·m-2) in sites 51, 61 and 81. 
 

 
Fig. 5  Relations between dry leaf weight (g·m-2·period-1) and NDVI in sites 51, 61 and 81. 
 

 
Fig. 6  Relations between dry leaf weight (g·m-2·period-1) and maximal and minimal temperature in sites 51, 61 and 81. 
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Fig. 7  Relations between dry leaf weight (g·m-2·period-1) and relative humidity on 12h and 18h UTC (Universal Coordinated 
Time) in sites 51, 61 and 81. 
 

 
Fig. 8  Relations between dry leaf weight (g·m-2·period-1) and relative hydric deficit in sites 51, 61 and 81. 
 

 
Fig. 9  Relations between dry leaf weight (g·m-2·period-1) and speed wind on 12h and 18h in sites 51, 61 and 81. 
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Figs. 10 (a) and (b) show the scatterplots. In Fig. 10 

(a), the data present dispersion without bias along the 

45º line. The integration of the monthly estimate in the 

12-month period improves the precision. In Fig. 10 (b), 

the residuals did not present tendency with the observed 

variable value increase, indicating that there is not a 

serial correlation, and that heterogeneity of the variances 

was reduced. It was also verified that the inserted 

variables are enough to predict the variable Dlw. 

Figs. 11 and 12 show the adjustment using the 

periods 2014/15, 2015/16. The before equations 

underestimated the bigger values, and the equation 

published in Costa, T. C. C., et al. [13] had the smaller 

tendency considering all values. The importance of the 

new equation is a smaller tendency for bigger Dlw 

estimations, with greater control including more 

explanatory variables: the minimal temperature, 

relative humidity and wind speed. 

2.6 CO2 Fixation Assessment 

The predictions of the CO2 capture by the adjusted 

deciduousness dynamics equation, for a period of 12 

months in 2011/12 and 2015/16, were compared to the 

measured data. An annual quantity of carbon is 

deposited in the soil due to the sprouting process and 

the seasonal leaf growth and the posterior deposition 

of this biomass by the deciduousness process. Thus, 

for each period of 12 months, including the sequence 

of rainy and water deficit seasons, a measurable 

amount of CO2 is captured by this forest typology, 

adding biomass in the trunks, branches and roots, 

determined by the growth of the vegetation. 

However, the greater result of this account is that 

this amount of CO2 captured occurs each year with 

renew and deposition of leaves, a sink of carbon. 

The estimation of annual leaf deposition was 

accurate, according to the total of the monthly data 

(Table 4), with only two biggest errors, 20.2 and 23.1% 

in plot 611 of site 61, and 811 of site 81, respectively. 

The average fixation of CO2 among the sites was 6.67 

Mg·ha-1·yr-1 (observed values) and 6.37 Mg·ha-1·yr-1 

(estimated values). 
 

  
Fig. 10  (a) Observed data in function of the predicted data for the adjusted equation; (b) Dispersion of residuals in function 
of observed data. 
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Fig. 11  Scatterplot of the Dlw observed and estimated by equation in [13] (●), by equation in [14] (○) and by equation (1) in 
this work (●). 
 

 
Fig. 12  Scatterplot of the observed Error (%) by equation in [13] (●), by equation in [14] (○) and (1) in this work (●). 
 

Table 4  Observated, estimated data of Dlw and Error of estimation (%) to three equations; and observated and estimated 
data to fixed carbon in the leaves (C)* and captured CO2** calculated by new equation. 

  
Dlw Eq.(2013) Eq.(2014) Eq.(new) Er.(2013) Er.(2014) Er.(new) C C est. CO2 

CO2 
est. 

Period Plot (g·m-2·yr-1) (%) (g·m-2·yr-1) (Mg·ha-1·yr-1) 

11/10/11-13/09/12 511 447.4 371.0 338.9 430.3 -17.1 -24.3 -3.8 189.3 182.0 6.9 6.7 

11/10/11-13/09/12 512 450.9 315.3 309.1 414.4 -30.1 -31.4 -8.1 190.7 175.3 7.0 6.4 

11/10/11-13/09/12 611 467.4 372.7 383.9 372.9 -20.3 -17.9 -20.2 197.7 157.7 7.2 5.8 

11/10/11-13/09/12 612 340.6 374.6 368.4 345.6 10.0 8.2 1.5 144.1 146.2 5.3 5.4 

11/10/11-13/09/12 613 371.9 466.6 458.4 411.6 25.5 23.2 10.7 157.3 174.1 5.8 6.4 

28/08/15-29/07/16 613 426.7 154.3 207.8 435.7 -63.8 -51.3 2.1 180.5 184.3 6.6 6.8 

11/10/11-13/09/12 811 578.8 386.8 341.7 445.3 -33.2 -41.0 -23.1 244.8 188.4 9.0 6.9 

27/08/14-28/07/15 811 549.5 - - - 

* considering 42.3% of the biomass (average value of contents in leaves of forest species obtained by Watzlawick, L. F., et al. [26]. 
** by the equivalence of atomic weight between C (12 g) and CO2 (44 g). 
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4. Conclusions 

It can confirm the relationship of climatic variables 

and biophysics remote sensing variables with 

deciduousness phenomenon in semideciduous 

seasonal forest. The new model proposed is nonlinear 

and included more variables to improve consistence. 

This research needs other experiments to new 

interannual validations and models test. These sites of 

the deciduous seasonal tropical forest were confirmed 

as able to capture average 6.5 tons of CO2 per 

hectare/year, only due to the deciduousness 

phenomenon, which will depend on the regeneration 

stage and forest conservation, besides the other factors 

used in this equation. 
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