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ABSTRACT: The aim of this study was to evaluate the performance of pedotransfer functions 
(PTFs) available in the literature to estimate soil bulk density (ρb) in different regions of Brazil, 
using different metrics. The predictive capacity of 25 PTFs was evaluated using the mean abso-
lute error (MAE), mean error (ME), root mean squared error (RMSE), coefficient of determination 
(R2) and the regression error characteristic (REC) curve. The models performed differently when 
comparing observed and estimated ρb values. In general, the PTFs showed a performance close 
to the mean value of the bulk density data, considered as the simplest possible estimation of an 
attribute and used as a parameter to compare the performance of existing models (null model). 
The models developed by Benites et al. (2007) (BEN-C) and by Manrique and Jones (1991) (M&J-
B) presented the best results. The separation of data into two layers according to depth (0-10 cm 
and 10-30 cm) demonstrated better performance in the 10-30 cm layer. The REC curve allowed 
for a simple and visual evaluation of the PTFs.
Keywords  REC curve, model evaluation, soil database, tropical soil

How accurate are pedotransfer functions for bulk density for Brazilian 

Raquel Stucchi Boschi1*, Felipe Ferreira Bocca2, Maria Leonor Ribeiro Casimiro Lopes-Assad3, Eduardo Delgado Assad4

1University of São Paulo/ESALQ – Dept. of Soil Science, Av. 
Pádua Dias, 11 – 13418- 900 – Piracicaba, SP – Brazil.
2University of Campinas/FEAGRI, Av. Cândido Rondon, 501 – 
13083-875 – Campinas, SP – Brazil.
3Federal University of São Carlos/Center of Agricultural 
Sciences, Rod. Anhanguera, km 174 – 13600-970 – Araras, 
SP – Brazil.
4Embrapa Agricultural Informatics, Av. André Tosello, 209 – 
13083-886 – Campinas, SP – Brazil.
*Corresponding author <raboschi@gmail.com>

Edited by: Silvia del Carmen Imhoff

Received September 05, 2016
Accepted December 21, 2016

Introduction

Bulk density (ρb) is an important soil physical 
property known to affect soil water movement, root 
growth, seed germination and root density (Mouazen et 
al., 2003; Dexter, 2004). This property has received par-
ticular attention due to its importance in weight-to-vol-
ume conversions used to assess soil organic carbon (OC) 
stocks. Soil is known to contain the largest terrestrial 
carbon pool and can act as an important sink or source 
for atmospheric CO2.

Despite their importance, ρb databases are in 
short supply because direct measurements of undis-
turbed samples are labor-intensive and time-consuming. 
Furthermore, ρb is highly variable in space and time (Al-
letto and Coquet, 2009). 

Pedotransfer functions (PTFs) (Bouma, 1989) have 
been widely used for estimating ρb using soil properties 
which are easier to measure and are available in most da-
tabases. These PTFs have been developed from specific 
datasets using OC and texture data as input parameters 
(Curtis and Post, 1964; Alexander, 1980; Federer, 1983; 
Grigal et al., 1989; Huntington et al., 1989; Manrique 
and Jones, 1991; Bernoux et al., 1998; Tomasella and 
Hodnett, 1998; Kaur et al., 2002; Prévost, 2004; De Vos 
et al., 2005; Périé and Ouimet, 2008; Han et al., 2012; 
Al-Qinna and Jaber, 2013; Hong et al., 2013; Nanko et 
al., 2014). Benites et al. (2007) also used the sum of basic 
cations (SB) as an input parameter. 

A number of studies have also tested the perfor-
mance of available PTFs and observed that these func-
tions are relatively inaccurate when applied to differ-
ent environments (Kaur et al., 2002; De Vos et al., 2005; 
Benites et al., 2007; Al-Qinna and Jaber, 2013; Nanko 
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et al., 2014). These studies assessed the performance of 
PTFs based on several error measures required for a re-
liable evaluation. The root mean squared error (RMSE) 
and mean error (ME) are the most commonly used mea-
sures (De Vos et al., 2005; Benites et al., 2007; Al-Qinna 
and Jaber, 2013; Nanko et al., 2014).

The aim of this study was to evaluate the predic-
tive capability of PTFs available in the literature to es-
timate soil ρb in different regions of Brazil, using dif-
ferent metrics (mean absolute error (MAE), root mean 
squared error (RMSE), mean error (ME) and regression 
error characteristic (REC) curve).

Materials and Methods

Selected pedotransfer functions (PTFs)
We evaluated 25 PTFs available in the literature. 

The PTFs selected, R2 values and the size of the data 
set used to generate the PTFs are shown in Table 1. 
PTF equations were adjusted to the same units for bet-
ter comparison. The details about land use, location, ρb 
range, and the method used to determine the ρb, which 
was extracted from the original papers, are presented in 
Table 2.

Data set
The original data set used to evaluate the perfor-

mance of the 25 PTFs consisted of 222 soil profiles (888 
soil layers) distributed in different biomes in Brazil and 
with different uses (native vegetation, pasture, integrat-
ed crop-livestock and integrated crop-livestock-forest 
systems) (Figure 1). 

Disturbed and undisturbed soil samples were col-
lected from four depths (0-5, 5-10, 10-20 and 20-30 cm) 
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for chemical and physical analysis (Embrapa, 1997). 
The particle size distribution of sand (2.00-0.05 mm), 
silt (0.05-0.002 mm), and clay (< 0.002 mm) was deter-
mined by the hydrometer method. Soil organic matter 
(OM) was determined using the colorimetric method. 

Table 1 − Published pedotransfer to estimate bulk density. Sample size (n) and R2 were taken from the original paper.
Reference PTF R2 n Code
Alexander (1980) ρb = 1.66 - 0.308 (OC)1/2 0.46 721 ALEX
Benites et al. (2007) ρb = 1.56 - 0.0005 (Clay*10) - 0.01 (OC*10) - 0.0075 SB 0.66 1542 BEN-A
Benites et al. (2007) ρb = 1.5688 - 0.0005 (Clay*10) - 0.009 (OC*10) 0.42 1542 BEN-B
Benites et al. (2007) ρb = 1.5224 - 0.0005 (Clay*10) 0.63 1542 BEN-C
Bernoux et al. (1998) ρb = 1.398 - 0.0047 Clay - 0.042 OC 0.49 323 BERX
Curtis and Post (1964) Log10(ρb*100) = 2.09963-0.00064log10(LOI) - 0.22302 log10(LOI)2 0.96 ~144 C&P
Federer (1983) ln(ρb) = -2.31 - 1.079 ln[(OM/100)] - 0.113 ln[(OM/100)]2 NI NI FED
Grigal et al. (1989) ρb = 0.075 + 1.301exp (-0.06 LOI) 0.95 800 GRIG
Harrison and Bocock (1981) ρb =1.558 - 0.728 log10(LOI) 0.81 539 H&B-A
Harrison and Bocock (1981) ρb =1.729 - 0.769 log10(LOI) 0.58 538 H&B-B
Han et al. (2012) ln(ρb) = 0.5379 - 0.0653[(10 OM)]0.5 0.67 1560 HAN
Hong et al. (2013) ρb =1.02 - 0.156 ln(OM) 0.45 642 HONG
Huntington et al. (1989) ln ρb = -2.39 - 1.316 ln [(OM/100)] - 0.167 (ln [(OM/100)]2 0.75 60 HUNT-A
Huntington et al. (1989) ln ρb = 0.263 - 0.147 ln OC - 0.103 (ln OC)2 0.72 60 HUNT-B
Jeffrey (1970) ρb =1.482 - 0.6786 log10(LOI) 0.82 80 JEF
Kaur et al. (2002) ln ρb = 0.313 - 0.191 OC + 0.02102 Clay - 0.000476 (Clay)2 - 0.00432 Silt 0.62 224 KAUR
Leonavičiute (2000) ρb =1.70398 - 0.00313 Silt + 0.00261 Clay - 0.11245 OC NI 135 LEO-A
Leonavičiute (2000) ρb = 1.07256 + 0.032732 ln(Silt) + 0.038753ln(Clay) + 0.078886 ln(Sand) - 0.054309 ln(OC) NI 858 LEO-B
Manrique and Jones (1991) ρb = 1.66 - 0.318 (OC)1/2 0.41 19651 M&J-A
Manrique and Jones (1991) ρb = 1.51 - 0.113 OC 0.36 19651 M&J-B
Perie and Ouim (2008) ρb = 1.977 + 4.105(OM/100) - 1.229ln[(OM/100)] - 0.103 ln[(OM/100)]2 0.82 125 P&O
Prévost (2004) ln(ρb) = -1.81 - 0.892*ln[(OM/100)] - 0.092 ln[(OM/100)]2 0.77 414 PREV
Ruehlmann and Körschens (2009) ρb = (2.684 - (140.943b)) exp(-bOC) 0.98 609 R&K
Tomasella and Hodnett (1998) ρb = 1.578 - 0.054 OC - 0.006 Silt - 0.004 Clay 0.59 613 T&H
Tamminen and Starr (1994) ρb = 1.565 - 0.2298(LOI)0.5 0.61 158 T&S
ρb = bulk density (g cm–3); OM = organic matter (%); OC = organic carbon (%); SB = sum of basic cations (cmolc kg–1); LOI = loss-on-ignition (%); NI = not reported in 
the original paper; b = coefficient for soil groups proposed by the authors (b = 0.006).

Figure 1 − Map with the location of points sampled. 

The OC content was determined by using the elemental 
analyzer in Piracicaba, São Paulo, Brazil. Bulk density 
was obtained for each layer using the core method, by 
means of cylinders with volumetric rings 0.053 m high 
and 0.05 m in diameter. Detailed information can be 
found in Assad et al. (2013).

We eliminated samples that had a missing ρb val-
ue or whose sum of particle size fractions (sand, silt, and 
clay) did not equal 100 %. The final data set consisted 
of 884 soil samples. The evaluation of the 25 PTFs was 
first performed by considering the whole data set (884 
samples). In a second analysis, the data set was divided 
into two subgroups according to soil depth: the layer be-
tween 0 and 10 cm (0-10 cm) and the layer between 10 
and 30 cm (10-30 cm). 

Evaluation criteria
The most useful approach to an evaluation of 

predictive models should be based on a set of comple-
mentary indices (Donatelli et al., 2004; Nanko et al., 
2014). In the present study, the predictive capacity of 
the 25 PTFs was evaluated using the mean absolute 
error (MAE), RMSE, ME and R2. MAE is the value 
of the error in absolute terms, and lower values indi-
cate better predictive ability. RMSE is the standard 
deviation of the error in the prediction, and, again, 
 lower values indicate better model performance. ME 
quantifies systematic errors and indicates tendencies to 
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overestimate or underestimate. R2 represents the frac-
tion of the total variance that is explained by the model. 
Higher R2 values are desirable. 

Regression error characteristic curve - REC curve
The evaluation of the PTFs was complemented by 

the use of the REC curve. The regression error character-
istic (REC) curve is a promising alternative for the evalu-
ation of PTFs. The REC curve allows for comparisons 
of the performance of different models simultaneously 
using visual assessment, which facilitates interpretation 
by the user (Mittas and Angelis, 2010).

The REC curve represents the cumulative distri-
bution function of the errors. On the x-axis the REC 
curve plots the error and on the y-axis the accuracy of a 
regression function (Mittas and Angelis, 2010). Accuracy 
is defined as the fraction of points that fit within an er-
ror level, ranging from 0 to 1. Using this construction, 
we can evaluate the level of accuracy as the number of 
points for a given value of error. 

REC curves are built in a way that makes in-
specting model performance a simple task of check-
ing which model is closest to the (0, 1) point (up-
per left corner) (Figure 2A). If the REC curve of one 
model is above the others, it is an indication that it 
is the best model for that metric, be it absolute error 
or squared error, or their relative forms (e.g., model 
c in Figure 2B). Thus, when comparing models a and 
b, if the REC curve from model a overlies the curve 
of model b, we can affirm that model a is superior to 
model b (Figure 2B). Model c in Figure 2B is superior 
to the others.

The REC curve also allows us to estimate the mod-
el error by measuring the area over the curve (AOC). If 
the selected error measure is the squared error, the AOC 
corresponds to an underestimation of the mean squared 
error (MSE), and for the absolute error, the AOC corre-
sponds to an underestimation of the MAE.

Finally, the REC curve allows for a comparison of 
the quality of a particular model with the simplest pos-
sible estimation of an attribute from a population. In this 
study, the mean prediction corresponds to the simplest 
possible estimation of an attribute, and we used these 
values as a parameter to compare the performance of 
existing models. If the use of the mean values is better 
than a particular model, this model is not recommended 

Table 2 − Land use, location, values of bulk density and method to determine bulk density for the data set used in the development of the tested 
pedotransfer functions (PTFs). This information was taken from the original papers of the tested pedotransfer functions.

PTF Land use Location Bulk Density (g cm–3) Method
ALEX Alluvial soils and uplands California - EUA 0.45-1.92/0.24-1.98 clod/core
BEN NR Brazil 0.13-2.25 (1.36) core
BERX NR Amazon - Brazil 0.74-1.58 (1.18) clod
C&P Forest Vermont - EUA NR core
FED Forest New England NR core
GRIG Florest North Central USA 0.35-1.90 core
H&B Various Various 0.03-1.87 various
HAN Forest China 0.12-1.82 (1.32) NR
HONG NR Andisols - Global Dataset NR NR
HUNT Spodosols under forest New Hampshire - EUA NR Pits
JEF Various Australia and England 0.05-1.8 core
KAUR Various Uttaranchal - Índia 0.85-1.79 (1.36) core
LEO NR Lithuania 0.44-2.14 (1.68) core
M&J Various EUA 1.2-1.5 NR
P&O Forest Quebec - Canada NR core
PREV Forest Quebec - Canada 0.10-1.96 core
R&K Various Various 0.03-2 core
T&H NR Amazon - Brazil 0.95-1.6 core
T&S Forest Finland 0.48-1.84 core
Data set Forest, Pasture, ICL, ICLF Brazil 0.81-1.84 (1.42) core
NR = not reported in the original paper; ICL = integrated crop-livestock system; ICLF = integrated crop-livestock-forest system.

Figure 2 − A) Illustration of the Area Over Curve (AOC) of a model; 
B) Comparison of three models by their REC (regression error 
characteristic) curve; model c representing near perfect behavior, 
the model with the highest performance, which in turn is better 
than model b.
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for that situation. The mean value will hereafter be re-
ferred to as the null model. 

When used in such manner, comparing models 
with REC curves is no different from using the MAE or 
RMSE. The benefits of the REC curve are related to oth-
er easily visualized statistics, which can be the R2 or the 
Kolmogorov-Smirnov Statistic to check if two samples 
are generated from the same distribution. Furthermore, 
the REC allows for quick visualization of the error me-
dian (50 % horizontal line) or any level of confidence for 
different readers, e.g. one can look at the errors for 80 % 
confidence or 95 %.

REC curves were constructed following the steps 
proposed by Mittas and Angelis (2010): 1 – The model 
was set up, and the error in the predictions was evalu-
ated; 2 – The error values were sorted in ascending or-
der; 3 – For each error value that was not repeated, a 
point with the error value and the percentage of points 
with smaller errors were included in the graph. Step 1 
was not necessary because we used available PTFs (Ta-
ble 1). The RMSE was used as a measurement of error. 
Comparisons between curves were also made, by apply-
ing the Wilcoxon signed rank test at the 0.05 level, with 
the Holm correction for multiple comparisons. This test 
assesses whether population mean ranks differ (paired 
difference test). 

Results and Discussion

General evaluation
The descriptive statistics of the data set are shown 

in Table 3. The data set used has a wide range of ρb val-
ues, with a minimum of 0.81 g cm–3, a maximum of 1.84 g 
cm–3, and a mean value of 1.42 g cm–3 (Table 3). The PTFs 

tested were developed from data sets with different uses, 
origins, ρb ranges and methods of determination (Table 
2). The range of ρb values in the data set used for the com-
parisons was within the range of values observed in the 
data sets used to generate the PTFs ALEX, BEN, GRIG, 
HAN, H&B, JEF, KAUR, LEO, PREV, R&K and T&S (Table 
2 and Table 3). The PTFs BERX and HUNT used methods 
different from those used in this study; the PTFs ALEX 
and H&B used more than one method; and the PTFs 
HAN, HONG, and M&J did not inform the method used. 
The others used the core method.

The models performed differently when observed 
and estimated ρb values were compared (Figure 3 and 
Table 4). The ρb values were underestimated, except for 
the R&K, H&B-B and LEO (A and B) functions (Figure 3, 
Table 4). Underestimations in the prediction of ρb were 
also observed by De Vos et al. (2005), which they attrib-
uted to the high proportion of topsoil data used in the 
calibration of the PTFs. These authors used forest soil 
data, in which the surface ρb tended to be lower than 
the subsurface values (Tamminen and Starr, 1994; De 
Vos et al., 2005), which can lead to underestimated ρb 
values. The data set used in this study are composed of 
soil data from the upper 30 cm of the soil profile, consid-
ered as topsoil (De Vos et al., 2005; Martin et al., 2009). 
Additionally, 40 % of our data is from natural vegetation 
(ρb = 1.28 g cm–3) and integrated systems (crop-livestock 
ρb = 1.33 g cm–3; crop-livestock-forest ρb = 1.39 g cm–3), 
which presented a lower topsoil ρb than pasture (ρb = 
1.45 g cm–3). Data only from topsoil and under different 
uses may explain the underestimates. 

Lower ME values were observed for BEN-C and 
M&J-B indicating that these models were less biased 
(Table 4). The most biased models were HONG, R&K, 

Table 3 − Descriptive statistics of the data set used to evaluate the 25 pedotransfer functions.
Statistics Silt Clay Sand OC OM ρb SB

------------------------------------------------------------------------------------ % ------------------------------------------------------------------------------------ g cm–3 cmolc kg–1

All data set (n = 884)
Min-Max 1 - 67 0.1 - 76 2 - 95 0.1 - 8.3 0.2 - 13.2 0.81 - 1.84 0.3 - 30.5
Mean (Std dev) 17 28 55 1.4 2.5 1.42 4
Std dev 12 17 24 0.9 1.4 0.2 3.9
1st - 3rd quartile 9 - 22 15 - 40 38 - 73 0.7 - 1.8 1.5 - 3.1 1.26 - 1.56 1.6 - 5.1
Median 13 25 60 1.1 2.1 1.42 2.9

Topsoil (n = 442)
Min-Max 1 - 64 0.1 - 76 3 - 95 0.1 - 8.3 0.6 - 13.2 0.81 - 1.8 0.3 - 30.4
Mean (Std dev) 17 27 56 1.7 2.9 1.39 4.9
Std dev 12 17 24 1.1 1.6 0.2 4.1
1st - 3rd quartile 9 - 22 14 - 37 39 - 74 0.8 - 2.2 1.9 - 3.7 1.25 - 1.54 2.3 - 6.4
Median 13 24 62 1.4 2.7 1.4 3.7

Subsoil (n = 442)
Min-Max 1 - 67 0.2 - 76 2 - 95 0.1 - 4.6 0.2 - 8.6 0.88 - 1.84 0.3 - 30.5
Mean (Std dev) 17 30 54 1.1 1.9 1.41 3.2
Std dev 12 18 24 0.7 1.1 0.2 3.6
1st - 3rd quartile 9 - 22 16 - 42 35 - 72 0.6 - 1.5 1.2 - 2.4 1.26 - 1.57 1.2 - 4
Median 13 26 58 0.9 1.7 1.44 2.2
Min = minimum; Max = maximum; Std dev = standard deviation; OC = organic carbon; OM = organic matter; ρb = bulk density; SB = sum of basic cations.
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Figure 3 −  Values observed (OBS) versus estimated (EST) of 25 
PTFs (pedotransfer functions) evaluated in a data set of soils from 
different regions of Brazil with bulk density data for depths up to 
30 cm. The dashed line corresponds to 1:1.

Table 4 − Mean absolute error (MAE), root mean squared error 
(RMSE), mean error (ME), coefficient of determination (R2), and 
area over the REC curve (AOC) with mean squared error (sqr) and 
with absolute error (abs) for published pedotransfer functions 
(PTFs) evaluated using bulk density data for all samples. The 
Wilcoxon Test was performed for differences between distributions 
of absolute errors.

All Data set
PTFs MAE RMSE ME R2 AOC_sqr AOC_abs Wilcoxon Test
HUNT-A 0.27 0.31 -0.24 0.05 0.10 0.27 hi
HUNT-B 0.20 0.24 -0.17 0.34 0.06 0.20 bcd
ALEX 0.15 0.19 -0.08 0.32 0.03 0.15 a
M&J-A 0.16 0.19 -0.10 0.32 0.04 0.16 e
M&J-B 0.14 0.17 -0.05 0.32 0.03 0.14 f
T&H 0.16 0.19 -0.11 0.40 0.04 0.16 ae
BERX 0.22 0.26 -0.19 0.31 0.07 0.22 g
KAUR 0.31 0.38 -0.29 0.41 0.15 0.31 hi
BEN-A 0.19 0.23 -0.15 0.35 0.05 0.19 bcd
BEN-B 0.16 0.19 -0.10 0.35 0.04 0.16 e
BEN-C 0.15 0.18 -0.02 0.19 0.03 0.15 f
LEO-A 0.19 0.24 0.17 0.27 0.06 0.19 bcdkm
LEO-B 0.20 0.25 0.17 0.32 0.06 0.20 bcdgkm
R&K 0.42 0.47 0.42 0.31 0.22 0.42 n
FED 0.27 0.31 -0.25 0.16 0.10 0.27 i
T&S 0.22 0.26 -0.18 0.14 0.07 0.22 gm
HAN 0.20 0.24 -0.14 0.14 0.06 0.20 b
JEF 0.21 0.25 -0.14 0.12 0.06 0.21 k
H&B-A 0.19 0.23 -0.08 0.12 0.05 0.19 c
H&B-B 0.19 0.24 0.08 0.12 0.06 0.19 bcdek
HONG 0.50 0.53 -0.50 0.12 0.28 0.50 l
GRIG 0.23 0.23 -0.20 0.27 0.07 0.23 j
C&P 0.26 0.30 -0.24 0.17 0.09 0.26 h
PREV 0.19 0.23 -0.13 0.16 0.05 0.19 d
P&O 0.19 0.24 -0.10 0.14 0.06 0.19 bd
Null 0.17 0.20 0.00 NA 0.04 0.17 ae
NA = not available; Null = null model; models followed by the same letter did 
not differ in the Willcoxon Signed Rank test at the 0.05 level with the Holm 
correction for multiple testing.

and KAUR. Out of the 12 models evaluated by De Vos et 
al. (2005), KAUR was the most biased and showed a high 
ME value. In the present study, this model had the third 
highest ME value (Table 4). The data used by De Vos et 
al. (2005) presented a ρb mean value (1.44 g cm–3) very 
similar to the data used here (1.42 g cm–3). However, the 
range of ρb (0.22 to 1.96 g cm–3) was wider than what we 
recorded (0.81 to 1.84 g cm–3). On the other hand, the 
most biased models tested by Nanko et al. (2014) were 
H&B and ALEX, which were among the models with 
lower values. They used data from volcanic soils, with a 
range of ρb between 0.13 and 1.78 g m–3 and a very low 
mean of 0.6 g cm–3.

The best indices (MAE, RMSE, and ME) were 
observed in the M&J-B, ALEX, BEN-B, BEN-C, M&J-A 
and T&H models. Out of the models with lower errors 
(MAE, RMSE, and ME), the T&H model had the high-
est R2 value and, therefore, represented a more realistic 
model. When considering the models developed from 
the data from Brazilian soils (BEN-A, BEN-B, BEN-C, 
BERX, and T&H), we observed that three of them are 
among the best models: BEN-B, BEN-C and T&H.

The worst indices were observed in the HONG, 
R&K, and KAUR models. Furthermore, HONG, R&K, 
BEN-C, LEO-B, and C&P models provided similar esti-
mates of ρb (Figure 3) for a data set with a broad range 
of values (0.86 g cm–3 to 1.8 g cm–3) (Table 3). This find-
ing reveals that these models do not provide reliable pre-
dictions of ρb. The performance of the PTFs using data 
sets that differ from those used in their development is 
uncertain and may not be satisfactory, especially when 
the data sets are sourced from different geographic areas 
(Wösten et al., 2001) (Table 5). 

In addition to the difficulty associated with extrap-
olating these models due to the specificity of the data 
sets used in their development (Table 3), the method 
used to generate the PTFs also appears to affect the re-
sults (Martin et al., 2009; Jalabert et al., 2010; Suuster et 
al., 2011). These methods are quite varied, ranging from 
simple regressions to more powerful methods such as 
neural networks, regression trees (Martin et al., 2009; 
Jalabert et al., 2010; Ghehi et al., 2012), and the nearest-
neighbor method (Nemes et al., 2010). In the case of 
the PTFs assessed in our study, the methods used were 
mostly simple or multiple regressions using the least 
squares method. 

The analysis of input variables did not present any 
concluding remark. The T&H model, using OC and two 
granulometry fractions was one of the best five mod-
els (M&J-B, ALEX, BEN-B, BEN-C, M&J-A, and T&H); 
despite one of the worst models (KAUR) also using OC 
and two granulometry fractions. The other models used 
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only OC or OM and one granulometry fraction. There-
fore, when considering the origin of the data set used to 
develop the model, the number, and type of input vari-
ables, the model generated from a Brazilian data set with 
OC and two granulometry fractions as input was able to 
predict ρb more effectively. 

When comparing the observed and predicted val-
ues, certain patterns in results appear inadequate to act 
as a good predictor (Figure 3). An exhaustive discussion 
of these patterns is beyond the scope of this study; thus, 
two patterns were observed: the horizontal lines (e.g., 
BEN-C) and the 'flat top' (e.g., HUNT-A). The horizon-
tal line found in BEN-C is easily explained by the small 
magnitude of the angular coefficients (10–3-10–5) com-
pared with the linear coefficient (1.5688). Although the 
data set used in this study contains ρb values between 
0.81 and 1.84 g cm–3, the BEN-C model predicted val-
ues between 1.14 and 1.51 g cm–3. This range is even 
narrower for the LEO-B model, which predicted values 
between 1.33 and 1.71 g cm–3. The previous analysis de-
veloped for BEN-C and LEO-B can be extended to the 
R&K and C&P models. 

The 'flat top' pattern was observed in the HUNT-
A, HUNT-B, and KAUR models and, to a lesser extent, 
in LEO-A and FED. An evaluation of the parameters of 
the HUNT-A equation and the values of the data set al-
lowed us to conclude that the predicted values would lie 
between 1.04 and 1.36 g cm–3. The maximum value is 
lower than the average ρb value for the data set (1.42 g 
cm–3), resulting in a flat aspect on the graph. 

When the data set was separated according to 
depth (0-10 cm and 10-30 cm), the values of the indi-
ces showed only slight variations (Table 6). The M&J-B, 
BEN-B, BEN-C, ALEX, M&J-A, and T&H continued to 
perform well, and the HONG, R&K, and KAUR models 
had the worst performance. The lowest RMSE values 
were observed for the BEN-C and M&J-B and the high-
est for the HONG model for both soil depths.

REC curve
In the evaluation using the REC curve, the models 

were separated into different graphs for easier visualiza-
tion (Figure 4A and B). The 12 best models are presented 
in Figure 4A and the remainder in Figure 4B. Table 4 
also presents the values of AOC calculated from squared 
error (AOC_square) and absolute error (AOC_abs), and 

the results of the comparisons of the REC curves by the 
Wilcoxon test at the 0.05 level with the Holm correction 
for multiple testing. 

Among the 12 best models, the Wilcoxon test 
showed that ALEX, BEN-B, H&B-B, M&J-A and T&H 
models presented a distribution similar to the null 
model. Otherwise, HUNT-B, H&B-A, BEN-A, PREV, 
and P&O models presented a different distribution 
from the null model, with an inferior performance for 
the majority of the error range (Figure 4A and Table 
4). BEN-C and M&J-B also presented a different dis-
tribution from the null model, with a superior per-
formance for a particular range of errors. The better 
performance of the M&J-B model is likely due to the 
variability of the data used in its generation (12,000 
soil profiles) (Manrique and Jones, 1991). The result for 
BEN-C is probably related to similarity between data 
sets (Benites et al., 2007). 

The 13 worst models presented a distribution dis-
similar from the null model, with an inferior performance 
for the whole error range, showing that these models 
have  low predictive ability (Figure 4B and Table 4). The 
HONG, R&K, and KAUR models had the worst results, 
with much poorer performance than the null model (Fig-
ure 4B and Table 4). De Vos et al. (2005) observed poor 
performance for both the KAUR and HUNT models using 
forest soil data from Belgium. These models were devel-

Table 5 − RMSE (root mean squared error) (First value) and R2 (Second value) for the PTFs (pedotransfer functions) Alexander et al. (1980) (ALEX), 
Manrique and Jones (1991) (M&J) and Tomasella and Hodnett (1998) (T&H) and Kaur et al. (2002) (KAUR), when applied to different data sets.

References
RMSE/R2

Soil use and Location
ALEX M&J T&H R&K KAUR

Nanko et al. (2014) 0.32/0.64 0.30/0.64 - - - Forest soils affected by volcanic ash (Japan)
Al-Qinna and Jaber (2013) 0.33/0.22 0.34/0.23 0.42/0.258 0.14/0.21 0.52/0.21 Arid environment in North Jordan 
De Vos et al. (2005) 0.30/0.58 0.32/0.58 - - 0.56/0.58 Forest in Belgium
 Kaur et al. (2002) 0.19/- 0.20/- 0.18/- - - Four micro-watersheds in Almora, India
Han et al. (2012) 0.14/0.59 0.35/0.46 0.21/0.22 - 0.26/0.45 Forest in China
Benites et al. (2007) - 0.27/- 0.24/- - - Different soil use in Brazil

Figure 4 − REC (regression error characteristic) curve for the 25 
pedotransfer functions (PTFs) tested for data set with depths of 
up to 30 cm: (A) 12 best functions: M&J-B, HUNT-B, ALEX, M&J-A, 
T&H, BEN-A, BEN-B, BEN-C, H&B-A, H&B-B, PREV and P&O (B) 
other PTFs. The red dashed line represents the accuracy of 50 % 
that can be used to visualize the error of the median. 
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oped for very specific conditions, making them difficult 
to extrapolate (Table 2). Furthermore, the HUNT model 
used different methods to determine the ρb.

Nemes et al. (2010) emphasize that the model se-
lected should be one developed from similar areas as 
regards soil genesis. However, even the PTFs developed 
for Brazilian soils, such as those generated by Benites et 
al. (2007), showed a performance slightly superior to the 
null model and for specific conditions.

The Wilcoxon test for REC curves according to 
depth showed similar results when considering all the 
data set (Table 6). For depths up to 10 cm (Figure 5A and 
B), ALEX, BEN-B, H&B-B, M&J-A, and T&H, together 
with M&J-B and LEO-A models, continued to present 
a distribution similar to the null model (Table 6). The 
BEN-C was the only model with a distribution different 
from the null model, but, again the gain in their applica-
tion was very small and only for specific error ranges. 
The other five models, out of the 12 best ones HUNT-B, 
BEN-A, H&B-A, PREV, and P&O, presented a distribu-
tion different from the null model, with inferior perfor-
mance for the majority of the error range (Figure 5A). 

Table 6 − Mean absolute error (MAE), root mean squared error (RMSE), mean error (ME), coefficient of determination (R2) and area over de REC 
curve (AOC) with absolute error for published pedotransfer functions (PTFs) evaluated using bulk density data for two classes of depth (0 to 10 
cm and 10 to 30 cm). The Wilcoxon Test (WT) was performed for differences between distributions of absolute errors.

PTFs 
Depth of 0 to 10 cm Depth of 10 to 30 cm

MAE RMSE ME R2 AOC WT MAE RMSE ME R2 AOC WT
HUNT-A 0.26 0.30 -0.23 0.12 0.26 a 0.28 0.32 -0.24 0.01 0.28 a
HUNT-B 0.22 0.26 -0.20 0.34 0.22 bcd 0.18 0.21 -0.14 0.41 0.18 bcdefghi
ALEX 0.16 0.20 -0.11 0.33 0.16 ef 0.15 0.18 -0.06 0.36 0.15 jk
M&J-A 0.17 0.20 -0.12 0.33 0.17 ghij 0.15 0.18 -0.07 0.36 0.15 lm
M&J-B 0.14 0.18 -0.07 0.34 0.14 kl 0.14 0.17 -0.03 0.39 0.14 jl
T&H 0.16 0.19 -0.11 0.38 0.16 egh 0.16 0.19 -0.11 0.41 0.16 kmno
BERX 0.21 0.25 -0.19 0 0.21 bcd 0.23 0.26 -0.20 0.30 0.23 pqr
KAUR 0.34 0.41 -0.32 0 0.34 mn 0.29 0.36 -0.26 0.42 0.29 apst
BEN-A 0.20 0.24 -0.17 0.35 0.20 opq 0.18 0.21 -0.13 0.36 0.18 bcdefghiuvwx
BEN-B 0.17 0.20 -0.11 0.35 0.17 fij 0.16 0.19 -0.09 0.35 0.16 n
BEN-C 0.14 0.18 0 0.18 0.14 k 0.15 0.18 -0.04 0.22 0.15 jl
LEO-A 0.18 0.22 0.15 0.30 0.18 bcefghijopr 0.21 0.26 0.19 0.28 0.21 bcegqyzA
LEO-B 0.20 0.25 0.18 0.29 0.20 bcdgiopqrs 0.19 0.25 0.17 0.34 0.19 dfhinoruvwxBC
R&K 0.43 0.47 0.43 0.32 0.40 t 0.41 0.46 0.41 0.35 0.41 D
FED 0.29 0.34 -0.28 0.16 0.29 m 0.24 0.28 -0.21 0.19 0.24 pq
T&S 0.23 0.28 -0.21 0.15 0.23 s 0.21 0.25 -0.16 0.14 0.21 yB
HAN 0.21 0.25 -0.17 0.15 0.21 bcdopq 0.18 0.22 -0.11 0.14 0.18 bdu
JEF 0.23 0.27 -0.19 0.14 0.23 s 0.19 0.23 -0.09 0.11 0.19 bcdfuv
H&B-A 0.20 0.24 -0.13 0.14 0.20 bor 0.17 0.22 -0.02 0.12 0.17 cefhnvw
H&B-B 0.17 0.21 0.02 0.14 0.17 efghijr 0.20 0.26 0.14 0.11 0.20 bdgiouxyzBC
HONG 0.52 0.55 -0.52 0.14 0.52 u 0.48 0.51 -0.47 0.12 0.48 E
GRIG 0.24 0.29 -0.22 0.16 0.24 a 0.22 0.26 -0.18 0.16 0.22 szC
C&P 0.28 0.32 -0.26 0.16 0.28 n 0.25 0.29 -0.22 0.19 0.25 tA
PREV 0.21 0.25 -0.16 0.16 0.21 cp 0.17 0.21 -0.10 0.19 0.17 eghinowx
P&O 0.22 0.26 -0.16 0.15 0.22 dq 0.17 0.21 -0.04 0.15 0.17 hnw
Null 0.16 0.20 0 NA 0.16 efhjl 0.17 0.20 0 NA 0.17 mnouvwx
NA = not available; Null = null model; models followed by the same letter did not differ in the Willcoxon Signed Rank test at the 0.05 level with the Holm correction 
for multiple testing.

Figure 5 − REC (regression error characteristic) curve for the 25 
pedotransfer functions (PTFs) tested for soil data; A) 12 best 
functions for depths up to 10 cm: M&J-B, HUNT-B, ALEX, M&J-A, 
T&H, BEN-A, BEN-B BEN-C, H&B-A, H&B-B, PREV and P&O; B) 
Other PTFs for depths up to 10 cm; C) 12 best functions for 
depths of 10 to 30 cm: M&J-B, HUNT-B, ALEX, M&J-A, T&H, 
BEN-A, BEN-B BEN-C, H&B-A, H&B-B, PREV and P&O; D) Other 
PTFs for depths of 10 to 30 cm. The red dashed line represents 
the accuracy of 50 % that can be used to visualize the error of 
the median.
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For depths of 10 to 30 cm (Figure 5C and D), the 
Wilcoxon test showed that 10 of the 12 best models 
did not differ from the null model (Table 6). A slight 
improvement occurred with the application of ALEX, 
M&J-B, BEN-B, and BEN-C models, but also for a par-
ticular error range and, therefore, cannot be interpreted 
as better performance of these models compared to the 
null model (Figure 5C). Previous studies have shown the 
influence of soil depth on the prediction of ρb. De Vos et 
al. (2005) found a 24 % improvement in the performance 
of PTFs in RMSE for ρb prediction at greater depths. 
Heuscher et al. (2005) noted that depth was responsible 
for approximately 1 % of the variation in ρb, and the 
greatest variation observed was 7 %. Benites et al. (2007) 
did not observe an improvement in the accuracy of the 
PTFs after separating the soils by depth (0 to 30 cm and 
30 to 100 cm). Tranter et al. (2007) found better results 
when using the depth expressed on a logarithmic scale. 
Nemes et al. (2010) observed a decrease in the bias after 
separating the soil by depth.

In general, only BEN-C presented a slight im-
provement in ρb estimates for all situations (all data set, 
depths up to 10 cm and depths of 10 to 30 cm), when 
compared to the null model. The number of models 
with better results for topsoil was more restricted than 
for the subsurface. Having a worse performance for the 
topsoil as compared with the subsurface soil raises con-
cerns as regards the estimation of soil C stock in which 
0 to 30 cm are commonly considered as a reference layer 
(IPCC, 1997). Given the higher concentration of OC in 
the surface compared to the lower layer (Table 3), the 
error will be greater where it matters most. 

The method used to determine the predictors of 
a PTF or the estimated variable (ρb) also seems to af-
fect their performance. Both ρb and OC (or OM) can 
be measured by different methodologies (Sleutel et 
al., 2007; Blake and Hartge, 1986). The LOI and wet-
oxidation methods are the two most commonly used 
methods for quantifying OM. However, the LOI meth-
od has no standard protocol and involves potentially 
confounding factors (Hoogsteen et al., 2015) even if the 
granulometric data could present variations since na-
tional and international classification systems often use 
quite different particle size ranges. In fact, Wösten et 
al. (2001) pointed out that there is no single source of 
variability, either PTF-related or soil-related, that can 
explain the uncertainty in every calculated functional 
aspect of soil behavior. The authors suggest using large 
and reliable data sets as well as PTFs developed from 
soils with similar attribute ranges to those used for the 
predictions. Here, we could see that similar ranges of 
soil attributes are not a guarantee of good predictions. 
The REC curve allows us to show that the 12 PTFs 
with the best indices presented, in general, a perfor-
mance similar to the null model. BEN-C and M&J-B 
models presented the best results. The  improvements 
observed were insignificant and were found only in 
specific error ranges. 

Conclusions

The 25 models tested performed differently when 
observed and estimated bulk density values are com-
pared, and the BEN-C and M&J-B models presented the 
best results.

The separation of data into two layers according to 
depth (0-10 cm and 10-30 cm) demonstrated a worse per-
formance for the 0-10 cm layer, which raises concerns 
about the estimation of soil C in the upper layers that 
contain most of the organic matter.

The use of the REC curve as a form of analysis 
allowed for a simple and visual evaluation of the perfor-
mance of the models.

The pedotransfer functions tested in this study 
showed a performance close to that of the null model 
(mean value) when estimating bulk density for soils 
from different regions of Brazil, indicating little or no 
additional benefit from the use of the null model.

Acknowledgements

We thank FAPESP (São Paulo Research Foundation) 
for financial support (Registry numbers: 2015/06804-0) 
and CNPq (Brazilian National Council for Scientific and 
Technological Development) for productivity grants in 
research to Eduardo Delgado Assad.

References

Alexander, E.B. 1980. Bulk densities of California soils in relation 
to other soil properties. Soil Science Society of America Journal 
44: 689-692.

Alletto, L.; Coquet, Y. 2009. Temporal and spatial variability of soil 
bulk density and near-saturated hydraulic conductivity under two 
contrasted tillage management systems. Geoderma 152: 85-94.

Al-Qinna, M.I.; Jaber, S.M. 2013. Predicting soil bulk 
density using advanced pedotransfer functions in an arid 
environment.  Transactions of the ASABE 56: 963-976.

Assad, E.D.; Pinto, H.S.; Martins, S.C.; Groppo, J.D.; Salgado, 
P.R.; Evangelista, B.; Vasconcelos, E.; Sano, E.E.; Pavão, E.; 
Luna, R.; Camargo, P.B.; Martinelli, L.A. 2013. Changes in soil 
carbon stocks in Brazil due to land use: paired site comparisons 
and a regional pasture survey. Biogeosciences 10: 1-22.

Benites, V.M.; Machado, P.L.O.A.; Fidalgo, E.C.C.; Coelho, M.R.; Madari, 
B.E. 2007. Pedotransfer functions for estimating soil bulk density from 
existing soil survey reports in Brazil. Geoderma 139: 90-97.

Bernoux, M.; Arrouays, D.; Cerri, C.; Volkoff, B.; Jovilet, C. 1998. 
Bulk densities of Brazilian Amazon soils related to other soil 
properties. Soil Science Society of America Journal 62: 743-749.

Bouma, J. 1989. Using soil survey data for quantitative land 
evaluation. Advances in Soil Science 9: 177-213.

Black, G.R.; Hartge, K.H. Bulk Density. In: Klute, A. (Ed.). Methods 
of soil analysis: Physical and Mineralogical Methods. Part 1. 
Madison: American Society of Agronomy, 1986. p. 363-375.

Curtis, R.O.; Post, B.W. 1964. Estimating bulk density from 
organic-matter content in some Vermont forest soils. Soil 
Science Society of America Journal 28: 285-286.



78

Boschi et al. Models for soil bulk density estimate

Sci. Agric. v.75, n.1, p.70-78, January/February 2018

De Vos, B.; Meirvenne, M.V.; Quataert, P.; Deckers, J.; Muys, B. 
2005. Predictive quality of pedotransfer functions for estimating 
bulk density of forest soils. Soil Science Society of America 
Journal 69: 500-510.

Dexter, A.R. 2004. Soil physical quality. Part I. Theory, effects of 
soil texture, density, and organic matter, and effects on root 
growth. Geoderma 120: 201-214.

Donatelli, M.; Acutis, M.; Nemes, A.; Wosten, H. 2004. Methods 
to evaluate pedotransfer function: integrated indices for 
pedotransfer function. p. 357-414. In: Pachepsky, Y.A.; Rawls, 
W.J., eds. Development of pedotransfer function in soil 
hydrology. Elsevier Science, Amsterdam, The Netherlands.

Empresa Brasileira de Pesquisa Agropecuária [Embrapa]. 1997. 
Manual of Methods for Soil Analysis = Manual de Métodos de 
Análise de Solo. Centro Nacional de Pesquisa de Solos, Rio de 
Janeiro, RJ, Brazil (in Portuguese).

Federer, C.A. 1983. Nitrogen mineralization and nitrification: 
depth variation in four New England forest soils. Soil Science 
Society of America Journal 47: 1008-1014.

Ghehi, N.G.; Nemes, A.; Verdoodt, A.; Van Ranst, E.; Cornelis, 
W.M.; Boeckx, P. 2012. Nonparametric techniques for predicting 
soil bulk density of tropical rainforest topsoils in Rwanda. Soil 
Science Society of America Journal 76: 1172.

Grigal, D.F.; Brovold, S.L.; Nord, W.S.; Ohmann, L.F. 1989. Bulk 
density of surface soils and peat in the north central United 
States. Canadian Journal of Soil Science 90: 895-900.

Han, G.Z.; Zhang, G.L.; Gong, Z.T.; Wang, G.F. 2012. Pedotransfer 
functions for estimating soil bulk density in China. Soil Science 
177: 158-164.

Harrison, A.F.; Bocock, K.L. 1981. Estimation of soil bulk-density 
from loss-on-ignition values. Journal of Applied Ecology 18: 
919-927.

Heuscher, S.A.; Brandt, C.C.; Jardine, P.M. 2005. Using soil 
physical and chemical properties to estimate bulk density. Soil 
Science Society of America Journal 69: 1-7.

Hong, S.Y.; Minasny, B.; Han, K.H.; Kim, Y.; Lee, K. 2013. 
Predicting and mapping soil available water capacity in Korea. 
Peer Journal 1: e71.

Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; 
Tittonell, P.A. 2015. Estimating soil organic carbon through loss 
on ignition: effects of ignition conditions and structural water 
loss. European Journal of Soil Science 66: 320-328. 

Huntington, T.G.; Johnson, C.E.; Johnson, A.H.; Siccama, T.G.; 
Ryan, D.F. 1989. Carbon, organic matter, and bulk density 
relationships in a forested spodosol. Soil Science 148: 380-386.

Intergovernmental Panel on Climate Change [IPCC]. 1997. Revised 
1996 IPCC Guidelines for National Greenhouse Gas Inventories. 
IPCC, Paris, France.

Jalabert, S.S.M.; Martin, M.P.; Renaud, J.P.; Boulonne, L.; Jolivet, 
C.; Montanarella, L.; Arrouays, D. 2010. Estimating forest 
soil bulk density using boosted regression modelling. Soil Use 
Management 26: 516-528.

Jeffrey, D.W. 1970. A note on the use of ignition loss as a means 
for the approximate estimation of soil bulk density. Journal of 
Ecology 58: 297-299.

Kaur, R.; Kumar, S.; Gurung, H. 2002. A pedo-transfer function (PTF) for 
estimating soil bulk density from basic soil data and its comparison 
with existing PTFs. Australian Journal of Soil Research 40: 847-857.

Leonavičiute, N. 2000. Predicting soil bulk and particle densities 
by pedotransfer functions from existing soil data in Lithuania. 
Geografijos metraštis 33: 7-330.

Manrique, L.A.; Jones, C.A. 1991. Bulk density of soils in relation 
to soil physical and chemical properties. Soil Science Society of 
America Journal 55: 476-481.

Martin, M.P.; Lo Seen, D.; Boulonne, L.; Jolivet, C.; Nair, K.M.; 
Bourgeon, G.; Arrouays, D. 2009. Optimizing pedotransfer 
functions for estimating soil bulk density using boosted 
regression trees. Soil Science Society of America Journal 73: 
485-493.

Mittas, N.; Angelis, L. 2010. Visual comparison of software cost 
estimation models by regression error characteristic analysis. 
Journal of Systems and Software 83: 621-637.

Mouazen, A.M.; Ramon, H.; Baerdemaeker, J.D. 2003. Modelling 
compaction from on-line measurement of soil properties and 
sensor draught. Precision Agriculture 4: 203-212.

Nanko, K.; Ugawa, S.; Hashimoto, S.; Imaya, A.; Kobayashi, 
M.; Sakai, H.; Ishizuka, S.; Miura, S.; Tanaka, N.; Takahashi, 
M.; Kaneko, S. 2014. A pedotransfer function for estimating 
bulk density of forest soil in Japan affected by volcanic ash. 
Geoderma 213: 36-45.

Nemes, A.; Quebedeaux, B.; Timlin, D.J. 2010. Ensemble 
approach to provide uncertainty estimates of soil bulk density. 
Soil Science Society of America Journal 74: 1938-1945.

Périé, C.; Ouimet, R. 2008. Organic carbon, organic matter and 
bulk density relationships in boreal forest soils. Canadian 
Journal of Soil Science 88: 315-325.

Prévost, M. 2004. Predicting soil properties from organic matter 
content following mechanical site preparation of forest soils. 
Soil Science Society of America Journal 68: 943-949.

Ruehlmann, J.; Körschens, M. 2009. Calculating the effect of soil 
organic matter concentration on soil bulk density. Soil Science 
Society of America Journal 73: 876-885.

Sleutel, S.; Neve, S.; Singier, B.; Hofman, G. 2007. Quantification 
of organic carbon in soils: a comparison of methodologies 
and assessment of the carbon content of organic matter. 
Communication in Soil Science and Plant Analysis 38: 2647-
2657.

Suuster, E.; Ritz, C.; Roostalu, H.; Reintam, E.; Kõlli, R.; Astover, 
A. 2011. Soil bulk density pedotransfer functions of the humus 
horizon in arable soils. Geoderma 163: 74-82.

Tamminen, P.; Starr, M. 1994. Bulk density of forested mineral 
soils. Silva Fennica 28: 53-60.

Tomasella, J.; Hodnett, M.G. 1998. Estimating soil water retention 
characteristics from limited data in Brazilian Amazonia. Soil 
Science 163: 190-202.

Tranter, G.; Minasny, B.; McBratney, A.B.; Murphy, B.; Mckenzie, 
N.J.; Grundy, M.; Brough, D. 2007. Building and testing 
conceptual and empirical models for predicting soil bulk 
density. Soil Use Management 23: 437-443.

Wösten, J.H.M.; Pachepsky, Y.; Rawls, W.J. 2001. Pedotransfer 
functions: bridging the gap between available basic soil data 
and missing soil hydraulic characteristics. Journal of Hydrology 
251: 123-150. 


