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The use of near-infrared (NIR) hyperspectral imaging (HSI) for detecting sprout damage in

wheat kernels was investigated. Experiments were carried out to determine which spectral

bands had the best potential for discriminating between sound and sprouted kernels. Two

wavelengths were selected and combined into an index that was used to indicate the

presence or absence of sprouting. Experiments with three wheat cultivars revealed that the

proposed method is effective in identifying kernels for which the germination process has

initiated, achieving 100% accuracy for the samples used in this study. It was also observed

an imperfect correlation with the Falling Number (grain quality), making it challenging to

accurately determine the degree of germination, especially if sprouts are not yet clearly

visible. These results confirm the usefulness of the near-infrared spectral range for

detecting chemical alterations in wheat kernels, as well as the fact that most information is

usually contained in a few specific bands within such range.

© 2018 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Sprouting occurs as a result of germination of wheat kernels

following rainfall after maturity, reducing grain quality and

value (Biddulph, Plummer, Setter, & Mares, 2008). The

chemical properties of the sprouted grain can be significantly

changed, causing important alterations on the concentrations

of starch, sugar, proteins and dry matter (Lorenz & Valvano,

1981). In particular, the a-amylase enzyme is found in high

concentrations in sprouted kernels, which affects baking

quality and the premium paid for wheat (Singh, Jayas,

Paliwal, & White, 2009). The grinding process is also heavily
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influenced by sprouting, both in terms of grinding energy

requirements and distribution of the particle size (Dziki &

Laskowski, 2010).

Sprouted kernels are also more vulnerable to diseases and

insect infestations (Singh et al., 2009). Thus, it is very impor-

tant to accuratelymeasure the damage caused by sprouting so

producers are paid fairly and the grains receive a proper

destination.

In many cases, grain quality assessment and sprouting

detection are performed visually. This visual selection, being

a subjective task, is prone to psychological and cognitive

phenomena that may lead to bias and optical illusions

(Barbedo, 2016). Additionally, some cultivars have visual
.
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Nomenclature

FN Falling number

FPA Focal plane array

HSI Hyperspectral imaging

NIR Near-infrared

PCA Principal component analysis

ROI Pegion of interest

SI Sprouting index

SWIR Short-wave infrared

WRD Water reflectance difference

b i o s y s t em s e ng i n e e r i n g 1 7 5 ( 2 0 1 8 ) 1 2 4e1 3 2 125
characteristics that can lead to misclassifications (Singh

et al., 2009). Delwiche, Yang, and Graybosch (2013) used

computer vision (black and white images) and machine

learning to explore the same visual cues used by human

observer while removing the subjectivity of visual in-

spections. The authors tested several types of damage

together, so they did not report how their system performed

in the specific case of sprout damage. Another method

exploring visual cues was proposed by Ebrahimi, Mollazade,

and Babaei (2014), who employed RGB images for detecting

several types of damage. Although the results reported for

germinated kernels were good, sprouts had to be clearly

visible for the system to work properly, preventing early

detection.

Another widely employed method to estimate the grain

quality loss associated to sprouting is the “Falling Number”,

which is a measure closely related to the concentration of the

a-amylase enzyme in the grains. This number indicates the

suitability of the grains for milling (Biddulph et al., 2008): the

higher the Falling Number (measured in seconds), the higher

is the quality of the grain and, hence, the higher the payment

grade. In Brazil, there are four classes defined by the Falling

Number: enhancer (FN > 250 s), bread (FN > 220 s), domestic

(FN > 220 s) and basic (FN > 200 s) (MAPA, 2010). Despite its

advantages, the Falling Number method is destructive and

relatively time consuming, making it unsuitable for online

inspection (Singh et al., 2009). Additionally, low Falling

Numbers are possible in the absence of sprouting, which may

lead to misdetection (Mares & Mrva, 2008). Other common

methods for detecting sprouted kernels include the mea-

surement of amylograph viscosity and chemical assays

(Neethirajan, Jayas, & White, 2007).

One way to overcome some of the limitations of the

established approaches is to explore spectral differences be-

tween sound and sprouted kernels. Shashikumar, Hazelton,

Ryu, and Walker (1993) had relative success applying near-

infrared (NIR) spectroscopy to identify sprouted kernels.

However, this approach records the spectrum in a specific

measurement point rather than thewhole seed, thus failing to

fully explore the information available (Wu, Zhu,Wang, Ma, &

Wang, 2012; Xing, Symons, Hatcher, & Shahin, 2011). Thermal

imaging, combined with machine learning, was successfully

used by Vadivambal, Chelladurai, Jayas, and White (2010) to

differentiate sound and sprouted kernels. Neethirajan et al.

(2007) achieved accuracies above 90% using a soft X-ray sys-

tem (1e100 nm). However, as pointed out by Singh et al. (2009),
this kind of system may pose potential health risks to

humans. Some groups are now investigating the possibility of

using Terahertz imaging (wavelengths between infrared and

microwave bands) as an alternative to X-ray systems (Jiang,

Ge, Lian, Zhang, & Xia, 2016), but this is still an incipient

technology.

Hyperspectral imaging (HSI) is another recent spectrum-

based technique to be explored for analysing wheat ker-

nels. This technique uses the same principles of spectros-

copy, but it generates spectra for each pixel in an image,

rather than for a small localized area (Barbedo, Tibola, &

Lima, 2017). To the authors' knowledge, the first study to

use HSI for wheat kernel analysis was carried out by

Delwiche and Kim (2000). Since then, this technique has

gained momentum and has been applied to several different

wheat kernel classification and detection problems. Smail,

Fritz, and Wetzel (2006) and Koç, Smail, and Wetzel (2008)

were the first to use HSI for sprouting detection. Soon

after, Singh et al. (2009) proposed a method to classify wheat

kernels into sound, sprouted, and midge-damaged,

achieving accuracies close to 100%. Xing, Hung, Symons,

and Shahin (2009) used this technique to predict a-amylase

activity in wheat kernels, obtaining accuracies above 80%.

These authors continued to work on the problem for a few

more years, focussing both a-amylase activity (Xing et al.,

2011; Xing, Symons, Shahin, & Hatcher, 2010a) and sprout-

ing detection (Xing, Symons, Shahin, & Hatcher, 2010b).

More recently, Wu et al. (2012) used hyperspectral images to

detect sprouting in whole ears of wheat, coming to the

conclusion that under these conditions only severe sprout-

ing is detectable. Although no new investigations on the use

of HIS for sprouting detection have been published in the

last five years, this kind of technique continues to find

several suitable applications for wheat, including deoxy-

nivalenol screening (Barbedo et al., 2017), protein content

prediction (Caporaso, Whitworth, & Fisk, 2018), classification

of contaminants (Ravikanth, Singh, Jayas, & White, 2015),

detection of black tip damage (Armstrong, Maghirang, &

Pearson, 2015), Fusarium detection (Ropelewska &

Zapotoczny, 2018), among others.

Many methods exploring hyperspectral images apply

Principal Component Analysis (PCA) to remove redundancy

andmake the data more treatable. This is the case for most of

the references cited above. As powerful as PCA is, its use does

not always lead to better results (Barbedo, Tibola, &

Fernandes, 2015). More importantly, subtle particularities of

specific bands that might be valuable in the classification may

be lost in the process. Also, many of those methods extract

several features to feed their classification scheme, increasing

the chance that at least some features overfit the data and

leading to biased results. In this context, the first objective of

this studywas to investigate how raw reflectance values could

be used for sprouting detection, avoiding the use of PCA and

other similar techniques. In order to simplify the re-

quirements of a potential kernel screening system, this study

also aimed to select a small set of wavelengths representative

enough for sprouting detection.

The spectral responses associated to different wheat cul-

tivars may vary considerable. Important differences were

observed when hyperspectral imaging was applied to
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problems such as Fusarium detection (Barbedo et al., 2015),

kernel quality (Zhu et al., 2012) and kernel viability

(McGoverin, Engelbrecht, Geladi, &Manley, 2011). So far, most

studies dealing with sprouting damage have used cultivars

grown in Canada. Thus, another important contribution of

this work lies in the fact that it used cultivars adapted to the

conditions found in Brazil, which are considerably different

than those found in Canada. Indeed, significant differences in

the spectral responses were observed not only between Bra-

zilian and Canadian cultivars, but also among the cultivars

used in this work, as detailed in Section 3.
2. Material and methods

2.1. Wheat material

In order to obtain samples with different levels of germina-

tion, wheat kernels from the cultivars BRS Guamirim, BRS

Louro and BRS Parrudowere submitted to a sprouting test. The

samples were assayed in moistened Germitest paper.

Samples were kept inside a seed germination chamber for

different periods of time (treatments). Temperature was kept

at 20 �C ± 2 �C, and relative air humidity was not controlled.

Eight treatments were applied to BRS Guamirim and BRS

Louro, and six treatments were applied to BRS Parrudo.

Sprouted samples were obtained in quadruplicate at the

Laboratory for Seed Analysis of the Embrapa Wheat, Passo

Fundo, Brazil.

Samples were dried up for 24 h in a heating chamber with

forced air circulation and temperature below 40 �C. This was

the time estimated for the water content in the samples to

reach 10%, which is considered ideal for interruption of

enzymatic activity.

After drying, samples were ground in a Perten mill (Perten

Instruments, H€agersten, Sweden). The Falling Number test

was carried out using a Perten Falling Number 1900 (Perten

Instruments, H€agersten, Sweden), using the 56-81B analysis

method (AACC, 2000), with sample weight correction based on

moisture content, which was determined using the NIR in-

strument FOSS XDS (RCA, Hoganas, Sweden).

2.2. Image acquisition

The acquisition of the hyperspectral images was carried out

at the Post-harvest Laboratory of Embrapa Wheat, Passo

Fundo, Brazil. Kernels were imaged just before grinding for

determination of the Falling Number. The spectrometer used

in the system (EV/NIR Hyperspec Model 1003B-10151, Head-

wall Photonics Inc., Fitchburg, MA, USA) employed an

InGaAs sensor with a 320 � 256 pixels focal plane array (FPA)

and a XENICS camera (Model XEVA-1246 XC 134, Leuven,

Belgium); it measured the reflectance of the kernels in the

528e1785 nm wavelength range (VIS/NIR), with a spectral

resolution of 5 nm, resulting in 256 bands. This spectrometer

was coupled with a 25-mm C-mount lens (F1.35/25 mm)

placed 235 mm above the kernels, resulting in a field of view

50 mm wide. The images were acquired in a line-by-line

basis (using push-broom acquisition); a total of 800 lines

were scanned for each image, with approximately 500 of
those lines delimiting the region of interest where the ker-

nels were located. The illumination was provided by an

external Quartz Tungsten-Halogen lamp, whose light was

conveyed via an optical fibre bundle that terminates in a 250-

mm long line tilted by approximately 30� with respect to the

vertical axis. More details on how the images were captured

can be found in Barbedo et al. (2015). The result for each

capture was a 3D matrix with dimensions of 320 � 800 � 256,

that is, the images have a spatial dimension of 320� 800 over

256 different bands. Each side of the pixels has approxi-

mately 0.25 mm, and each wheat kernel is represented by

700e1000 pixels.

2.3. Image datasets

The image dataset used in this work has 88 images (32 from

BRS Guamirim, 32 from BRS Louro, and 24 from BRS Parrudo

cultivars). Two images, one with no sprouting and another

with severe sprouting (Falling Number < 70), were selected

from each cultivar to test different wavelengths and tune

threshold values. Thus, 82 images were used in the tests

(Section 3). About 15% of the kernels used in the experiments

had some visible sprouts. Thesewere not removed because, in

a hypothetical screening system, kernels would be processed

as they were, without sprout removal.

2.4. Proposed procedure

First, the tray region was delimited by removing the back-

ground, which was done following the guidelines described in

Barbedo et al. (2015). In short, tray delimitation is achieved by

applying some morphological operations to the 647-nm

wavelength, which provides the best contrast between tray

and background.

Next, kernels were separated from the tray, effectively

isolating the region of interest (ROI) to be processed. The

1017-nm reflectance image was subtracted from the 1115-nm

reflectance image. A threshold was then applied to the

resulting difference image, where pixels were made equal to

one if their values were higher than 0.15, and equal to zero

otherwise. The image was then morphologically opened

using a 5-pixel diameter disk as structuring element, in order

to trim out spurious elements. The resulting binarymaskwas

applied to all 256 bands, effectively isolating the kernels and

removing the whole background. All three wavelengths used

in the segmentation (647, 1017 and 1115 nm) were selected

empirically by visually inspecting their reflectance charac-

teristics, which were explored to promote the best possible

segmentation.

In this investigation, the falling numbers used as reference

during the experiments were determined collectively for all

kernels that appear in each image. As a consequence, all ex-

periments with the proposed methodology also considered

the kernels in bulk. However, in many cases it is desirable to

detect individual sprouted kernels (Xing, Hung, Symons,

Shahin, & Hatcher, 2009). Identifying individual kernels

using the binarymask is trivial, but sometimes kernels appear

grouped. For that reason, kernel clusters were separated by

identifying the concavities generated by touching kernels, and

then connecting those by straight separating lines (Barbedo

https://doi.org/10.1016/j.biosystemseng.2018.09.012
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et al., 2015). The procedure is capable of accurately separating

up to three clustered kernels.

As mentioned in the introduction, one of the objectives of

this study was to find the simplest setup that could be

implemented in a potential screening system for sprouting

detection, thus reducing costs and technical requirements.

Experiments revealed that there are two bands that provide

the best contrast between sound and sprouted kernels (Sec-

tion 3). Reflectance values associated to each wavelength

within those bands were very similar, so only one wavelength

was chosen to represent each band, 918-nm and 1411-nm.

This confirmed the conclusions of a previous investigation,

which indicated that using only a few wavelengths for

detection of damaged kernels is more effective than using the

entire spectrum (Barbedo et al., 2015). It is worth noting that

while the 1411-nm band is associated to water, all kernels

used in the experiments had similar moisture contents

(around 10%), so spectral differences indicated by this band

were likely due to chemical alterations caused by the

sprouting.

The expression used to combine the selected wavelengths

was:

SI ¼

P800

i¼1

P320

j¼1

jR918ði; jÞ � R1411ði; jÞj

P800

i¼1

P320

j¼1

½R1411ði; jÞ�

where SI is the “Sprouting Index”, Rw is the reflectance of

wavelength w, i and j are indices of the pixel, and j�j is the

absolute value operator. As it can be seen, SI is given by the

sum of all pixels resulting from the absolute difference be-

tween the 918-nm and 1411-nm wavelengths, divided by the

sum of all pixels of the 1411-nm wavelength. The subtraction

operation was chosen because sound and sprouted kernels

have opposite behaviours in those bands, thus maximizing

their separation. The division by the total reflectance of the

1411-nm was included in order to mitigate the effects of non-

uniform pixel sensitivity, which causes the intensities recor-

ded by the detector elements to vary (Jayas, Singh, & Paliwal,

2010). This division normalizes reflectance values, making

them more uniform within the image.

The smaller the value of SI, the more likely is the presence

of sprouting. The ideal threshold that separates sound and

sprouted kernels depends on the cultivar, but the value of 0.30

worked relatively well for all cultivars considered in this study

(see Table 1).
Table 1 e Accuracy in detecting sound and sprouted
kernels arranged randomly and with germ up. Results
were obtained using a global threshold (0.30) and
cultivar-specific SI thresholds (0.30 for BRS Guamirim and
BRS Louro, and 0.35 for BRS Parrudo).

Cultivar Random arrangement Germ up

Global
threshold

Specific
threshold

Global
threshold

Specific
threshold

BRS Guamirim 97% 100% 100% 100%

BRS Louro 100% 100% 100% 100%

BRS Parrudo 36% 68% 88% 100%
2.5. Experimental setup

Five experiments were carried out in the present study.

In the first experiment, wheat samples were divided into

three classes according to the cultivar. Each class was

further divided into five groups according to the degree of

sprouting: sound kernels (FN � 350s), beginning of germi-

nation (250 s � FN < 350 s), low damage (150 s � FN < 250 s),

moderate damage (70 s � FN < 150 s) and severe damage

(FN < 70 s). For each cultivar, the mean reflectance spectra

obtained for the subgroups were compared in order to

identify significant differences, revealing the degree of

separability between those groups and how wheat variety

affects such separability. Two types of reflectance curves

were generated: 1) actual reflectance spectra; 2) the ratios

between the reflectance spectra obtained for sprouted ker-

nels and the reference reflectance spectrum obtained for

sound kernels. This second set of curves emphasizes dif-

ferences between both types of kernels, making it easier to

identify bands of interest.

In the second experiment, the mean reflectance spectrum

for each group described above was collected again, this time

placing all kernels with germ up, rather than placing kernels

randomly in the tray (standard procedure). The spectra were

again compared, as described in experiment 1, in order to

determine whether placing the kernels with germ up

increased the separability between the groups.

In the third experiment, SI values were used for classifying

the samples into sound and sprouted, using a single threshold

for all images, and also using individual thresholds for each

cultivar. Accuracies were then computed for each case, using

as reference the reference labels attached to each image e

images with FN > 250 were labelled as sound, and the

remaining ones were classified as sprouted.

In the fourth experiment, the correlations between SI and

FN were calculated for all kernels, and also for each cultivar

individually. The objective was to investigate how well SI can

predict FN and, consequently, how suitable is SI for predicting

sprouting severity in routine analysis.

In the last experiment, the results obtained using the two

selected wavelengths were compared to two other methods.

In the first alternative method, the two selected wavelengths

were replaced with the mean reflectance values over the

entire bands for which the differences between sound and

sprouted kernels was larger (844e1140 nm and 1386e

1700 nm). In the second alternative method, all wavelengths

were combined using PCA. This last method is used in many

investigations found in the literature.
3. Results and discussion

The comparison of the reflectance spectra yielded by sound

and sprouted kernels showed clear differences in their spec-

tral responses (Fig. 1).

There are two bands for which there is a visible difference

between sound and sprouted kernels: 844e1140 nm and

1386e1700 nm. The spectral differences between the two

types of kernels can be seen more clearly in Fig. 2, which

https://doi.org/10.1016/j.biosystemseng.2018.09.012
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Fig. 1 e Comparison of the spectra yielded by kernels with different degrees of sprouting (BRS Parrudo cultivar).

Fig. 2 e Ratios between the spectra of sprouted and sound kernels (BRS Parrudo cultivar).
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shows the ratio between the spectra obtained for the sprouted

kernels and the one obtained for the sound ones.

In the first band (844e1140 nm), sound kernels have a

reflectance 10e20% higher than the sprouted ones. This

observation contrasts with the results obtained by Xing et al.

(2010b), who stated that sound kernels had a distinctly lower

spectral reflectance in the wavelength region between 720 nm

and 900 nm. There are two possible explanations for this

disparity. First, Fig. 1 was obtained after normalizing each

wavelength with respect to the entire spectrum, which may

have slightly altered the relationship between the curves e

this normalization aimed at compensating for non-uniform

pixel sensitivity associated with FPA-based hyperspectral

imaging systems, as discussed in Section 2.4 and in Jayas et al.

(2010). Second, wheat areas in Brazil and Canada have very

different climates and different genealogies. Therefore, the

cultivars used in each study probably have significantly
different chemical compositions. It is also important to notice

that this band seems to not be strongly associated to any

substance present in wheat kernels, rather being the summed

response of several types of molecules (Chen et al., 2014; Xing

et al., 2010a). Therefore, small alterations in several of those

chemical components may result in significantly different

spectral responses.

The differences observed in the second band

(1386e1700 nm) are more prominent, with the reflectance of

sprouted kernels being between 20% and 60% larger than that

of sound kernels. This band is strongly associated with water,

which has a major absorption wavelength at 1400 nm. In

contrast, the spectra obtained by Chen et al. (2014) for kernel

embryos alone resulted in lower reflectance for sprouted

kernels. This is explained by the fact that just before germi-

nation, the endosperm is imbibed with water, reducing the

reflectance. As the germination progresses, the embryo,

https://doi.org/10.1016/j.biosystemseng.2018.09.012
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which occupies only a small part of the kernel, absorbs water.

As a result, water content in the endosperm is reduced,

increasing the reflectance.

The results reported above indicate that major spectral

differences are mostly due to variations in the water content.

This is an important observation, because although several

physical variables are altered due to sprouting, they seem to

have only a mild impact on the reflectance spectrum, mainly

in the 844e1140 nm band. There are two possible explana-

tions for this: 1) some substances have their absorption

bands located outside the spectral interval considered, e.g.

protein (2200 nm); 2) some substances have at least some of

their absorption bands located inside the spectral interval

considered, but their content variation was small, e.g. fat

(1200 nm).

In the specific example shown in Figs. 1 and 2, the more

developed the sprouting (more damage), the larger the spec-

tral disparitywith respect to sound kernels. However, this was

not always the case, as in many cases kernels with more se-

vere sprouting actually generated spectra closer to those of

sound kernels. This is exemplified in Fig. 3, where the spec-

trum with the lowest FN associated (highest damage) was

actually the one that departed the least from the spectrum for

sound kernels. Thus, although the results indicate that

hyperspectral images are suitable for discriminating between

sound and sprouted kernels, they do not seem very reliable for

estimating the severity of the sprouting. It is important to

highlight, however, that significant differences were observed

for different cultivars (Figs. 2 and 3), indicating that in some

cases it may be possible to successfully estimate sprouting

damage.

In all samples analysed in this study, the spectra for sound

and sprouted kernels began to diverge just a few hours after

the beginning of the sprouting process, evenwhen FNwas still

above 300 s. This extreme sensitivity to changes caused by

sprouting is mostly positive, but it also carries some practical

challenges. As discussed before, water content seems to be

the main factor shaping the reflectance curves. In contrast,

the Falling Number is more related to a-amylase content.
Fig. 3 e Ratios between the spectra of sproute
There seems to be a correlation between those quantities, as

indicated by experiments presented later in this section,

however they are not perfectly aligned. This has to be taken

into consideration in the development and use of any HSI-

based method expected to replace the FN approach. Another

challenge arises from the fact that kernels sprouted in the

field, under uncontrolled conditions, may present different

damage evolution patterns and, as a consequence, different

trends regarding water content variation. Since humidity is

such an important variable for shaping the spectral responses,

the tendencies observed using artificially sprouted kernels

may not hold perfectly under more realistic conditions (Singh

et al., 2009).

Anymethod for differentiating sound and sprouted kernels

using hyperspectral images necessarily rely on the differences

between the reflectance curves obtained for those kernels,

either considering the whole spectrum or specific wavebands.

This may be challenging, as typical spectra may vary consid-

erably depending on the cultivar. As a result, methods for

detecting sprouted kernels may have to either be trained for

each cultivar separately, or include some parameters to be

tuned accordingly. To illustrate this issue, Fig. 4 shows the

typical spectra for sound kernels of the three cultivars

considered in this work. Focussing on the bands of interest

(844e1140 nm and 1386e1700 nm), it can be noticed that the

spectrum obtained for the BRS Parrudo cultivar has a much

higher reflectance than the other two in the first band, but it

has almost the same reflectance as BRS Guamirim in the

second band. BRS Louro and BRS Guamirim have relatively

similar spectra, but they are hardly interchangeable. It is

interesting to notice that the spectrum for the BRS Parrudo

sprouted kernels remains above the BRS Louro reference

spectrum for nearly the entire wavelength range. As a result,

the BRS Louro cultivar spectrum for sound kernels should not

be used as a reference to detect BRS Parrudo sprouted kernels,

as this would most certainly lead to high error rates. This

further reinforces that, in general, different cultivars have

their own spectral characteristics and should be treated

separately.
d and sound kernels (BRS Louro cultivar).
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Fig. 4 e Reflectance spectra for sound kernels of three different cultivars. The spectrum for sprouted kernels of the BRS

Parrudo cultivar was included for comparison (dashed line).

Table 2 e Correlation between SI values and Falling
Numbers.

Cultivar Random arrangement Germ up

BRS Guamirim 0.78 0.89

BRS Louro 0.83 0.84

BRS Parrudo 0.69 0.80
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In contrast, the variability found for spectral profiles ob-

tained using different kernels of the same cultivar were

negligible for all samples used in this work.

Because of the spectral differences, typical Spectral Index

(SI) values, which provide a rough estimate for the sprouting

damage (Section 2.4), vary between cultivars. In particular, SI

values tend to be 30%higher for BRS Parrudo than for the other

cultivars. Thus, finding a single SI threshold value capable of

separating sound and sprouted kernels for all cultivars is often

not practical. Table 1 shows the results considering global and

cultivar-specific SI thresholds. For the samples used in the

tests, all misclassificationswere due to sprouted kernels being

classified as sound. The global thresholdwas a goodmatch for

two cultivars (BRS Guamirim and BRS Louro), but good results

for the BRS Parrudo cultivar were only possiblewhen a specific

threshold was applied. It is also worth noting that kernel

positioning only had a significant impact for the latter. This

indicates that physical properties associated to each cultivar

determine whether random kernel positioning is acceptable

or not.

The results reported in this section indicate that there are

noticeable spectral differences between sound (FN > 250) and

sprouted kernels (FN � 250). However, the distinctive spectral

characteristics of sprouted kernels may bemasked depending

on their position. Experiments in which all kernels were

positioned with the germ up generated more homogeneous

and reliable outcomes (Table 1). Most results presented in this

section are roughly valid for both cases (e.g. the spectral

curves in Figs. 1e4), but when significant differences were

observed, the results for both arrangements were presented

separately.

The accuracies obtained in the experimentswere similar to

those reported by Singh et al. (2009) and Xing et al. (2010b),

except when a random kernel arrangement was combined

with a global threshold, due to poor results for the BRS Parrudo

cultivar. It is important to consider, however, that all samples

used by Singh et al. (2009) were severely sprouted, while about

25% of the samples used here had FN between 200 s and 300 s,
thus being only slightly sprouted. Thus, as discussed above,

sprouting was detectable even at its earliest stages.

The correlations between SI values and FN were also

relatively high (Table 2). However, because SI is more related

to water content, and FN ismore related to a-amylase content,

the correspondence between both values is not close enough

to allow for a reliable quality classification such as the one

described in the Introduction section.

The HSI equipment used in this work captures images in

the NIR (Near-Infrared) band. Investigations reported by Xing

et al. (2010a) and Xing et al. (2011) indicate that the Short-

Wave Infrared (SWIR) band (1000e3000 nm) is more appro-

priate to directly detect and predict a-amylase content. Using

only the spectra of the germ part of the kernels, they were

able to detect early sprouting with accuracy around 90%, and

predict a-amylase content with a coefficient of determination

above 80%. These results seem to indicate that NIR and SWIR

bands have similar capabilities regarding sprouting detec-

tion, although only the latter can be used to quantify a-

amylase content. However, both bands have some limita-

tions. As discussed before, sprouting detection using the NIR-

band seems to be mostly based on water content, which can

be affected by several aspects other than sprouting, espe-

cially in kernels brought directly from the field. On the other

hand, the a-amylase detection and quantification requires

the germ region of the kernels to be correctly segmented,

which is not always possible to be done automatically (Xing

et al., 2011). The amount of unknowns that still remain in-

dicates that more studies are necessary for a definitive

https://doi.org/10.1016/j.biosystemseng.2018.09.012
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answer on which band is more appropriate for sprouting

detection in wheat.

During the tests, some inconsistencies and unexpected

results were observed, such as the slightly erratic behaviour

observed for the reflectance curves as FN changed (Fig. 3).

Although those irregularities were not too severe, they raised

some questions regarding their origin. Two probable causes

were identified. First, FPA-based image systems have a num-

ber of optical distortions and errors associated, such as

chromatic aberrations and non-uniform pixel sensitivity

(Jayas et al., 2010). These distortions will inevitably affect the

image analysis, and if spectral variations associated to a given

phenomenon are slight (which is the case when comparing

kernels with close Falling Numbers), detection may become

unfeasible. Second, low Falling Numbers may be caused by

factors other than sprouting, such as genotype (Mares&Mrva,

2008), cultivar, location, and presence of certain diseases

(Wang, Pawelzik, Weinert, Zhao, & Wolf, 2008). Although

those are minor factors in comparison with sprouting (Xing

et al., 2009), they may have enough influence to cause unex-

pected results.

Many authors use features to perform image classification

(Singh et al., 2009; Xing et al., 2010b). If the number of features

is high with respect to the number of images used in the ex-

periments, it is likely that at least some of the features will

overfit the data. As a consequence, results may not be valid if

larger, more diverse datasets are considered, considerably

weakening the conclusions. If only a few samples are avail-

able, simpler and more robust approaches should be

preferred. In order to avoid overfitting, while being robust to

material and condition variations, the proposed method does

not employ features, instead including a single variable (SI

threshold) that can be easily tuned to meet the characteristics

of each cultivar.

Xing et al. (2010b) argued that, in order to improve the

grading system and reduce the dependence on starch pasting

methods, it is important to create a system that both identifies

individual sprouted kernels and determines their degree of

damage. All tests in this study were performed on bulk sam-

ples, because the reference Falling Numbers were only avail-

able for the kernels collectively. However, the segmentation

technique proposed in Barbedo et al. (2015) could be applied

here, making it feasible to process each kernel individually.

Estimating the degree of damage using NIR HSI does not seem

to be feasible at the moment, but since imaging technology is

continually evolving and new image processing techniques

are constantly being proposed, this situation may change in

the near future.

The proposed methodology for sprouting detection per-

formed favourably in comparison with other strategies. The

accuracy obtained when the reflectance values of the

selected wavelengths was replaced with the mean reflec-

tance values fell from 100% to 89% (specific threshold). This

is because the specific wavelengths were selected having

the maximization of the differences between sound and

sprouted kernels as criterion. Calculating the mean over

several bands diluted those differences, reducing discrimi-

nation power. The best results using PCA were obtained

when the first principal was used in isolation, in which case

the accuracy was 92%. This drop in accuracy was likely due
to the loss of subtle particularities of specific bands that

might be valuable in the classification, as mentioned in the

Introduction.

Finally, it is worth mentioning that part of the kernels

had visible sprouts. The segmentation procedure was suc-

cessful in removing those and the background altogether. In

fact, the few segmentation errors observed consisted of

small portions of the background being kept and small re-

gions of the kernels being removed. Sprouting detection

accuracies using images manually segmented were statisti-

cally identical to those obtained using automatic segmen-

tation, showing that the impact of segmentation flaws was

negligible.
4. Conclusions

This paper presented an investigation on the use of NIR

hyperspectral images for detection of sprouting in wheat

kernels. Two wavelengths, 918-nm and 1411-nm, were found

to be the most relevant. They were combined in such a way

overfitting is avoided, thus increasing its ability to properly

deal with samples from different origins and cultivars. Ex-

periments have shown that NIR hyperspectral images are

very sensitive to the physiological changes caused by

sprouting, which can be detected at very early stages. On the

other hand, it was not possible to reliably estimate the

severity of the sprouting, as differences between different

degrees of damage were too subtle in comparison with the

noise caused by factors intrinsic to the problem. Neverthe-

less, those limitations may be overcome in the near future as

imaging technologies evolve. The complementarity of NIR

and SWIR bands for the tasks of sprouting detection and

quantification could also be further investigated in order to

improve the results obtained so far. The proper exploration of

the infrared band may soon allow the conception of equip-

ment tailored for the problem at hand, reducing costs and

other practical constraints.
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