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The Sw-5 gene cluster encodes protein receptors that are potentially able to recognize
microbial products and activate signaling pathways that lead to plant cell immunity.
Although there are several Sw-5 homologs in the tomato genome, only one of them,
named Sw-5b, has been extensively studied due to its functionality against a wide range
of (thrips-transmitted) orthotospoviruses. The Sw-5b gene is a dominant resistance
gene originally from a wild Peruvian tomato that has been used in tomato breeding
programs aiming to develop cultivars with resistance to these viruses. Here, we provide
an overview starting from the first reports of Sw-5 resistance, positional cloning and
the sequencing of the Sw-5 gene cluster from resistant tomatoes and the validation
of Sw-5b as the functional protein that triggers resistance against orthotospoviruses.
Moreover, molecular details of this plant–virus interaction are also described, especially
concerning the roles of Sw-5b domains in the sensing of orthotospoviruses and in the
signaling cascade leading to resistance and hypersensitive response.
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INTRODUCTION

Orthotospoviruses (family Tospoviridae) cause substantial losses in crop production worldwide
(Pappu et al., 2009). They can be transmitted mechanically, mostly associated with experimental
transmission, and by a limited number of thrips species (order Thysanoptera) in nature, replicating
in both plant and invertebrate hosts (Rotenberg et al., 2015). Until recently, the orthotospoviruses
used to be taxonomically classified within the family Bunyaviridae (currently reclassified into the
new order Bunyavirales) together with vertebrate-infecting viruses due to their similar virion shape,
genomic organization and, of course, phylogenetic relationship (Adams et al., 2017).

Due to their ability to infect many crops, farmers, seed industry, and researchers have been
constantly looking for natural resistance sources against orthotospoviruses. Among few that have
been explored commercially (de Ronde et al., 2014), the one from tomato (Solanum lycopersicum
L.) is the subject of this mini-review. Initially, this resistance source used to be referred to as Sw-
5, being utilized in tomato breeding programs. Sequencing of the resistance gene locus, originally
from Solanum peruvianum Mill. (a wild Peruvian tomato), revealed five paralogs, the so-called Sw-
5 gene cluster (Spassova et al., 2001). Isolation of two resistance gene candidates (RGCs) and their
subsequent transformation into tobacco plants helped to demonstrate that the gene copy Sw-5b
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is solely responsible for a broad-spectrum resistance to
orthotospoviruses (Spassova et al., 2001; Hallwass et al., 2014;
Leastro et al., 2017).

The first sections of this mini-review will describe historical
aspects of Sw-5 resistance, from S. peruvianum to the first bred
commercial tomatoes, genetic characterization of the Sw-5 gene
cluster and the identification of Sw-5b as the functional gene
copy against orthotospoviruses. The last sections will focus on
the identification of the avirulence-determinant/effector from
orthotospoviruses and the interplay with and among domains
of encoded proteins by different Sw-5 alleles. The mini-review
finishes with some perspectives on challenging research questions
for the future that may advance our understanding of the Sw-5b-
mediated resistance.

Sw-5 RESISTANCE: FROM PERU TO A
WORLDWIDE SCOPE

Solanum peruvianum varieties naturally occur in the coastal and
medium elevated regions of central and southern Peru and in
northern Chile (Nakazato et al., 2012). These plants have been
targeted as a wild source for crop improvement because of
their genetic resemblance to cultivated tomatoes (Nesbitt and
Tanksley, 2002). The first reports of S. peruvianum harboring
a broad resistance source against tomato spotted wilt virus
(TSWV) date from the end of the 1930s (Stevens et al., 1991).
Since then, efforts have been made to cross this wild tomato
with commercial cultivars. One of the first tomato fresh market
cultivars originated from such cross was named Stevens (Stevens
et al., 1991). Subsequent inheritance studies indicated that a
single, dominant gene/locus (named as Sw-5) was responsible for
resistance that was initially found to be effective against a wide
array of orthotospovirus isolates from United States (Stevens
et al., 1991) and Brazil (Boiteux and de Giordano, 1993).

DISCOVERY OF THE Sw-5 GENE
CLUSTER

In spite of being widely used in tomato breeding programs, the
genetic identity of the Sw-5 resistance remained unknown for
decades. However, by gene mapping, the resistance locus was first
located on the long arm of chromosome 9 of tomato cultivar
Stevens (Chagué et al., 1996). Two other studies mapped the Sw-
5 locus near markers CT220 and SCAR421 (Stevens et al., 1995;
Brommonschenkel and Tanksley, 1997) and allowed Folkertsma
et al. (1999) to physically fine map the locus and identify Sw-5
RGCs using a bacterial artificial chromosome (BAC) library made
from tomato cultivar Stevens.

Sequencing of BAC clones containing genomic DNA
fragments of the cultivar “Stevens” revealed five paralogs
(Folkertsma et al., 1999; Brommonschenkel et al., 2000; Spassova
et al., 2001). These genes, named Sw-5a to Sw-5e, encode
proteins that contain nucleotide-binding (NB) and leucine-rich
repeat (LRR) domains, which are often observed in other
plant resistance proteins (van der Biezen and Jones, 1998;

Andolfo et al., 2014). From those genes, two highly homologous
genes, named Sw-5a and Sw-5b, mapped close to the markers
and exhibited significant resemblance to the tomato nematode
and aphid resistance gene Mi (Brommonschenkel et al., 2000;
Spassova et al., 2001). Furthermore, the presence of a prominent
matrix attachment region (MAR) between those two genes
(Spassova et al., 2001), and indicative of genomic regions
accessed by the nuclear transcription machinery (Stief et al.,
1989), supported their RGC signature. To find out which one
of those two conferred resistance to TSWV, copies of Sw-5a
and Sw-5b together with their own regulatory sequences were
transferred to Nicotiana tabacum L. (Spassova et al., 2001). Only
transgenic plants transformed with the Sw-5b gene were resistant
after challenge with TSWV isolates (Spassova et al., 2001), even
though the Sw-5a and Sw-5b genes share a high sequence identity
of 97.7% (Spassova et al., 2001; De Oliveira et al., 2016).

In tomatoes carrying Sw-5, high levels of resistance have
been observed to TSWV, tomato chlorotic spot virus (TCSV),
groundnut ringspot virus (GRSV), and chrysanthemum stem
necrosis virus (CSNV) (Boiteux and de Giordano, 1993; Dianese
et al., 2011). This broad spectrum resistance is quite unique
for a dominant NB-LRR type of resistance gene and contrasts
the Tsw resistance gene from pepper (Capsicum chinense L.)
which provides resistance to TSWV isolates only (Boiteux
and Deavila, 1994). More recently, N. benthamiana plants
transformed with the Sw-5b gene copy were challenged with
six different orthotospoviruses. Besides the aforementioned four
orthotospoviruses, Sw-5b provided resistance to alstroemeria
necrotic streak virus (ANSV) and impatiens necrotic spot virus
(INSV) as well (Leastro et al., 2017). Thus, the Sw-5b gene
alone is sufficient for broad-spectrum resistance, although this
applies to phylogenetically related orthotospoviruses that are
clustered in the same evolutionary clade (de Oliveira et al., 2012;
Lima et al., 2016). Conversely, viruses phylogenetically distant
from this “TSWV clade,” e.g., melon yellow spot virus (MYSV),
are not sensed and overcome the resistance when mechanically
inoculated onto these Sw-5b gene-transformed N-benthamiana
plants (Hallwass et al., 2014).

HYPERSENSITIVE CELL DEATH
RESPONSE TRIGGERED BY Sw-5b

Another observation made regarding the transgenic tobacco
plants involves the activation of a hypersensitive response
(HR). This phenotype is usually observed as local necrotic
lesions/spots and often appears (within several days) on leaves
upon activation of immune protein receptors containing the
NB and LRR domains (de Ronde et al., 2014). During HR,
infected and neighboring cells are thought to kill themselves
to halt the pathogen spread throughout the plant tissue. While
the Sw-5b-transformed N. tabacum plants do not show any
HR after mechanical inoculation with TSWV (Spassova et al.,
2001), and strengthen the concept that the HR is not the
resistance mechanism of NB-LRR proteins (Liu et al., 2010), the
Sw-5b gene-transformed N. benthamiana plants show a clear,
concomitant HR (Hallwass et al., 2014; Leastro et al., 2017).
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The main difference between these two transgenic plants is
that in N. tabacum expression of the Sw-5b gene is governed
by its own regulatory sequences (Spassova et al., 2001) while
in N. benthamiana the Sw-5b gene is driven by constitutive
expression from the strong 35S promoter of cauliflower mosaic
virus (Hallwass et al., 2014). Whether this is the cause for
HR induction remains speculative, but recent studies have
shown auto-activation of Sw-5b when expressed from a highly
translatable expression vector (Sainsbury et al., 2009) or in the
additional presence of an RNA silencing suppressor (RSS) (De
Oliveira et al., 2016).

IDENTIFICATION OF THE
AVR-DETERMINANT/EFFECTOR OF
Sw-5b

The NB-LRR proteins are also known as NLR proteins, an
acronym that also stands to nucleotide-binding (NB) and LRR
domains (L)-containing (R) receptors (Wilmanski et al., 2008).
Many classes of such proteins have been described in both
plants and animals, diverging in structure and activation mode
(Ting et al., 2008; Wilmanski et al., 2008; Qi and Innes,
2013). They recognize pathogens by sensing microbial products,
usually peptides/proteins (Wilmanski et al., 2008). In plants,
these products are commonly referred to as avirulence (avr)-
determinants or effectors (de Ronde et al., 2014). “Avirulence”
since, once identified, the pathogens cannot cause infection, not
being virulent (able to induce disease symptoms).

In order to identify the avr-determinant of Sw-5b, indirect
approaches have been performed due to the lack of an
orthotospovirus infectious clone (Hoffmann et al., 2001; Lopez
et al., 2011; Hallwass et al., 2014; Peiro et al., 2014). The
bottleneck in building an infectious clone resides in the
fact that the orthotospovirus genetic RNA elements are of
negative (non-messenger sense) polarity. Orthotospoviruses have
a tripartite single-stranded RNA genome, with each segment
named according to its length as Small (S), Medium (M), and
Large (L). Whereas the L segment has a negative polarity,
the other two present an ambisense genetic organization (King
et al., 2012). In total, the orthotospoviruses express six mature
proteins: (i) Nucleocapsid (N) and a non-structural protein (NSs)
encoded on opposite strands of the S segment; (ii) envelope
glycoproteins Gn and Gc, and a non-structural protein (NSm)
encoded on opposite strands of the M segment; (iii) and L
(an RNA-dependent RNA polymerase) encoded on the viral
complementary strand of the L segment. While NSs protein
suppresses the RNA silencing machinery (Takeda et al., 2002),
NSm protein functions as a cell-to-cell movement protein in plant
hosts (Kormelink et al., 1994; Storms et al., 1995; Takeda et al.,
2002).

First pieces of evidence already indicated that the avr-
determinant of Sw-5b-mediated resistance was encoded in the
M segment of TSWV. Reassorted viruses containing the S and L
segments of a resistance-inducing (RI) TSWV isolate and the M
segment of an RB TSWV isolate overcame the Sw-5 resistance in
tomato plants (Hoffmann et al., 2001). Furthermore, comparison

of genomes from several RI and RB TSWV isolates pointed
toward two amino acid substitutions (C118Y or T120N) in the
NSm protein that were associated with the emergence of RB
isolates (Lopez et al., 2011). Final evidence for the identification
of the avr-determinant came from transient expression analysis of
TSWV proteins from binary clones using agrobacteria, in which
only NSm triggered HR in plants harboring a functional Sw-5b
gene copy (Hallwass et al., 2014; Peiro et al., 2014). Moreover,
expression of NSm proteins from CSNV and TCSV isolates also
triggered HR in those plants, being abrogated by the introduction
of mutations C118Y or T120N (Leastro et al., 2017). All these
experiments validated NSm as the avr-determinant of Sw-5b.

Sw-5b ACTIVATION MODE

Although there are other variations, most plant NLRs have
at their amino (N)-terminus either a Toll and interleukin-1
receptor (TIR) domain or a coiled-coil (CC) domain, which
is then followed by the central NB- and carboxy (C)-terminal
LRR domains (Meyers et al., 2003). Therefore, NLRs are often
also classified as TNLs (TIR-containing NLRs) or CNLs (CC-
containing NLRs). The Sw-5 proteins belong to the class of CNLs
but are distinct by the presence of an additional extension at
their N-terminus, the so-called Solanaceae domain (SD) (De
Oliveira et al., 2016). This extra domain has been reported in
other Solanaceae CNLs as well (Mucyn et al., 2006). Dissection
of Sw-5b has designated important functions to each domain.
Using this approach, truncated versions of Sw-5b, containing one
or more domains, have usually been expressed by agroinfiltration
in wild-type N. benthamiana leaves (Chen et al., 2016; De Oliveira
et al., 2016).

The Sw-5b protein has a nucleocytoplasmic distribution,
with the SD and CC domains (covalently bound) responsible
to deliver the protein to the cell nucleus (De Oliveira et al.,
2016). This nuclear localization is possibly required for the signal
transduction that leads to the resistance mechanism itself. The
absence of SD-CC does not interfere with NSm recognition
and HR triggering, but transgenic plants transformed with a
truncated Sw-5b gene lacking these domains are not resistant to
orthotospoviruses (Chen et al., 2016). Altogether, these results
indicate that resistance and HR are uncoupled events (Chen et al.,
2016; De Oliveira et al., 2016). The SD and CC domains are also
involved in the activation control of Sw-5b. In the absence of
NSm, CC suppresses the HR triggered by NB while SD enhances
this inhibition independently (Chen et al., 2016). Interestingly,
if NSm is present, SD acts as a positive regulator, relieving the
inhibitory effect over NB (Chen et al., 2016).

The NB domain, which also includes the subdomains ARC
1 and ARC 2, is solely responsible for the signaling pathway
that leads to HR triggering (Chen et al., 2016; De Oliveira
et al., 2016). This domain switches between “off” and “on”
states according to its binding to adenosine diphosphate (ADP)
or adenosine triphosphate (ATP), respectively (Williams et al.,
2011). Overexpression of NB in the presence of RSSs results in HR
as observed for the full Sw-5b protein (De Oliveira et al., 2016).
Expression of NB alone can also result in a negligible HR that
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FIGURE 1 | Overview of the (modulating) roles of the amino-terminal Solanaceae (SD) and coiled-coil (CC), central nucleotide-binding (NB), and carboxy-terminal
leucine-rich repeat (LRR) domains in Sw-5b activation. Detailed information is found in the manuscript text.

is inhibited in the presence of LRR (NB-LRR covalently bound)
(Chen et al., 2016).

As mentioned before, co-expression of NB-LRR (covalently
bound) and NSm triggers a strong HR. If only NB is co-expressed
with NSm, no HR is seen (De Oliveira et al., 2016). Thus, LRR
recognizes NSm as avr-determinant and activates NB. For most
studied plant NLRs, the pathogen is perceived by an indirect
interaction between the LRR and the avr-determinant (Dangl
and Jones, 2001; van der Hoorn and Kamoun, 2008). Using co-
immunoprecipitation assays, Sw-5b NB-LRR domains and NSm
were shown to directly interact in vitro and in planta (Zhu
et al., 2017). A conserved 21 amino acid epitope from NSm
was sufficient for the interaction and activation of Sw-5b (Zhu
et al., 2017). Within the LRR domain, four polymorphic sites were
critical for recognition of this NSm epitope (Zhu et al., 2017). As
such, Sw-5b is one of the few CNL proteins able to perceive the
avr-determinant via direct interaction. Figure 1 summarizes the
functions mapped to Sw-5b domains.

TOMATO PARALOGS AND ORTHOLOGS
OF Sw-5b

In contrast to the findings with Sw-5b, co-expression of Sw-5a
and TSWV NSm does not result in HR triggering (De Oliveira
et al., 2016), which could explain why Sw-5a-transformed
tobacco plants are susceptible to TSWV (Spassova et al., 2001).
Dissection analysis of Sw-5a, in analogy to Sw-5b, showed that
overexpression of the entire Sw-5a protein or its NB domain only

leads to auto-activation (HR triggering in the absence of an avr-
determinant) (De Oliveira et al., 2016). Considering that Sw-5a
is the highest conserved paralog of Sw-5b (95.1% aa identity),
it is likely that some point mutations within the LRR domain
disrupted the avr-determinant sensing of Sw-5a. Proof for this
could come from testing a chimeric Sw-5a NB-LRR construct, in
which its LRR domain has been swapped for the functional one
from Sw-5b. So far, no studies have yet been performed with the
proteins Sw-5c, Sw-5d, and Sw-5e.

In contrast to Sw-5a and Sw-5b, the protein product of the
most conserved ortholog from susceptible tomato isolines (not
bred with S. peruvianum), named Sw-5aS, is not able to trigger
auto-HR at all, even though these three proteins share about 94%
aa identity (De Oliveira et al., 2016). Analysis of the Sw-5aS NB
domain revealed that a point mutation (Q599R) abolished the
ability for HR-induction. A reversion of this single amino acid
into the one found in the NB domains of Sw-5a and Sw-5b,
restored the ability of triggering HR by the Sw-5aS NB domain
(De Oliveira et al., 2016).

Susceptible and resistant tomato plants can be easily
differentiated by using a co-dominant molecular marker that
detects a series of conserved deletions (of variable sizes depending
upon the cultivar) upstream of the coding sequence of Sw-5aS

(Dianese et al., 2010). Apart from these deletions, the regulatory
sequences of Sw-5a, Sw-5b, and Sw-5aS are highly conserved.
With the availability of the tomato genome sequence (Sato
et al., 2012), all Sw-5b orthologs from the susceptible tomato
cultivar “Heinz 1706” could be mapped. Including Sw-5aS, three
complete Sw-5 genes (containing the SD-CC-NB-LRR domains)
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FIGURE 2 | Topology of Sw-5 proteins encoded by paralogs from the Sw-5 gene cluster and orthologs collected from tomatoes susceptible to orthotospoviruses.
The upper schematic encompasses the Sw-5 proteins of S. peruvianum. So far, there are only functional studies on Sw-5a and Sw-5b. The latter directly interacts
with NSm (orthotospovirus cell-to-cell movement protein), which activates orthotospovirus resistance. On the contrary, Sw-5a is unable to recognize NSm as
avirulence (avr)-determinant. The lower schematic shows two Sw-5 proteins found in tomato cultivars susceptible to orthotospoviruses. The most conserved
homolog of Sw-5a and Sw-5b, named Sw-5aS, contains a mutation in its nucleotide-binding (NB) domain that halts hypersensitive response (HR) triggering. Apart
from this, Sw-5aS cannot recognize NSm as avr-determinant. Sw-5f has been first reported interacting with an effector (SPRYSEC-19) of nematode Globodera
rostochiensis that inhibits HR triggered by several resistance proteins.

and a truncated gene are found in chromosome 9 of tomato
cultivar “Heinz 1706” (Turina et al., 2016). One of these Sw-
5 genes encodes a protein referred to as Sw-5f, although it is
an ortholog and not a paralog of Sw-5b. The Sw-5f protein
interacts with the effector protein SPRYSEC-19 from nematode
Globodera rostochiensis (Rehman et al., 2009). This effector
inhibits HR triggered by many CNL proteins, including an
auto-active mutant of Sw-5b (Postma et al., 2012). Figure 2
schematizes some Sw-5-related proteins found in resistant and
susceptible tomatoes to orthotospoviruses.

CONCLUSIONS AND PERSPECTIVES

Few plant immune receptors against viruses have been
deeply studied to date. Apart from tomato Sw-5b, most

of the efforts concentrated on the resistance mechanisms
orchestrated by potato Rx against potato virus X (PVX) and
tobacco N against tobacco mosaic virus (TMV) (de Ronde
et al., 2014). The findings obtained from studying these
proteins, especially concerning their activation mode, can
be extrapolated to other plant NLR proteins with a similar
topology (domain organization). Since HR is not the resistance
mechanism itself, the actual downstream signaling cascade
and cellular events leading to Sw-5b-mediated resistance
remain to be elucidated. In this context, identifying plant
proteins that directly or indirectly interact with Sw-5b as
well as identifying the genes that are up- or down-regulated
during the resistance response may provide further clues for
this.

We do not rule out that in addition to Sw-5b, the other
Sw-5-related proteins trigger resistance to different pathogens.
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This has been observed for NLRs from potato, in which
the paralogs Rx and GPa2 trigger resistance to PVX and
nematode G. pallida, respectively (van der Vossen et al., 2000).
Taking into consideration that Sw-5a and Sw-5aS share high
identity with Sw-5b, these two homologs could still be reverted
to functional genes against orthotospoviruses. However, as
we discussed in previous sections, point mutations in single
domains, e.g., only in LRR that recognizes NSm as avr-
determinant, may not be sufficient. Structural and modeling
studies need to be performed to identify (a combination
of) modifications that have to be implemented to turn non-
functional copies into one that resembles the functional Sw-5b.
The insertion of these modifications in the tomato genome,
especially in those containing only Sw-5aS, could be done by
genome editing tools such as CRISPR and TALENs (Gaj et al.,
2013).
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