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ABSTRACT - The objective of this study was to estimate genetic parameters for body weight of beef cattle in performance 
tests. Different random regression models with quadratic B-splines and heterogeneous residual variance were fitted to estimate
covariance functions for body weights of Nellore and crossbred Charolais × Nellore bulls. The criteria −2 residual log-likelihood 
(−2RLL), Akaike Information Criterion (AIC), and consistent AIC (CAIC) were used to choose the most appropriate model. For 
Nellore bulls, residual variance was modeled with six classes of age, and direct additive genetic and permanent environment 
effects were modeled with quadratic B-splines with two and one intervals, respectively. For crossbred bulls, quadratic B-splines 
with one interval fitted direct additive genetic and permanent environment effects and nine classes of age were needed to fit
residual variance. Pooling classes of age with up to 40% in difference of residual variances does not compromise the fit of the
model. Heritability for body weight in performance tests are moderate (>0.25, for crossbred bulls) to high (>0.5, for Nellore 
bulls) and genetic correlation between weights over the test are also high (>0.65). Then, selection of young bulls in performance 
test is an efficient tool to increase body weight in beef cattle.

Key Words: animal breeding, Bos indicus, genetic correlation, heritability

Revista Brasileira de Zootecnia
Brazilian Journal of Animal Science
© 2018  Sociedade Brasileira de Zootecnia
ISSN 1806-9290 
www.sbz.org.br

R. Bras. Zootec., 47:e20150300, 2018
https://doi.org/10.1590/rbz4720150300

Received: December 14, 2015
Accepted: November 13, 2017
*Corresponding author: flbtoral@ufmg.br    

Copyright © 2018 Sociedade Brasileira de Zootecnia. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is 
properly cited.

Introduction

Using genetically superior young bulls is important 
for the increase in efficiency of beef cattle production.
Genetic differences among young bulls can be measured 
in performance tests. In such tests, candidates for selection 
are maintained in controlled environments and are later 
ranked according to specific criteria. Typically, body weight
is an important selection criterion for beef cattle breeding 
programs (Campos et al., 2014), which is measured several 
times over the life of the animal. Random regression 
models are often more appropriate for genetic evaluation of 
body weight because they describe phenotypic and genetic 
changes over time.

The growth of Bos indicus (Riley et al., 2007; 
Boligon et al., 2012; Lopes et al., 2012; Scalez et al., 2014; 

Bertipaglia et al., 2015), Bos taurus (Meyer, 2005a,b; 
Mota et al., 2013b), and crossbred beef cattle (Sánchez et al., 
2008; Baldi et al., 2010; Mota et al., 2013a; Scalez et al., 
2014) has been modeled by random regression models. 
Legendre polynomials are the typical choice for most 
researchers for fitting mean growth trajectories and also
additive and permanent environmental effects. Despite the 
advantages observed in random regression analyses, its 
use with Legendre polynomials can lead to problems when 
the variances increase at extremes of age intervals (Meyer, 
2005b). Overcoming these issues involves increasing the 
order of Legendre functions or using more robust (e.g., 
spline) functions that allow low-degree polynomials to fit
over short segments of the growth trajectory.

The identification of the best-fit models is essential
because inadequate modeling of genetic and non-genetic 
effects affects selection response. Since the use of B-spline 
polynomials in random regression models for beef cattle 
genetic evaluations is recent, it remains important to study 
this type of function. Therefore, the current study estimated 
genetic parameters for body weight of beef cattle in 
performance tests using random regression models with 
quadratic B-spline functions.
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Material and Methods

The weight and age data of two genetic groups of 
young bulls (Nellore and MA) were recorded during 
performance tests. The genetic group MA (21/32 Charolais 
+ 11/32 Nellore, approximately) came from a rotational 
crossbreeding of Canchim (5/8 Charolais + 3/8 Zebu) 
and Charolais bulls with Nellore cows. The Nellore breed 
database consisted of 16,291 observations from 3,356 
animals across 37 performance tests conducted by Grupo 
Provados a Pasto. The weaned animals were kept in a single 
management group on pasture with mineral supplementation 
throughout the evaluation period. The young bulls were 
weighed after an adaptation period of 70 days and at 
regular intervals of 56 days up to 224 days after the end of 
the adaptation period. Approximately 15 and 85% of the 
animals had four and five records each, respectively. For
Nellore, age ranged from 262 to 642 days.

The data for MA group were from the evaluation 
program of young bulls of Agropecuária Ipameri. The 
growth of bulls was evaluated in 10 performance tests 
between weaning (225 days of age, on average) and 
approximately 18 months of age. The animals were kept 
on pasture and received protein-energetic supplementation 
during the dry season and mineral supplementation in the 
whole evaluation period. The database consisted of 3,997 
observations of 884 MA bulls. Approximately 3, 63, 13, 
and 21% of the animals had three, four, five, and six records
each, respectively. For MA group, age ranged from 166 
to 707 days. Information on the average weight and the 
number of observations for each age was reported in Scalez 
et al. (2014).

Random regression models were fitted to each genetic
group separately. Each model included the fixed effects of
the contemporary group and the average growth trajectory 
(quadratic B-spline polynomial with four intervals) nested 
in the performance test. The contemporary groups of 
Nellore bulls were composed of animals born in the same 
year and month and evaluated in the same performance test. 
The contemporary groups of MA bulls included animals 
born in the same year and season (i.e., January to March, 
April to June, July to September, and October to December), 
and weighed and evaluated in the same performance test. 
Quadratic B-splines polynomials were used to model the 
random additive genetic and permanent environmental 
effects.

The coefficients of the quadratic B-spline functions
were generated for the k interval defined by the points 
Tk and Tk+1, with Tk ≤ Tk+1, according to De Boor (2001) 
and Meyer (2005b). The polynomial functions considered 

in the present study were those with up to four intervals of 
the same size. The division into m intervals requires the 
specification of m−1 internal knots and two external knots 
(T0 and Tm). This approach generates m+1 knots and m+p 
non-null functions φk,p, in which p is the degree of the basis 
function (Meyer, 2005b). The general random regression 
model with quadratic B-splines was described as follows:

                                                                                        
,

in which CGi represents the effect of the i-th contemporary 
group;  is the k-th quadratic B-spline covariate at 
age j, which was nested in i*-th performance test to fit the
average growth trajectory; βk(i*) is k-th coefficient of the
fixed regression nested in fixed effect i*; αkm and ρkm are 
the k-th random regression coefficients for the additive
genetic and permanent environmental effects of animal 
m, respectively; and Ma and Mp represent the number of 
intervals used to model the random additive genetic and 
permanent environmental effects, respectively.

In matrix notation, the quadratic B-spline general 
random regression models were as follows:

,
in which  represents the vector of observations, X is the 
incidence matrix of fixed effects (i.e., contemporary groups
and average growth trajectories),  is the vector of fixed-
effect solutions, Z1 is the incidence matrix of random 
additive genetic effects,  is the vector of random additive 
genetic effect solutions, Z2 is the incidence matrix of 
random permanent environmental effects,  is the vector 
of random permanent environmental effect solutions, and  

 is the vector of random errors.
The covariance of random effects was defined as

follows:

,                            
                                                                
in which Ka represents the covariance matrix of random 
regression coefficients for additive genetic effects, A is the 
additive genetic relationship matrix, Kp is the covariance 
matrix of random regression coefficients for permanent
environmental effects, I is the identity matrix, and R is 
the covariance matrix of random error. The relationship 
matrices were composed of 4,283 and 1,491 animals for 
Nellore and MA groups, respectively.

The covariance components and genetic parameters 
were estimated by the Restricted Maximum Likelihood 
method using the Wombat software (Meyer, 2007). Models 
with one, two, four, eight, and sixteen classes of residual 
variance were evaluated. After analyzing the model with 
16 classes, the adjacent residual variance classes with 
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differences less than 10, 20, 30, 40, and 50% (relative to 
the smallest value of variance) were pooled, yielding new 
models with fifteen, ten, nine, six, and four age classes
for Nellore and fourteen, thirteen, thirteen, ten, and nine 
age classes for MA group, respectively. In these analyses, 
the additive genetic effect and the direct permanent 
environmental effects were modeled using a quadratic B-
spline polynomial with four intervals to compare models 
with different numbers of classes of residual variance. 
The criteria −2 restricted likelihood function (−2RLL), 
Akaike Information Criterion (AIC), and consistent Akaike 
Information Criterion (CAIC) were used to choose the most 
appropriate number of classes of age for residual variance 
(Bozdogan, 1987; Wolfinger, 1993).

After defining the most suitable residual variance
structure, the models with differences in the number of 
intervals for the covariance functions of random effects 
were compared. Models with one, two, three, and four 
intervals were evaluated (sixteen models). The knots were 
equidistant and the criteria used to assess the best model 
were the same as those defined in the previous stage. The 
quadratic B-spline models were named according to the 
number of non-null functions. Thus, the quadratic B-splines 
with one, two, three, and four regular intervals for additive 
genetic and permanent environment effects were named 
QBS33, QBS44, QBS55, and QBS66, respectively.

After estimating the covariance functions, the breeding 
values of selection candidates were predicted from the 
solutions of the random regression coefficients based
on Mrode (2005). The predicted breeding values were 
calculated for weight at 300, 365, 450, and 550 days for 
Nellore group and at 225, 365, 450, and 550 days for MA 
group. These predictions were used to rank the top 10% 
young bulls within each performance test. The percentage 
of commonly selected animals was obtained using different 
models indicated by −2RLL, AIC, and CAIC. In addition, 
Pearson and Spearman correlations were computed between 
the breeding values obtained using the models indicated by 
the above criteria and the breeding values obtained using 
the homogeneous residual variance model.

Results

The values of −2RLL, AIC, and CAIC were higher 
in the model with homogeneous residual variance for 
both genetic groups (Table 1). Thus, these models had the 
worst fit. The AIC showed the lowest values for models
with nine age classes for Nellore, and ten and thirteen age 
classes of residual variances for MA group (Table 1). The 

CAIC values were lower for models with six and nine age 
classes of residual variance (Table 1). Therefore, these 
results indicate that such models fitted better the records
of Nellore and MA groups, respectively. In general, 
models with low information criteria values were derived 
by pooling adjacent age classes of residual variances. 
The estimates of residual variance increased from the 
beginning to 550-600 days of age (Figure 1). The models 
that considered homogeneous residual variance showed 
the lowest percentage of individuals selected in common 
compared with models with heterogeneous residual 
variance (Table 2). Pearson and Spearman correlations 
involving the breeding values predicted by the models 
with heterogeneous residual variance within each test were 
above 0.97. Considering the models with heterogeneous 
residual variance, the average percentage of individuals 
selected in common were above 98 and 96% for Nellore 
and MA groups, respectively, with minimum values equal 
or greater than 80% (Table 2).

After assessing different quadratic B-splines functions 
to adjust the additive and permanent environmental effects 
for growth of Nellore bulls, the QBS65 model displayed 
the best fit according to −2RLL and AIC. The variance 

Table 1 - Number of parameters (NP) and values of −2RLL, 
AIC, and CAIC for quadratic B-spline random 
regression models for body weight of purebred Nellore 
and crossbred Charolais × Nellore young bulls in 
performance tests, according to the number of classes 
of age (NCA) for residual variance

NCA NP −2RLL  
(10−3 × N)

AIC 
(10−3 × N)

CAIC 
(10−3 × N)

      Nellore
1 43 97.234 97.320 97.693
2 44 97.217 97.305 97.687
41 46 97.207 97.299 97.698
4 46 97.179 97.271 97.670
61 48 97.120 97.216 97.632
8 50 97.141 97.241 97.675
91 51 97.096 97.198 97.641
101 52 97.107 97.211 97.662
151 57 97.091 97.205 97.700
16 58 97.096 97.212 97.715

     Charolais × Nellore
1 43 25.531 26.097 28.161
2 44 25.498 26.066 28.138
4 46 25.490 26.062 28.148
8 50 25.451 26.031 28.146
91 51 25.403 25.985 28.107
101 52 25.399 25.983 28.112
131 55 25.393 25.983 28.134
141 56 25.392 25.984 28.143
16 58 25.392 25.988 28.161
−2RLL - value of the restricted likelihood function; AIC - Akaike Information 
Criterion; CAIC - consistent Akaike Information Criterion.
1 Number of classes of age after pooling the classes of age from model with 16 

classes.
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estimates obtained by the models QBS43 and QBS65 were 
similar for Nellore breed, especially at initial ages and 
after 550 days of age (Figure 2). These estimates were also 
similar to those obtained using the most complete model, 
QBS66. On the other hand, the simplest model (QBS33) 
showed high values for the genetic additive variance and 
low estimates for the permanent environmental variance 
(Figure 2). The estimates of permanent environmental 
variance were constant in most of the age intervals for the 
Nellore breed (Figure 2).

In the case of MA genetic group, the models QBS66, 
QBS63, and QBS33 exhibited the best fit based on −2RLL, 
AIC, and CAIC criteria, respectively (Table 3). The trends 
of the direct additive genetic and the direct permanent 
environmental variances were similar for the QBS33 
and QBS66 models (Figure 2). However, the permanent 
environmental variance was underestimated in the QBS63 
model, most likely due to the overestimation of the direct 
additive genetic variance. The estimates of permanent 
environmental variances increased from the beginning to 
approximately 500 days and were constant after this point 
for the MA group (Figure 2).

The −2RLL, AIC, and CAIC indicated different models. 
To assess any disparities in the selection of young bulls, 
the percentage of common selected bulls were compared 
among models (Table 4).

The lowest value for the average percentage of young 
Nellore bulls commonly selected among the top 10% within 
each performance test using the QBS43 (lowest CAIC 
value) or QBS65 (lowest −2RLL and AIC values) models 
was 85%. Despite this high average, the minimum value 
was only 50% for one of the performance tests. 

Table 2 - Mean and minimum (Min) values for the percentages of purebred Nellore and crossbred Charolais × Nellore young bulls among 
the top 10% for expected breeding value for body weight in standard ages within each performance test, according to the models 
with different number of classes of age (NCA) for residual variance

NCA Mean Min Mean Min Mean Min Mean Min

                                                                                                Nellore

300 days 365 days 450 days 550 days

1 × 6 91.4 71.4 94.0 75.0 95.6 81.8 92.1 66.7
1 × 9 91.7 75.0 94.5 75.0 96.1 83.3 91.7 75.0
1 × 15 90.9 71.4 93.6 75.0 96.1 81.8 91.4 66.7
6 × 9 99.1 85.7 99.5 80.0 99.1 85.7 99.7 93.8
6 × 15 99.2 85.7 99.4 87.5 99.2 90.0 99.1 80.0
9 × 15 99.1 90.9 98.8 80.0 98.8 85.7 99.1 80.0

                                                                                        Charolais × Nellore

225 days 365 days 450 days 550 days

1 × 9 87.6 66.7 86.7 60 87.0 69.2 88.9 76.9
1 × 13 89.6 76.9 86.5 60 87.0 76.9 87.5 71.4
1 × 16 89.6 76.9 86.5 60 85.1 69.2 87.5 71.4
9 × 13 97.2 88.9 96.3 88.9 98.5 92.3 98.6 85.7
9 × 16 97.2 88.9 97.2 88.9 97.2 88.9 98.6 85.7
13 × 16 100.0 100.0 99.1 90.9 98.1 88.9 100.0 100.0

Table 3 - Number of parameters (NP) and values of −2RLL, AIC, 
and CAIC for quadratic B-spline random regression 
models for body weight of purebred Nellore and crossbred 
Charolais × Nellore young bulls in performance tests, 
according to the number of intervals to model additive 
genetic and permanent environmental effects

Model1 NP −2RLL 
(10−3 × N)

AIC 
(10−3 × N)

CAIC 
(10−3 × N)

             Nellore
QBS33 18 97.298 97.334 97.490
QBS34 22 97.202 97.246 97.437
QBS35 27 97.386 97.440 97.674
QBS36 33 97.387 97.453 97.740
QBS43 22 97.179 97.223 97.414
QBS44 26 97.241 97.293 97.519
QBS45 31 97.163 97.225 97.494
QBS46 37 97.366 97.440 97.762
QBS53 27 97.146 97.200 97.435
QBS54 31 97.136 97.198 97.468
QBS55 36 97.176 97.248 97.562
QBS56 42 97.125 97.209 97.574
QBS63 33 97.138 97.204 97.491
QBS64 37 97.124 97.198 97.520
QBS65 42 97.113 97.197 97.562
QBS66 48 97.118 97.214 97.631

              Charolais × Nellore
QBS33 21 25.481 25.523 25.676
QBS34 25 25.497 25.547 25.730
QBS35 30 25.454 25.514 25.733
QBS36 36 25.433 25.505 25.768
QBS43 25 25.472 25.522 25.704
QBS44 29 25.470 25.528 25.740
QBS45 34 25.439 25.507 25.755
QBS46 40 25.431 25.511 25.802
QBS53 30 25.443 25.503 25.722
QBS54 34 25.435 25.503 25.751
QBS55 39 25.429 25.507 25.792
QBS56 45 25.411 25.501 25.829
QBS63 36 25.420 25.492 25.755
QBS64 40 25.417 25.497 25.789
QBS65 45 25.411 25.501 25.829
QBS66 51 25.403 25.505 25.877
1 The model is represented by QBSka+2kap+2: quadratic B-spline, in which ka and 

kap specify the number of intervals of additive genetic and direct permanent 
environmental effects, respectively.
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Figure 1 - Estimates of residual variance for body weight of purebred Nellore (left) and crossbred Charolais × Nellore (right) young bulls 
in performance tests, according to the number of classes of age for residual variance.

1 QBSka+2kap+2: quadratic B-spline, in which ka and kap specify the number of intervals of additive genetic and permanent environmental effects, respectively.

Figure 2 - Estimates of variances for body weight of purebred Nellore (left) and crossbred Charolais × Nellore (right) young bulls in 
performance tests using quadratic B-spline1 models (QBS33, QBS43, QBS63, QBS65, and QBS66).

The lowest value for the average percentage of MA 
young bulls selected in common in the top 10% rank 
using QBS63, QBS33, and QBS66 models was 67.3%, 
with a minimum value below 50% for some performance 
tests (Table 4). Furthermore, the estimates of genetic and 
permanent environmental variances obtained with the 
QBS63 model were higher and lower, respectively, than the 
estimates of the other models involved in this comparison 
(Figure 2).

The estimates of heritability obtained by QBS65, 
QBS43, and the most complete model (QBS66) were 
similar for the Nellore breed (Figure 3). However, in the 
simplest model (i.e., QBS33), the estimates of heritability 
were lower than those of the other models included in 
the comparison (Figure 3). The estimates of heritability 
for body weight of MA bulls showed similar results with 
QBS33 and QBS66 models. On the other hand, heritability 
estimates with QBS63 model were higher for nearly all 
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Discussion

Heterogeneous residual variance is more appropriate 
for modeling body weight data at different ages because the 
temporary environment does not affect equally the entire 

Table 4 - Mean and minimum (Min) values for the percentages of purebred Nellore and crossbred Charolais × Nellore young bulls among 
the top 10% for expected breeding value for body weight in standard ages within each performance test, according to the number 
of intervals to model additive genetic and permanent environmental effects

Model1 Mean Min Mean Min Mean Min Mean Min

Nellore

300 days 365 days 450 days 550 days

QBS33 × QBS43 91.8 75.0 89.6 60.0 88.6 75.0 89.1 66.7
QBS33 × QBS65 91.2 71.4 92.6 75.0 93.6 75.0 90.8 66.7
QBS33 × QBS66 96.6 80.0 96.6 80.0 97.1 75.0 94.4 75.0
QBS43 × QBS65 86.7 50.0 86.0 60.0 84.9 60.0 86.8 66.7
QBS43 × QBS66 90.9 75.0 88.5 60.0 88.4 70.0 91.8 66.7
QBS65 × QBS66 93.5 71.4 92.7 75.0 93.9 80.0 90.8 66.7

                                                                                       Charolais × Nellore

225 days 365 days 450 days 550 days

QBS33 × QBS63 67.3 46.0 72.9 54.0 70.6 46.0 75.3 54.0
QBS33 × QBS66 83.5 62.0 86.0 77.0 90.8 78.0 95.0 85.0
QBS63 × QBS66 71.6 56.0 71.0 55.0 72.2 56.0 75.3 54.0
1 The model is represented by QBSka+2kap+2: quadratic B-spline, where ka and kap specify the number of intervals of additive genetic and direct permanent environmental effects, 

respectively.

Figure 4 - Estimates of genetic correlations between body weights in different ages of purebred Nellore (left; model QBS65) and crossbred 
Charolais × Nellore (right; model QBS33) young bulls in performance tests using quadratic B-spline1 models.

1 QBSka+2kap+2: quadratic B-spline, in which ka and kap specify the number of intervals of additive genetic and permanent environmental effects, respectively.

ages, most likely due to the overestimation of the direct 
additive genetic variance (Figure 3).

The genetic correlation between weights at different 
ages was high, with values above 0.92 and 0.65 for Nellore 
and MA groups, respectively (Figure 4).

1 QBSka+2kap+2: quadratic B-spline, in which ka and kap specify the number of intervals of additive genetic and permanent environmental effects, respectively.

Figure 3 - Estimates of heritability for body weight of purebred Nellore (left) and crossbred Charolais × Nellore (right) young bulls in 
performance tests using quadratic B-spline1 models (QBS33, QBS43, QBS63, QBS65, and QBS66).
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animal growth trajectory (Bohmanova et al., 2005; Dias et al., 
2006; Toral et al., 2009). However, the use of age classes 
in the adjust of residual variance increases the number of 
parameters in the models (El Faro and Albuquerque, 2003). 
Alternatively, some classes can be clustered to reduce the 
number of parameters in the model without compromising 
its fit (Toral et al., 2009). This study supports this hypothesis
because models that generally showed lower information 
criteria values were derived from the pooling of adjacent 
age classes. Thus, this approach reduces the number of 
classes and highlights the possibility of working with 
different size of age classes (Table 1 and Figure 1).

The estimates of residual variances for the first and last
classes of age were lower (Figure 1), especially for MA 
group. This result is partially justified by the small number of
records at the extremes of the average growth curve and also 
due to a better fit of the mean trajectories at these regions.
In the MA group, classes with more ages showed the worst 
estimates of residual variance. Moreover, this finding can
be due to the combination of small number of observations 
within each class that inadequately fits the average growth
curve. For instance, this situation was observed in the class 
that represents the interval from 642 to 675 days of age in the 
MA group for all heterogeneous residual variance models.

The CAIC indicated models with six and nine 
classes of residual variance for Nellore and MA group, 
respectively. These models co-selected several young bulls 
that were chosen based on the use of more parametrized 
residual variance structure as suggested by −2RLL and 
AIC. Therefore, this finding indicates that both models
were as efficient as the models with more residual variance
classes for the two genetic groups. This result confirms
the possibility of pooling age classes with up to 40% 
differences in variance as a viable approach to reduce the 
number of model parameters without compromising its fit
or the overall evaluation quality. 

The QBS65 and QBS43 were indicated by the 
goodness-of-fit criteria, after testing different quadratic
B-spline functions for genetic additive and permanent 
environmental effects. The estimates of variance and 
heritability were similar for both models within Nellore 
breed, especially at the beginning and end of the age 
interval. Regarding the MA group, the trends of additive 
genetic and permanent environmental variances were 
similar for the simplest (QBS33) and the most complete 
model (QBS66) (Figure 2). However, the permanent 
environmental variance was underestimated in the 
intermediate model (QBS63), most likely because of the 
overestimation of the direct additive genetic variation 
(Figure 2). According to Meyer (2005b), few and dispersed 

records at the upper end of the curve caused problems 
when estimating the variance components. Particularly, the 
direct permanent environmental effect showed remarkable 
dependency between the variance estimates and the order 
of the polynomials.

The phenotypic variance trends were similar for all 
models (Figure 2), which suggest that differences between 
models are related to the partition of the variances.

The differences between estimates of heritability for 
body weight of MA bulls in performance tests (Figure 3) 
reflected differences in the estimates of additive genetic
variances of the models QBS33, QBS63, and QBS66. The 
use of different models can result in disparities between 
variance components (Albuquerque and Meyer, 2001; Toral 
et al., 2009). Changes in the estimates of heritability can 
have serious implications for the design of animal breeding 
programs because this parameter is essential for defining
selection criteria and methods of selection. 

Regarding random regression models, studying 
statistical fits is crucial to choose suitable models that are
applicable to real datasets. In the present study, the different 
models indicated by the goodness-of-fit criteria did not
necessarily result in different variance component. This 
finding supports the need for more detailed studies on the
choice of statistical models for the genetic evaluation of 
beef cattle for body weight and, possibly, for evaluation of 
other traits in different species.

In general, the estimates of direct additive genetic 
and phenotypic variances increased with age for the two 
genetic groups. These results are in agreement with those 
obtained by Albuquerque and Meyer (2001), Baldi et al. 
(2010), and Lopes et al. (2012) with Nellore and Canchim 
(5/8 Charolais + 3/8 Zebu), and reflects changes in genetic
and phenotypic variances over time.

The present study showed oscillations in the estimates 
of permanent environmental variance, including the models 
with three and four intervals. However, these variations 
were lower for shorter periods than those reported by Dias 
et al. (2006), who used Legendre polynomials to model 
random effects for growth from birth to 550 days of age 
of Tabapuã animals. According to these authors, this 
increase reflects the difficulties in modeling this effect.
Meyer (1999) also pointed the issues of using Legendre 
polynomials for cattle growth, primarily because of the 
large emphasis that is placed on the observations at the 
extremes of growth curve. Meyer (2005b) suggested using 
B-spline functions to correct this problem because these 
functions might improve the fit at the extreme of the age
intervals given that the fit of each part of the trajectory is
based on the number of intervals. These oscillations for 
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short periods might be the result of the split of the age 
interval using B-splines, given that sharp variations in the 
estimates were not observed in the model with only one 
interval (MA group, QBS33 model) (Figure 2). Another 
factor which might have contributed to obtaining nearly 
constant estimates of permanent environmental variance is 
the high average number of observations per animal, which 
was above 4.5 for the two datasets.

In general, the estimates of residual, genetic, and 
phenotypic variances increased because of the increase in 
the mean of the trait. This finding occurred in this study
to some extent, with the residual variances increasing until 
550-600 days. However, modelling the average growth 
trajectory with different intervals and classes of residual 
variances might result in a better fit of this curve decreasing
the values of residues.

The estimates of heritability (Figure 3) suggest that 
it is possible to obtain genetic gain for body weight in 
Nellore and MA groups through the selection. Moreover, 
performance tests are conducted in homogeneous 
environments, which provides a better partitioning of the 
environmental and genetic effect, and these effects can be 
estimated with more accuracy.

The best model for the Nellore breed (QBS65) 
displayed heritability estimates that increased over the 
age interval. The QBS33 and QBS66 models showed a 
decreasing trend from beginning up to 365 days of age 
for MA group. The same trend was observed in Nellore 
breed evaluated after weaning (Lopes et al., 2012). This 
trend might have happened because of the confounding of 
genetic effects (maternal and direct), given that the MA 
young bulls were included in tests shortly after weaning. 
Dias et al. (2006) estimated that the maternal effect has the 
greatest magnitude until approximately 240 days of age. 
Therefore, heritability might have been overestimated for 
the first ages evaluated in the MA group because maternal
effects were omitted. In the case of the Nellore animals, 
the heritability continuously increased, perhaps by not 
confusing the direct and maternal effects in the initial ages 
and because the animals underwent an adaptation period 
between weaning and the beginning of the test.

The percentage of animals commonly selected by 
different models indicates the disparities among them 
regarding animal ranking, which is possible and allows to 
choose models properly when the database is real. When 
the percentage of commonly selected individuals is low, the 
best model can be chosen based on comparisons involving 
the most complete model because such model is the one 
that best approximates the true model if the convergence of 
the analysis is guaranteed.

The comparison involving the two concurrent models 
for evaluation of body weight of Nellore bulls showed that 
the model with lower values of −2RLL and AIC (QBS65) 
provided the best fit (aside from the more complex model).
Therefore, B-splines with at least four and three intervals, 
respectively, are recommended to fit additive and permanent
environmental effects in genetic evaluation of Nellore 
bulls in performance tests. 

The model that better fits the records of MA genetic
group (CAIC, QBS33) resulted in parsimonious estimates 
of genetic parameters. Therefore, the choice of models for 
genetic evaluation should also consider the simplicity of 
the model and the ease of convergence.

In general, the correlations of body weight after 490 
days of age were higher in both genetic groups (Figure 4), 
which, along with the estimates of heritability (Figure 3), 
suggests the possibility of direct responses and favorable 
correlations when the animals are selected based on their 
weight at the end of the performance tests.

Conclusions

B-spline functions with different residual variance 
structures can be applied to estimate the variance 
components for body weight of young bulls in performance 
tests. Pooling classes of age with similar residual variances 
reduces the number of estimated parameters and does not 
compromise the fit of the model. Selection of young bulls
evaluated in performance test is an efficient tool to increase
body weight in beef cattle.
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