
Journal of Agricultural Science; Vol. 10, No. 11; 2018 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

29 

Litter Dynamics in Eucalyptus and Native Forest in the 
Brazilian Cerrado 

Fabiana Piontekowski Ribeiro1,2, Alcides Gatto1, Alexsandra Duarte Oliveira2, Karina Pulrolnik2,  
Eloisa Aparecida Belleza Ferreira2, Arminda Moreira de Carvalho2, Ângela Pereira Bussinguer1,  

Artur Gustavo Muller2 & Sebastiao Pires de Moraes Neto2 
1 Department of Forest Engineer, Brasília University, Brasília, Distrito Federal, Brazil 
2 Brazilian Agricultural Research Corporation, Embrapa Cerrados, Planaltina, Distrito Federal, Brazil 

Correspondence: Alexsandra Duarte de Oliveira, Brazilian Agricultural Research Corporation, Embrapa Cerrados, 
BR 020, km 18, CP 08223, Brasília, Distrito Federal, CEP: 73310-970, Brazil. Tel: 55-61-3388-9809. E-mail: 
alexsandra.duarte@embrapa.br 

 

Received: July 8, 2018      Accepted: August 12, 2018      Online Published: October 15, 2018 

doi:10.5539/jas.v10n11p29          URL: https://doi.org/10.5539/jas.v10n11p29 

 

Abstract 
The aim of this study was to evaluate the litter dynamics in the seasons of the year in three areas: Forest formation 
Cerradão (CE), and in two hybrids stands of Eucalyptus urophylla × E. grandis with different ages: E1 (34-58 
months) and E2 (58-82 months). The produced litter, stored litter and the remaining mass was collected over 720 
days. The evaluation of the remaining litter mass in each area was performed from the random distribution of 648 
litter bags on the soil. Chemical analyzes (N, P, C) and the structural components of the cell wall (lignin, cellulose 
and hemicellulose) of the remaining litter were performed. The C of the litter stock was also determined. For both 
years of evaluation were observed higher biomass and C content in litter at E2. In contrast, the highest 
decomposition rate was for the CE, especially in the second year of evaluation (mass remaining at 720 days of 35%, 
37% and 23% for E1, E2 and CE, respectively), attributed to the higher apparent liberation of N, soil moisture and 
biodiversity in the native area. Lignin contents increased, cellulose decreased, and hemicellulose remained stable 
throughout the 720 days. It was also observed an increase in the N and P concentration of the remaining mass and 
positive correlations among the remaining mass and the C:N and C:P ratios. The C:N ratio of litter was ≥ 76:1 at 
time 0 and ≥ 30:1 at 720 days for the three areas.  

Keywords: cellulose, remaining mass, savanna 

1. Introduction 
Nutrient cycling in forest ecosystems is controlled primarily by climate, site, abiotic properties (topography, parent 
material), biotic communities and human activity (harvesting, fertilization) (Fonseca et al., 2018; Fujii et al., 2018; 
Osborne et al., 2017). In the context of sustainable production and environmental conservation, the maintenance 
of native forests and forest plantations is of great importance at local and global scale regulation of 
biogeochemical cycles (Atwell, Wuddivira, & Wilson, 2018; León & Osorio, 2014).  

In terrestrial ecosystems, litterfall represents the first phase of vegetation-to-soil transference of carbon (C) and 
nutrient pools (Vitousek & Sanford Jr., 1986). Thereafter, decomposition is an important process of nutrient 
return to the soil (Freschet et al., 2013; Hobbie, 2015). Nutrient availability and relations are widely considered 
decisive factors for litter decomposition, especially early stages of decay (Bachega et al., 2016; Prescott & Gray, 
2013).  

Factors such as temperature and precipitation are extremely relevant for litter decomposition and incorporation 
into the soil-plant system (Santos, Carneiro, Martinez, & Caldeira, 2017; Zhang et al., 2014), aside from C 
compounds such as lignin, cellulose and hemicellulose, which can act as regulators of soil nutrient fluxes 
(Brown & Chang, 2014; Ferreira, Koricheva, Pozo, & Graça, 2016; Swift, Heal, & Anderson, 1979). Although 
climate greatly influences the biogeochemical cycles, it has been verified that, not only C, but also the 
concentrations of nitrogen (N) and phosphorus (P) affect residue mineralization and have been used as quality 
parameters to explain decomposition rates in different systems, including forests plantations (Bachega et al., 
2016; Prescott & Gray, 2013). 
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In recent decades’ literature has pointed out patterns and mechanisms related to leaf litter dynamics, such as litter 
fall, standing stocks, decomposition, increases in N and refractory compounds with decomposition time (Berg, 
2014; Ribeiro, Bussinguer, Hodecker, & Gatto, 2017; Turner & Lambert, 2016; Viera, Schumacher, & Araújo, 
2014). However, most of studies do not address jointly litterfall, litter layer and litter decomposition or litter 
dynamics assessments associated with changes in soil use. As it is also the main input of nutrients into the 
system, litter also contributes to C stocks, controls the fluxes of greenhouse gases (GHG) and defines ecosystems 
structural and functional patterns. Determination of net responses of ecosystems to environmental changes, 
therefore, requires monitoring of ecosystem processes under natural field conditions. 

In keeping with the needs for developing science-based policy recommendations for climate change mitigation the 
collection of data in the different compartments includes: effects of land-use change on below and above-ground 
productivity and carbon/nutrients budgets of forests is fundamental to know the level of GHG emissions and its 
main sources (Intergovernmental Panel on Climate Change, 2007). 

Since litter plays a critical role in the account for change in land use in order to fulfill the interactive research 
needs for the most accurate predictions we formulated the following hypothesis: in the Cerrado, quantity, quality 
and litter decomposition occurs due to environmental conditions, forest type (native × planted) and age of 
eucalyptus plantations.  

To investigate the litter dynamics in these different conditions, the objectives of this study were: (1) to quantify 
litterfall and litter layer as a function of seasonality; (2) quantify the biomass and carbon stocks in the litter layer; 
(3) determine the decomposition rate and litter composition in terms of structural components (lignin, cellulose 
and hemicellulose) of the cell wall; and (4) to analyze the C, N and P concentrations of the remaining litter mass 
and their relationship with decomposition rates. 

2. Material and Methods 
2.1 Study Site 

This study was carried out in the Cerrado of the Planalto Central, the central region of Brazil, at the rural center 
Quebrada dos Neres, Paranoá, Distrito Federal. The study areas consisted that correspond to the treatments: an 
area of native Cerrado (CE) vegetation (3.5 ha) and two Eucalyptus stands (12 and 19 ha) with the clones EAC 
1528 (E1) and GG100 (E2), respectively, of the Eucalyptus urophylla × Eucalyptus grandis hybrid. The general 
characteristics of the study areas are listed in Table 1. 
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L = (ΣY × 104)/As/103                                 (1) 

Ll = (Z × 104)/As/106                                 (2) 

where, L = litter yield (kg ha-1 yr-1); Y = monthly litterfall (g m-2 month-1); As = sampling area (0.25 m2); Ll = 
litter layer (Mg ha-1 yr-1); Z = litter layer per season (g m-2). 

For the evaluation of the remaining litter mass per area, 648 litter bags (0.20 × 0.30 m, made of 2 mm nylon 
mesh) were randomly distributed on the forest floor. The initial weight per litter per bag was 20 g of dry material 
(adapted from Santos and Whitford, 1981). From October 2014 to September 2016, every three months 27 litter 
bags were collected and analyzed. 

The litter was packed in labeled paper bags, sealed and sent to the laboratory to determine the fresh weight. 
Thereafter, the material was dried to constant weight in a forced air circulation oven (at 65 °C for 72 h) and then 
weighed again to determine dry weight. 

The sequential method adapted from Robertson and Van Soest (1981) was used to analyze the structural 
composition of the cell wall of the remaining mass in the litter bags. The ground material was analyzed for 
neutral detergent fiber (NDF), acid detergent fiber (ADF) and crude lignin (L). The hemicellulose and cellulose 
contents were calculated, respectively, as the difference between them (NDF minus ADF) and (ADF minus L). 

Of the remaining mass and litter layer 1.0 g litter samples were ground in a mortar and sieved (0.2 mm), and 
subsequently the total C content was determined using a Vario MACRO cube Elementary analyzer (Elementar 
Analyzer system, Hanau, Germany). The total C content was multiplied by the litter layer to obtain the C stock. 
The total N concentration was determined by the Kjeldahl method, after sulfur digestion, and P was determined 
by molecular absorption spectrophotometry (Empresa Brasileira de Pesquisa Agropecuária, 2009). 

2.3 Determination of Soil Moisture 

One composite sample which is made up of eight sub samples of equal volume was taken at each plot (0.00-0.10 
m layer). From each composite sample, a soil aliquot was removed to measure soil moisture content. The 
moisture content (gravimetric method) was calculated as the difference among dry and fresh weight, according to 
the following equation: 

m = (Wf – Wd)/Wd                                   (3) 

where, Wf = fresh weight (g) and Wd = dry weight (g), and moisture m - moisture (g/g) expressed as percent 
(Claessen, 1997). 

2.4 Data Processing and Analysis 

The quantitative litter variables (litterfall, litter layer and litter decomposition) and qualitative variables (lignin, 
cellulose, hemicellulose, C:N and C:P) were tested for normality (Shapiro-Wilk), followed by analysis of 
variance (ANOVA). Subsequently, the means were compared by the Tukey test (p < 0.05) by software SISVAR 
version 5.6, to detect possible differences among the areas, with regard to seasonality and over time in each area. 
Carbon was compared between treatments and between the years. All figures were generated on the SigmaPlot. 

The data of remaining litter mass and qualitative variables were compared among the areas for the sampling 
periods (0, 90, 180, 270, 360, 450, 540, 630, and 720 days), and analyzed for each area over time by regression 
analysis. 

Litter decomposition per area was calculated as proposed by Santos and Whitford (1981), based on the 
decomposition percentage, where the remaining litter rate was determined as the difference between the initial 
total litter mass amount (100%) and each rate per assessment period. In addition, models with one, two, three 
and four parameters were tested and the one that best fit the data was the exponential model of one parameter 
proposed by Olson (1963) was used to calculate the mass (k) decomposition: 

y =  A·e-kt                                      (4) 

where, y is the amount of remaining material after a period of time; A the weight of the material at time zero (t = 
0); k the decomposition constant obtained by software Sigma Plot for Windows 12.5 based on the litter quantities 
in the bags; and t the time in days (720 d).  
The decomposition constant (k) allows to calculate the time projection required for the disappearance of 95 % (t 
= 3/k) and 99 % (t = 3/k) (Olson, 1963). The remaining mass data together with the quantitative variables (lignin, 
cellulose, hemicellulose, and C:N and C:P ratio) were subjected to Pearson's statistical correlation analysis, 
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4. Discussion 
4.1 Litterfall and Litter Layer Dynamics 

The litter on the forest floor indicates a seasonal effect on litterfall (Table 3), since the native vegetation is 
adapted to the extreme rainfall seasonality of the Cerrado, by reducing plant transpiration during the dry season 
and by the presence of drought deciduous species that eventually shed their leaves. Several studies corroborate 
this finding (Giácomo, Pereira, & Machado, 2012; Oliveira, Marimon-Junior, Mews, Valadão, & Marimon, 2017; 
Souza et al., 2016) and also explain the greater input of litterfall and litter layer biomass in the dry season.  

The largest litter layer in the E2 area, independent of the year, is due to the trees stand of E2 being older, with a 
denser canopy, resulting in more dropping of branches (natural pruning). After canopy closure, the leaves on 
branches at the canopy base are shaded, reducing the sunlight interception and intensifying natural pruning 
(Paiva & Leite, 2015). 

In this trial, the litterfall in the Eucalyptus stands was lower than reported by other authors who studied different 
species of Eucalyptus (Schumacher, Corrêa, Viera, & Araújo, 2013; Viera et al., 2014). The litter layer, in turn, 
was higher (13.5 to 15 Mg ha-1 yr-1) than found in other studies regarding Eucalyptus forests in Brazil (Barbosa, 
Barreto-Garcia, Gama-Rodrigues, & Paula, 2017; Gatto et al., 2014; Ribeiro et al., 2017; Santos et al., 2017; 
Souza et al., 2016).  

In the case of planted forest systems, changes in litterfall and litter layer can be influenced by characteristics of 
the species, particularly of the chemical composition (Ferreira et al., 2016), management, plant density 
(Hakamada, Hubbard, Ferraz, Stape, & Lemos, 2017), age of trees (Corrêa, Schumacher, & Momolli, 2016), 
type of clone (Conti-Junior, Silva, & Couto, 2017) and climatic conditions (temperature and precipitation) 
(Binkley et al., 2017; Carvalho et al., 2017). 

The litterfall do not always reflect the litter layer in the forest floor (Table 3 and Figure 2), notably in the E1 area, 
where greatest amount of litterfall in the first year, did not result in highest litter layer in the same year. The 
dynamics of the litter layer depends not only on the litterfall amount, but also on the combination of factors such 
as, decomposition rate, nutrient availability and forest age, that are decisive in the biogeochemical cycles and 
ecosystem structure (Guendehou et al., 2014; Pinto et al., 2016; Schumacher et al., 2013). 

The C stock in the litter layer indicate increase during the studied period. Although the E2 presented larger C 
stocks in the litter layer, it was in the E1 that a higher rate of increase of C was observed from year to year 
(Figure 2). This behavior might have been affected by the forest growth stages of E1. Wink et al. (2013) report 
that eucalyptus stands presented a significant variation of litter stock and C stock. The litter deposition and 
nutrient cycling in forest ecosystems are the main route of entry of C in the soil-plant system and increase 
rapidly with plantation age (Du et al., 2015). 

In the Cerrado, litterfall and litter layer did differ between the Eucalyptus forest systems with different ages and 
clones. Seasonality influenced mainly the native vegetation, with higher biomass (litterfall) on the soil in the dry 
season, while in the rainy season, a higher mass loss was observed in all studied areas. Biomass and litter carbon 
can be influenced by age in the case of eucalyptus stands. 

4.2 Litter Decomposition Process 

The litter decomposition rates are considered fast if there is small amounts of accumulation in the soil surface, a 
condition not found in the present study. For Olson (1963), this condition is reached when the values of k are 
between 1.0 and 4.0. The constants k found in this study were smaller than 1.0, indicating that all areas present a 
slow rate of decomposition. 

The rapid decomposition within up to 90 days (Figure 3a) probably is results from the fragmentation of litter into 
smaller particles by physical agents, soil biota and the release of more soluble compounds such as sugars, 
starches and proteins, which are rapidly consumed by decomposing organisms (Swift et al., 1979; Oliveira et al., 
2016). After this period, most of the more resistant or recalcitrant structures, rich in lignin, as well as in leaf 
veins and petioles, remain, decreasing the decomposition rate over time (Baumann et al., 2009; Hammel, 1997). 

The highest litter mass loss in the CE area can be explained by water availability and biodiversity. A greater 
diversity of native vegetation species, provides a better environment and food supply for leaf-cutting ants (Silva 
& Vasconcelos, 2011), which leads to greater fragmentation of plant material, speeding up physical breakdown 
and biochemical transformation of organic material (Oliveira et al., 2017). Moreover, to keep leaf cutting ants 
population below the economic injury level, Brazilian Eucalyptus forest producers provide broadcast application 
of pesticides for long-term pest, especially during the first three years of plant age (Zanetti et al., 2014).  
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Another important finding in this study is the fact that native vegetation provided the highest water retention in 
the soil what might reflect in the litter moisture. Thus, higher soil moisture, favors maintenance of environmental 
conditions for preservation of litter food web (Nouvellon et al., 2012). Biological diversity of macro and meso 
fauna, microorganisms, as well as better microbiological properties, can be used as indicators of more fast 
decomposition (Oliveira et al., 2016). Castro, Silva, Quirino, Bustamante, & Kruger (2016) also report that the 
abundance of soil microbial communities is profoundly affected by the considerable seasonal variation in water 
availability, which is characteristic of the Cerrado biome. 

The decomposition of the total biomass and the cycling of most nutrients through litterfall and decomposition 
were at least twice higher than in the Cerrado sensu stricto. Thus, it is likely that the rapid and effective cycling 
of nutrients observed in the cerradão might be a key condition guaranteeing the ability of the cerradão to 
colonize new areas previously occupied by the typical Cerrado (Oliveira el al., 2017). 

The greatest biomass stock in the litter layer of Eucalyptus stands resulted from the higher deposition and low 
decomposition of the plant material. In general, the genus Eucalyptus sp. has slow rates of litter decomposition, 
of generally less than 50 % within 12 months, independent of the management and soil-climate conditions 
(Bachega et al., 2016; Souza et al., 2016). Other studies report a higher decomposition rate in relation to our 
findings, with a decomposition constant varying from 0.0015 to 0.56 (Cizungu et al., 2014; Pinto et al., 2016; 
Schumacher et al., 2013; Viera et al., 2014).  

The chemical composition of eucalypt leaves might decrease the microbial colonization, by the presence of 
essential oils and other allelopathic chemical compounds that hinder the establishment and action of 
microorganisms, preventing colonization and subsequent decomposition and mineralization (Ferreira et al., 2016; 
He et al., 2014).  

The litter decomposition is higher in the area of natural Cerrado vegetation, where soil moisture is more 
adequate. The lignin and cellulose contents function as indicators of litter decomposition in Eucalyptus and 
native plantations. The 720 days of evaluation were not enough to liberation the lignin and hemicellulose 
contents in any of the studied areas.  

4.3 Components of the Remaining Litter 

The increase in lignin content in the remaining litter mass after 720 days of evaluation in all three areas (Figure 
4a) can be explained by the initial loss of more easily decomposed carbohydrates from the plant material. In 
addition, the decomposition rates are initially determined by rapidly proliferation bacteria, while in later stages, 
the rates are determined mostly by fungi (Swift et al., 1979). This behavior is a result of the increase in the 
proportion of more recalcitrant materials such as lignin (Baumann et al., 2009) throughout the decomposition 
process. 

This organic fraction is described as the most resistant to degradation, which results in increasing concentration 
throughout the decomposition process, due to the release of the most soluble C forms initially (Hammel, 1997). 
It is worth mentioning that decomposition is a dynamic process, driven by a rapid succession of organism 
communities conditioned by the substrate quality and environmental conditions (Oliveira et al., 2016; 2017). 

Litter decomposition was positively correlated with the reduction in contents of cellulose, the least recalcitrant of 
the analyzed C compounds. Although hemicellulose is the most labile structural component (Wagner & Wolf, 
1999), cellulose was broken down more rapidly. There are indications that the release rate of hemicellulose is 
proportional to loss of mass, and the fact that its release is constant over time causes the hemicellulose not to be 
affected by the litter decomposition stage in two years of evaluation.  

The N and P concentrations increased in the 720 days of evaluation, when the mass loss was positively 
correlated with nutrient concentration, indicating that the greater the loss, the higher the concentration of the 
elements in the remaining mass, suggesting immobilization of these nutrients throughout decomposition and C 
loss (Schumacher & Viera, 2015; Singh, Dutta, & Agrawal, 2004). During litter decomposition, there is an 
increase in the lignin content, which is a process that occurs throughout the study. In addition, an increase in N 
concentration is observed, which plays an important role in lignin degradation (Berg & McClaugherty, 2008). 

The low variation in of N and P concentrations in the litter decomposition in CE can be attributed to low soil 
fertility and seasonality. Savanna species have ecological strategies for the conservation of functional properties 
as well as nutrient maintenance and internal cycling, e.g., by nutrient retranslocation followed by leaf dehiscence 
(Vourlitis et al., 2013), cycling nutrients with minimal losses. 
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The higher concentration of P in the E2 litter probably correlates with the residual effect of fertilization (Table 1). 
The soil of this area presented about three times more P when compared to the other forests E1 and CE (Table 2), 
reflecting in a higher concentration of this nutrient in the plant due to the history of use and soil management. 

The C:N and C:P ratios had positive correlations with the litter mass loss, due to the C presenting an average 
release of 21 % for the three areas over the two-year evaluation. Nutrients and their relationship are complex by 
the fact that different organisms are involved in the decomposition process, these organisms may acquire 
nutrients from the abiotic environment in addition to those provided by the litter, and because the rates of 
decomposition are often limited by the lability of C compounds rather than by N or P availability (Gessner & 
Chauvet 1994). 

Apparently, N and P liberation were more efficient in the native vegetation. It is also worth mentioning that if the 
study period had been only one year (360 days), no difference would have been detectable in the remaining litter 
mass between Eucalyptus stands and native vegetation. These findings reinforce the importance of long-term 
studies of native and planted forest ecosystems in the Cerrado.  
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