

ANIMAL REPRODUCTION

Official journal of the Brazilian College of Animal Reproduction

v.15, n.3 July/September 2018

Contents

Proceedings of the 32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Florianópolis, SC, Brazil, August 16th to 18th, 2018, and 34th Annual Meeting of the European Embryo Transfer Association (AETE); Nantes, France, September 7th and 8th, 2018

From the SBTE President	164
From the AETE President	165
From the Scientific Committee Chair	166
Conferences papers	
The transformational impact of site-specific DNA modifiers on biomedicine and agriculture K. Polkoff, J.A. Piedrahita	171
The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes J.L. Juengel, P.R. Smith, L.D. Quirke, M.C. French, S.J. Edwards	180
Laparoscopic ovum pick-up for in vitro embryo production from dairy bovine and buffalo calves H. Baldassarre, V. Bordignon	191
Intensified use of TAI and sexed semen on commercial farms M.O. Marques, F. Morotti, E. Lorenzetti, C. Bizarro-Silva, M.M. Seneda	197
Epigenetic remodeling in preimplantation embryos: cows are not big mice P.J. Ross, R.V. Sampaio	204
History, Origin, and Function of Transzonal Projections: The Bridges of Communication Between the Oocyte and its Environment H.J. Clarke	215
Expression of estrus as a relevant factor in fixed-time embryo transfer programs using estradiol/progesterone-based protocols in cattle G.A. Bó, A. Cedeño	224
Oocyte mitochondria: role on fertility and disease transmission M.R. Chiaratti, B.M. Garcia, K.F. Carvalho, C.H. Macabelli, F.K.S. Ribeiro, A.F. Zangirolamo, F.D. Sarapião, M.M. Seneda, F.V. Meirelles, F.E.G. Guimarães, T.S. Machado	231
Use of Doppler ultrasonography in embryo transfer programs: feasibility and field results G. Pugliesi, G.D. Melo, G.A. Ataíde Jr, C.A.G. Pellegrino, J.B. Silva, C.C. Rocha, I.G. Motta, J.L.M. Vasconcelos, M. Binelli	239
Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil P.S. Baruselli, A.H. Souza, M.F. Sá Filho, J.N.S. Sales	247_

Strategies for increasing fertility in high productivity dairy herds L. Bragança, A.F. Zangirolamo	256
Contributions from the ovarian follicular environment to oocyte function M. del Collado, G.M. Andrade, F.V. Meirelles, J.C. Silveira, F. Perecin	261
Oocyte related factors impacting on embryo quality: relevance for <i>in vitro</i> embryo production F. Nuttinck	271
From clinics to (cow)mics; a reproductive journey P. Humblot	277
Directions and applications of CRISPR technology in livestock research I. Lamas-Toranzo, P. Ramos-Ibeas, E. Pericuesta, P. Bermejo-Álvarez	292
Preservation of female fertility in humans and animal species H.M. Picton	301
Ovarian antral follicle populations and embryo production in cattle A.F. Zangirolamo, F. Morotti, N.C. Silva, T.K. Sanches, M.M. Seneda	310
Conference abstracts	
32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE)	
TAI/FTET/AI (Abstracts A001 to A077)	316-392
OPU-IVF and ET (Abstracts A080 to A124)	393-437
Folliculogenesis, Oogenesis and Superovulation (Abstracts A138 to A158)	438-458
Physiology of Reproduction in Male and Semen Technology (Abstracts A160 to A172)	459-471
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A182 to A216)	472-506
Cloning, Transgenesis and Stem Cells (Abstracts A241 to A255)	507-521
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A260 to A275)	522-537
34rd Meeting of the Association of Embryo Transfer in Europe (AETE)	
TAI/FTET/AI (Abstracts A078E to A079E)	538-539
OPU-IVF and ET (Abstracts A125E to A137E)	540-552
Folliculogenesis, Oogenesis and Superovulation (Abstracts A159E to A159E)	553
Physiology of Reproduction in Male and Semen Technology (Abstracts A173E to A181E)	554-562
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A217E to A240E)	563-586
Cloning, Transgenesis and Stem Cells (Abstracts A256E to A259E)	587-590
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A276E to A288E)	591-603
Workshop I: Sanitary and regulations on embryo transfer	604-607
Workshop II: Preservation of IVP embryos	608-610
Author index to v.15, n.3, 2018	611
Editorial Board and Journal Information	

A156 Folliculogenesis, Oogenesis and Superovulation

Inhibition of meiosis resumption in bovine oocytes to be used in the intrafollicular transfer of immature oocyte (TIFOI)

V.A. Silva¹, O.A.C. Faria², L.R.O. Dias², F.M.C. Caixeta², J.F.W. Sprícigo³, M.A.N. Dode⁴

¹ICESP - Faculdades ICESP, Brasília, DF, Brasil; ²UnB - Universidade de Brasília, Brasília, DF, Brasil; ³University of Guelph - Department of Animal Bioscience, University of Guelph, ON, Canada; ⁴Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil.

In the intrafollicular transfer of immature oocytes (TIFOI) the oocytes are aspirated from the donors and transferred to the "ovulators". Considering that removal of the oocyte from the follicular environment causes the spontaneous meiosis resumption, it is necessary to inhibit this process to avoid oocytes aging. The present study aimed to evaluate nuclear maturation kinetics in oocytes kept in different manipulation medium to be used in TIFOI. COCs were obtained from slaughterhouse ovaries and all manipulation and selection was performed in follicular fluid (FF). After selection, a group of COCs was placed directly into the IVM (control), the others were transferred to an eppendorf containing 500µl of Follicular Fluid (T1), Follicular aspiration solution consisting of PBS supplemented with 1% fetal calf serum and 0,02% heparin (T2) and Follicular aspiration solution supplemented with 500Mm of IBMX [(nonspecific phosphodiesterase inhibitor) (T3)]. The COCs remained for three hours in the different medium at 36° C. After that period, oocytes were transferred to IVM medium and kept for 22h. At 0, 9, and 22 h of IVM, sample of oocyte from all groups were removed for meiotic stage evaluation. Only for the control groups, a sample of oocytes was also removed at 12 h, which was used to confirm the efficiency of the treatments, regarding to meiosis retention. At each time point COCs were mechanically denuded, fixed for 48 hours in ethanol and acetic acid and stained with lacmoid (45%). The evaluation of meiotic stage was carried out under a phase contrast microscope (Nikon Eclipse E200, 1000X) and the oocytes were classified as: germinal vesicle (GV), germinal vesicle break down (GVBD); metaphase I (MI), anaphase I (AI), telophase I (TI) and metaphase II (MII). Nuclear maturation data were analyzed by Chi-square test (P<0.05). We evaluated a total of 293 COCs for the control group at 0 (n=63), 9 (n=76), 12 (n=76) and 22h (n=78). For the other groups a total of 587 oocytes were distributed to T1 (n=214), T2 (n=179) and T3 (n=194). At 0h 98.4% of the oocytes were at GV stage. After 9h of IVM, T1 (75.7%) and T3 (82.4%) presented most of oocytes in GVBD, similar to the control group (72.4%). In T2 only 11.8% were in GVBD, which was lower (P<0.05) than the other treatments. This group at 9 h had 86% of the oocytes in MI, which was similar to the 72.4% observed for the control group at 12 h. At 22h most of oocytes from all the groups reached the MII stage, with no difference (P> 0.05) among them. The results suggest that oocytes can remain for 3 hours in Follicular Fluid or Aspiration Solution with IBMX and proceed with nuclear maturation without affecting the oocytes. Therefore, both are eligible to be used as handling medium before TIFOI procedures.

Financial Support: CNPq and Embrapa.