

ANIMAL REPRODUCTION

Official journal of the Brazilian College of Animal Reproduction

v.15, n.3 July/September 2018

Contents

Proceedings of the 32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Florianópolis, SC, Brazil, August 16th to 18th, 2018, and 34th Annual Meeting of the European Embryo Transfer Association (AETE); Nantes, France, September 7th and 8th, 2018

From the SBTE President	164
From the AETE President	165
From the Scientific Committee Chair	166
Conferences papers	
The transformational impact of site-specific DNA modifiers on biomedicine and agriculture K. Polkoff, J.A. Piedrahita	171
The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes J.L. Juengel, P.R. Smith, L.D. Quirke, M.C. French, S.J. Edwards	180
Laparoscopic ovum pick-up for in vitro embryo production from dairy bovine and buffalo calves H. Baldassarre, V. Bordignon	191
Intensified use of TAI and sexed semen on commercial farms M.O. Marques, F. Morotti, E. Lorenzetti, C. Bizarro-Silva, M.M. Seneda	197
Epigenetic remodeling in preimplantation embryos: cows are not big mice P.J. Ross, R.V. Sampaio	204
History, Origin, and Function of Transzonal Projections: The Bridges of Communication Between the Oocyte and its Environment H.J. Clarke	215
Expression of estrus as a relevant factor in fixed-time embryo transfer programs using estradiol/progesterone-based protocols in cattle G.A. Bó, A. Cedeño	224
Oocyte mitochondria: role on fertility and disease transmission M.R. Chiaratti, B.M. Garcia, K.F. Carvalho, C.H. Macabelli, F.K.S. Ribeiro, A.F. Zangirolamo, F.D. Sarapião, M.M. Seneda, F.V. Meirelles, F.E.G. Guimarães, T.S. Machado	231
Use of Doppler ultrasonography in embryo transfer programs: feasibility and field results G. Pugliesi, G.D. Melo, G.A. Ataíde Jr, C.A.G. Pellegrino, J.B. Silva, C.C. Rocha, I.G. Motta, J.L.M. Vasconcelos, M. Binelli	239
Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil P.S. Baruselli, A.H. Souza, M.F. Sá Filho, J.N.S. Sales	247_

Strategies for increasing fertility in high productivity dairy herds L. Bragança, A.F. Zangirolamo	256
Contributions from the ovarian follicular environment to oocyte function M. del Collado, G.M. Andrade, F.V. Meirelles, J.C. Silveira, F. Perecin	261
Oocyte related factors impacting on embryo quality: relevance for <i>in vitro</i> embryo production F. Nuttinck	271
From clinics to (cow)mics; a reproductive journey P. Humblot	277
Directions and applications of CRISPR technology in livestock research I. Lamas-Toranzo, P. Ramos-Ibeas, E. Pericuesta, P. Bermejo-Álvarez	292
Preservation of female fertility in humans and animal species H.M. Picton	301
Ovarian antral follicle populations and embryo production in cattle A.F. Zangirolamo, F. Morotti, N.C. Silva, T.K. Sanches, M.M. Seneda	310
Conference abstracts	
32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE)	
TAI/FTET/AI (Abstracts A001 to A077)	316-392
OPU-IVF and ET (Abstracts A080 to A124)	393-437
Folliculogenesis, Oogenesis and Superovulation (Abstracts A138 to A158)	438-458
Physiology of Reproduction in Male and Semen Technology (Abstracts A160 to A172)	459-471
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A182 to A216)	472-506
Cloning, Transgenesis and Stem Cells (Abstracts A241 to A255)	507-521
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A260 to A275)	522-537
34rd Meeting of the Association of Embryo Transfer in Europe (AETE)	
TAI/FTET/AI (Abstracts A078E to A079E)	538-539
OPU-IVF and ET (Abstracts A125E to A137E)	540-552
Folliculogenesis, Oogenesis and Superovulation (Abstracts A159E to A159E)	553
Physiology of Reproduction in Male and Semen Technology (Abstracts A173E to A181E)	554-562
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A217E to A240E)	563-586
Cloning, Transgenesis and Stem Cells (Abstracts A256E to A259E)	587-590
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A276E to A288E)	591-603
Workshop I: Sanitary and regulations on embryo transfer	604-607
Workshop II: Preservation of IVP embryos	608-610
Author index to v.15, n.3, 2018	611
Editorial Board and Journal Information	

Proceedings of the 32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Florianópolis, SC, Brazil, August 16th to 18th, 2018. Abstracts.

A164 Physiology of Reproduction in Male and Semen Technology

Identification of seminal parameters predictive of conception rates in *Bos indicus* cows submitted to timed-artificial insemination- partial results

E. Nogueira^{1,2}, C. Sanches², E.V. Costa e Silva², A. Mendes^{3,4}, M.A.N. Dode³, G. Wiley⁴, K. Kerns⁴, P. Sutovsky^{4,5}

¹EMBRAPA Pantanal - Empresa Brasileira de Pesquisa Agropecuária, Corumbá, MS, Brasil; ²UFMS- CIVET - Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil; ³EMBRAPA Cenargen - Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil; ⁴University of Missouri - University of Missouri- Division of Animal Sciences, Columbia, MO, Brasil; ⁵University of Missouri - University of Missouri, Department of Obstetrics, Gynecology and Women's Health, Columbia, MO, Brasil.

Ability to predict male fertility is highly desirable for bulls used in timed-artificial insemination (TAI) to achieve better conception rates, consequently reducing reproductive program costs. Our goal was to correlate different methods of post-thaw semen evaluation with the pregnancy (P/AI) of Nelore (zebu) cows subjected to TAI to identify candidate predictors of sire conception rate. The P/AI data from 43231 Nelore cows, inseminated in TAI with basic protocols with application of Estradiol Benzoate on D0 (2 mg im) and use of the intravaginal device with 1 g of P4 for 8 days, followed by application of 1 mg of estradiol cypionate, 150µg of d-cloprostenol and 300 IU eCG on D8. The TAI was performed 40-56 h after, with frozen-thawed semen from 21 Nelore and 50 Angus bulls (P/AIfrom experimental datas and fertility index (IFERT®-Lagoa da Serra). Three samples were evaluated from each bull, with semen batches analyzed for physical, functional and morphological aspects, including subjective means [gross motility, thermal resistance test (TRT), morphology, sperm concentration per ml (total and viable)], sperm tail mitochondrial sheath (MS) length stained with aggresome probe; Computer Assisted Semen Analysis [CASA- total motility, progressive motility, VAP, VSL, linearity, STR, ALH and VCL], hyposmotic swelling test (HOST), and image-based flow cytometry: mitochondrial membrane potential (JC-1), and over 1,300 image-based calculations from nuclear stain DAPI, acrosome status/integritydetecting lectin PNA (Arachis hypogaea/peanut agglutinin) aggresome-detecting probe (AGG), bright field, and side scatter. Data was analyzed using ANOVA (GLIMMIX), Partial Least Squares (PLS) regression with use of Wolds criterion to explore the relative importance of individual sperm variables related to fertility (P/AI). The differences in P/AI were found between bulls (P<0.001), and between breeds – Nelore: 54.44%, and Angus: 49.23% (P<0.001). The following in vitro sperm variables were determined to be important predictors of P/AI with negative coefficient: total and tail defects, AGG minor axis intensity standard deviation (SD); AGG width SD; AGG minor axis intensity median absolute deviation (MAD); AGG width mean; PNA H entropy mean; PNA H energy mean; PNA H variance SD. Predictors with positive coefficient included: MS length, polarized (JC-1), gross motility, vigor-TRT, CASA variables (progressive motility, VAP, VSL and VCL), viable sperm concentration, DAPI Elongatedness Head MAD; side scatter H contrast mean; PNA H Variance Mean; PNA H Entropy MAD; PNA H Entropy median; AGG Width MAD; AGG H Entropy SD; PNA +++ Gated; AGG Grad MAX Mean; AGG H Contrast Median; AGG H Contrast Mean. In conclusion, Angus and Nelore bulls differ in P/AI when mated to Bos indicus cows. Such multiplex studies correlating sperm parameters and differences in fertility rates observed in TAI are under way and provide an advancement in better understanding sperm fertility potential.