

ANIMAL REPRODUCTION

Official journal of the Brazilian College of Animal Reproduction

v.15, n.3 July/September 2018

Contents

Proceedings of the 32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Florianópolis, SC, Brazil, August 16th to 18th, 2018, and 34th Annual Meeting of the European Embryo Transfer Association (AETE); Nantes, France, September 7th and 8th, 2018

From the SBTE President	164
From the AETE President	165
From the Scientific Committee Chair	166
Conferences papers	
The transformational impact of site-specific DNA modifiers on biomedicine and agriculture K. Polkoff, J.A. Piedrahita	171
The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes J.L. Juengel, P.R. Smith, L.D. Quirke, M.C. French, S.J. Edwards	180
Laparoscopic ovum pick-up for in vitro embryo production from dairy bovine and buffalo calves H. Baldassarre, V. Bordignon	191
Intensified use of TAI and sexed semen on commercial farms M.O. Marques, F. Morotti, E. Lorenzetti, C. Bizarro-Silva, M.M. Seneda	197
Epigenetic remodeling in preimplantation embryos: cows are not big mice P.J. Ross, R.V. Sampaio	204
History, Origin, and Function of Transzonal Projections: The Bridges of Communication Between the Oocyte and its Environment H.J. Clarke	215
Expression of estrus as a relevant factor in fixed-time embryo transfer programs using estradiol/progesterone-based protocols in cattle G.A. Bó, A. Cedeño	224
Oocyte mitochondria: role on fertility and disease transmission M.R. Chiaratti, B.M. Garcia, K.F. Carvalho, C.H. Macabelli, F.K.S. Ribeiro, A.F. Zangirolamo, F.D. Sarapião, M.M. Seneda, F.V. Meirelles, F.E.G. Guimarães, T.S. Machado	231
Use of Doppler ultrasonography in embryo transfer programs: feasibility and field results G. Pugliesi, G.D. Melo, G.A. Ataíde Jr, C.A.G. Pellegrino, J.B. Silva, C.C. Rocha, I.G. Motta, J.L.M. Vasconcelos, M. Binelli	239
Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil P.S. Baruselli, A.H. Souza, M.F. Sá Filho, J.N.S. Sales	247_

Strategies for increasing fertility in high productivity dairy herds L. Bragança, A.F. Zangirolamo	256
Contributions from the ovarian follicular environment to oocyte function M. del Collado, G.M. Andrade, F.V. Meirelles, J.C. Silveira, F. Perecin	261
Oocyte related factors impacting on embryo quality: relevance for <i>in vitro</i> embryo production F. Nuttinck	271
From clinics to (cow)mics; a reproductive journey P. Humblot	277
Directions and applications of CRISPR technology in livestock research I. Lamas-Toranzo, P. Ramos-Ibeas, E. Pericuesta, P. Bermejo-Álvarez	292
Preservation of female fertility in humans and animal species H.M. Picton	301
Ovarian antral follicle populations and embryo production in cattle A.F. Zangirolamo, F. Morotti, N.C. Silva, T.K. Sanches, M.M. Seneda	310
Conference abstracts	
32nd Annual Meeting of the Brazilian Embryo Technology Society (SBTE)	
TAI/FTET/AI (Abstracts A001 to A077)	316-392
OPU-IVF and ET (Abstracts A080 to A124)	393-437
Folliculogenesis, Oogenesis and Superovulation (Abstracts A138 to A158)	438-458
Physiology of Reproduction in Male and Semen Technology (Abstracts A160 to A172)	459-471
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A182 to A216)	472-506
Cloning, Transgenesis and Stem Cells (Abstracts A241 to A255)	507-521
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A260 to A275)	522-537
34rd Meeting of the Association of Embryo Transfer in Europe (AETE)	
TAI/FTET/AI (Abstracts A078E to A079E)	538-539
OPU-IVF and ET (Abstracts A125E to A137E)	540-552
Folliculogenesis, Oogenesis and Superovulation (Abstracts A159E to A159E)	553
Physiology of Reproduction in Male and Semen Technology (Abstracts A173E to A181E)	554-562
Embryology, Developmental Biology and Physiology of Reproduction (Abstracts A217E to A240E)	563-586
Cloning, Transgenesis and Stem Cells (Abstracts A256E to A259E)	587-590
Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and "omics" (Abstracts A276E to A288E)	591-603
Workshop I: Sanitary and regulations on embryo transfer	604-607
Workshop II: Preservation of IVP embryos	608-610
Author index to v.15, n.3, 2018	611
Editorial Board and Journal Information	

A248 Cloning, Transgenesis and Stem Cells

Viability of dog stem cells maintained at room temperature for 50 hours

A. Cunha², A. Fidelis², M. Dode³, H. Brunel¹, P. Malard¹

¹BIO - Bio Biotecnologia, Brasília, DF; ²UNB - Universidade de Brasília, Brasília, DF, Brasil; ³Embrapa - Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil.

The use of mesenchymal stem cells (MSC) in the treatment of diseases has shown significant growth in veterinary medicine, since it is a therapy that can be used to accelerate wound healing, decrease inflammation and modulate the immune system, due to the release of cytokines and growth factors. MSC can be obtained from several adult tissues, however, the most commonly used source has been adipose tissue. Due to the emergency nature of some situations, as well as the need to send MSC to several Brazilian regions, an option for the immediate use of the cells in therapy emerged: the creation of cryopreservation banks of allogeneic cells. In this context, the objective of this study was to evaluate the period of time in which it is possible to maintain viable MSC at room temperature stored in a specific transport medium produced by BioCell® commercial laboratory. For this, MSC obtained from the adipose tissue of four dogs was used, each animal being considered a biological replicate. The cell line used was previously tested, by means of immunophenotyping, on the markers already described in the literature that guarantee to be a lineage of MSC. After culturing and confluence, the cells were cryopreserved and maintained in N2 until the time of the evaluations. Initially, cryopreserved samples were thawed and adjusted to 1x10⁶ / mL, protected from light and stored at room temperature in insulin syringes in the total volume of 0.5 mL of BioCell® transport medium. Samples were stained by the Alexa Fluor® 488 Annexin V / Dead Cell Apoptosis Kit (Molecular Probes) and, after 15 min incubation, the samples were evaluated in FlowSight® image flow cytometry (AMNIS, Seattle, WA). The evaluations were started 2 h after thawing and performed every 2 h for a period of 36 h, with a final evaluation at 50 h after thawing. Approximately 30,000 cells were acquired per sample and the results were analyzed using IDEAS V6.0 analysis software (AMNIS). The results were analyzed by GraphPad (Prism 6) through the analysis of variance test and the means compared by the Tukey test. It was possible to observe that, only after 30 hours in storage at room temperature, the quality of the cells changed to that observed in 2 hours of storage. To the moment of 28 hours the average of viable cells was of 78.5 ± 9.2 . Based on the results, it was possible to conclude that when kept in specific transport medium at a concentration of 1×10^6 / mL, MSC obtained from dogs can be maintained for up to 30 hours at room temperature without compromising viability.