

21 WORLD CONGRESS OF SOIL SCIENCE

21st World Congress Sunday 12 – Friday 17 August 2018 of Soil Science Rio de Janeiro, Brazil

Rio de Janeiro August | 12 - 17 _____

Biological attributes in integrated crop-livestock-forestry (ICLF) systems in the Maranhão State Amazon, Brazil

<u>Joaquim Bezerra Costa</u>¹; Henrique Antunes de Souza²; Luciano Cavalcante Muniz³; Ivanderlete Marques de Souza⁴; Maria Diana Melo⁴; Lucélia de Cássia Rodrigues de Brito⁵; Elimilton Pereira Brasil³; José dos Santos Benício¹; Diana Signor Deon⁶

Embrapa Cocais¹; Embrapa Meio-Norte²; Universidade Estadual do Maranhão - UEMA³; Universidade Estadual Vale do Acaraú - UVA⁴; Universidade Federal do Piauí - IFPI⁵; Embrapa Semiárido⁶

Soil microbial biomass Carbon (MBC) and Nitrogen (MBN) are indicative of the changes caused by different systems of land use and soil management. The evaluation of biological quality of soil is a strategy that aims to define appropriate systems for maintaining and improving the sustainability of agricultural enterprises. This research aimed to determine the levels of MBC and MBN of the soil microbial biomass in six agricultural management systems. Soil samples were collected within each system/management, at Muniz Farm, in the municipality of Pindaré-Mirim - MA, in a Haplic Plintosol, at 0-0.1 m depth, during the rainy season of 2017, in 4 replications, in all systems. The evaluated systems were (T1) corn intercropped with brachiaria grass and double rows of eucalyptus every 28 m implanted in 2016; (T2) corn intercropped with massai grass; (T3) corn intercropped with massai grass and double rows of sabiá tree (Mimosa caesalpiniaefolia) every 30 m implanted in 2017; (T4) corn intercropped with massai grass and babassu (native palm); (T5) corn intercropped with massai grass, babassu and double rows of sabiá tree every 30 m implanted in 2017; and (T6) brachiaria grass pasture (reference treatment). In each soil sample, the levels of MBC and MBN were determined. The analysis of variance of the data was performed by the F test. The averages were compared by the Tukey test. The MBC variable from T6 area (637 mg kg⁻¹ of soil) was higher in relation to T1 (343 mg kg⁻¹ soil), T2 (238 mg kg⁻¹ of soil), T4 (210 mg kg⁻¹ of soil) and T5 (203 mg kg⁻¹ soil). However, T6 did not differ from T3 (433 mg kg⁻¹ of soil). The highest concentration of MBN was observed in T6 (2.4 mg kg⁻¹ of soil). In general, the biological attributes of soil were significantly affected as a function of the soil management. The brachiaria grass pasture presented the highest activity when compared to other silviagricultural systems evaluated in 2017.

Keywords: integrated systems; organic matter; soil quality

Financial Support: BASA, Rede ILPF, CAPES

