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Abstract—Pesticide application has been an important activity
for pest control in agricultural production and in sustaining food
security. The quality of an application plays an important role to
decrease human and environmental risks, as well as in relation
to the costs for food production. To evaluate the quality of the
application by sprayers, several quality descriptors are used. Such
descriptors are related to the average diameter of drops and
the distribution of drops in the application. This paper presents
the construction of a soft-sensor, based on Principal Components
Analysis (PCA), to infer the quality of application. The soft-sensor
has as inputs the operating conditions of agricultural sprayers
and offers as output the quality descriptors that serve as a base
of information to estimate the level of quality that a pesticide
application can meet at a certain time. Hence, the selection of
historical data, the exploration and filtering of data, as well as
the structure and the validation of the soft-sensor are presented.
The results have shown the usefulness of the soft-sensor in the
aggregation of value to the process of pesticide application and
decision-making in agriculture.

Keywords–Soft-sensor; Inferential sensors; Quality of applica-
tion; Principal component analysis; Agricultural sprayers.

I. INTRODUCTION

As the population has increased, the need to produce
more food has caused the agricultural techniques to constantly
evolve. The development of new technologies for the produc-
tion of inputs, pesticides and agricultural machines such as
tractors and sprayers, as well as genetic engineering, have
made possible the increase of agricultural production and
the reduction of the environmental impacts of agricultural
activity. Among the activities of crop management, one of the
most expensive is the spraying of pesticides. Spraying is the
application of a liquid in the form of small particles on a
surface. These particles are called drops or droplets.

An efficient spraying application is based on the following
factors: applied chemical efficiency, quality of the product,
climatic conditions and biological characteristics of the pest
[1] [2]. Among the factors that determine the efficiency of
the application, the quality is one of the most important, that
is, precision agriculture based on the use of automation and
control plays an important role. The knowledge of the size, the
distribution and the process of formation of drops are essential
factors for the success of the pulverization of pesticides [3].
These factors have an influence on the drift, evaporation of

products, penetration capability inside the canopy of crops and
deposition on phytosanitary treatment targets [4].

Since agricultural crops can vary in height as they grow
and as the agricultural sprayer is used on different crops
on the farm, the sprayer boom height must be accurate to
ensure that crops receive the proper application of the liquid
being dispensed. A set of sensors have been used to help
the operators in such arrangements and also, for calibration
of the temperature of the engine, flow and pressure of the
pesticides hydraulic pump, among others variables, required in
the spraying processes. Furthermore, today advanced sprayers
generally include additional sets of sensors which are useful
for precision spraying management. However, it is still a
challenge to measure and control in the spraying processes
all the variables required for spraying quality and a complete
characterization of the spraying systems during operation in
order to increase precision.

Therefore, regarding this subject and in order to improve
the performance of such processes, the concept of soft-sensors
can be used to estimate values of important variables that
cannot be taken by traditional measurements.

Soft-sensors are computer programs established from mod-
els and used for estimating not measurable outputs from
production processes. Specifically, they are based on estimation
and prediction techniques which use a priori information
collected from sensors and mathematical models to describe
physical processes. The approach based on soft-sensors is used
in cases where sensors (hardware) are not available or their
implementation is difficult, have high cost or simply there are
no instruments that can do the type of measurement required
[5]. In the literature, there are several applications of soft-
sensors in production processes and they have achieved good
results. In 1995, Luo et al. [6] designed an inference estimator
based on fuzzy logic to measure and control the purity of
the resulting propylene from the distillation process of a high-
purity distillation column. In 1998, Casali et al. [7] used soft-
sensors to estimate the size of the particles in a grinding
plant where sensors were not available. The authors used an
Autoregressive Moving Average Model (ARMAX) as soft-
sensor to estimate and test the model predictive capability.
Then, in 2007, Lin et al. [8] designed a soft-sensor to detect
nitrogen oxide emissions (NOx) produced by a cement kiln
system. The authors used robust regression techniques to derive
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an inferential model, making possible a basis of estimation
with dynamic least squares. Recently, in 2016, Liu et al. [9]
used the soft-sensor approach to predict and monitor the indoor
air quality in the Seoul metro systems. The authors used a
technique of learning Just-In-Time (JIT) to model the nonlinear
process based on two local models of prediction, and a linear
Partial Least Squares (PLS) method and a nonlinear Least
Squares Support Vector Regression (LSSVR) method for the
prediction of the indoor air quality were used.

The conception and construction of a data-driven soft-
sensor have five main pillars: collection and selection of histor-
ical data of the process, detection of outliers and data filtering,
selection of the model structure, estimates of the model and
validation of the model [5]. Therefore, these five pillars or steps
must be executed sequentially to obtain a soft-sensor with a
high degree of accuracy. The main focus of this work is the
improvement in the quality of pesticide application. For this, a
soft-sensor based on Principal Components (PC) was built in
order to predict the quality descriptors of the application as a
function of operating conditions of the agricultural sprayers.

The next sections of the paper are organized as follows. In
Section II, the main concepts and the theoretical foundation of
the analysis of principal components are given. In Section III,
the electrohydraulic devices and the experimental configuration
used for data collection are shown. Also, in this section the
setup of the soft-sensor in the control loop of the pesticides
spraying system is studied. Subsequently, in Section IV, the
simulated results of the application of the soft-sensor in the
control loop are shown. Finally, some concluding remarks and
future works are presented in Section V.

II. PRINCIPAL COMPONENT ANALYSIS

The main idea of PCA is to reduce the dimension of
the data set by keeping the variation of the original data
set as much as possible. To achieve this goal, this technique
transforms the data set into a new set of principal components.
The PCs are ordered so that the first components keep most of
the variation present in the original data or variables [10]. To
start with the formulation, the simplest one-dimensional space
case (M = 1) is used, that is the projection of the data is in
an one-dimensional space. The mean of the set of samples is
calculated with the following expression:

x =
1

N

N∑
n=1

xn (1)

where xn is the sample vector, with n = 1, · · · , N . The
covariance matrix S is defined by the following expression:

S =
1

N

N∑
n=1

(xn − x) (xn − x)
T
. (2)

Define a D-dimensional vector u1 as the direction of this
space which is chosen in such a way that uT

1 u1 = 1. Each
data point xn is then projected onto a scalar value uT

1 xn and
the idea is to maximize the variance of the projected data in
relation to the vector u1. The variance of the projected data
is given by:

1

N

N∑
n=1

{
uT
1 xn − uT

1 x
}2

= uT
1 Su1. (3)

To prevent that ‖u1‖ → ∞, the maximization of the projected
variance must have a constraint. Thus, the constraint comes
from the normalization condition uT

1 u1 = 1. To comply with
the constraint, a Lagrange multiplier λ1 is introduced [11]:

uT
1 Su1 + λ1

(
1− uT

1 u1

)
. (4)

Thus, deriving (4) in function of u1 and equating to zero, the
following expression is obtained:

uT
1 Su1 = λ1. (5)

Therefore, u1 is an eigenvector of the covariance matrix S
and the variance is maximized when the set u1 is equal to the
eigenvector having the largest eigenvalue λ1. This eigenvector
is known as the first principal component [11]. Considering
the case of a projection of M-dimensional space, the optimal
linear projection for which the variance of the projected data
is maximized is defined by the m eigenvectors u1, · · · ,um

of the covariance matrix S that corresponds to the largest m
eigenvalues λ1, · · · , λm. To establish the principal components
as a basis for regression, first define an X (n × p) matrix
which consists of n observations of the p predictor variables
whose (i,j)th element is the value of the jth predictor (or
regressor) variable for the ith observation. Accordingly, the
corresponding standard regression model is defined as:

y = Xβ + ε. (6)

where y is the vector of n observations of the dependent
variable, measured about their mean, β is a vector of p
regression coefficients and ε is a vector of error terms; the
elements of ε are independent, each with the same variance
σ2. Also, in matrix form, one can define the PC values for
each observation as Z = XA, where the (i, k)th element of
Z is the value (score) of the kth PC for the ith observation,
and A is a (p × p) matrix whose kth column is the kth
eigenvector of X′X . The idea is to use the PC to replace the
original predictor variables. For this purpose, the orthogonality
concept of the eigenvector matrix is used. Since matrix A is
orthogonal, then Xβ can be rewritten as Zγ = XAA′β, in
which γ = A′β. Then, (6) can be rewritten as [10]:

y = Zγ + ε (7)

Thus, in (6) the predictor variables were replaced by their PCs
in the regression model. In addition to the PCA regression
model in (1), the following reduced model is also used:

y = Zmγm + εm (8)

where γm is a vector of m elements that are a subset of
elements of γ, Zm is an (n × m) matrix whose columns
are the corresponding subset of columns of Z, and εm is the
appropriate error term. An estimate of β can be found using
β̂ = Aγ̂. The vector γ̂ can be calculated as γ̂ = (Z′Z)

−1
Z′y.

III. EXPERIMENTAL ARRANGEMENT

To validate the developed soft-sensor, the platform that
was developed at the Brazilian Agricultural Research Cor-
poration (Embrapa Instrumentation) in partnership with the
School of Engineering of São Carlos University of So Paulo
(EESC-USP), both from Brazil, was used. This platform for
sprayers development and analyzes operates as an Agricultural
Sprayer Development System (ASDS) and uses a National
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Instruments® embedded controller, known as NI-cRIO.

A. Main Electronics and Mechanics used in the ASDS
The ASDS was designed and developed taking into ac-

count the concept of an advanced platform based on the use
of sensors and actuators, controllers circuits, and intelligent
electronics to enable the project and development of sprayer
systems [12]–[14].

This laboratory infrastructure has an advanced development
system that enables the design of architectures involving the
connections of hydraulic components and devices, mechanical
pumps, electronic and computer algorithms, as illustrated by
Figure 1. On the other hand, the system also has the hydraulic
devices that are used to make any configuration of commercial
agricultural sprays and new prototypes of sprayers, the user
interface for system monitoring and control, as well as an
electromechanical structure which emulates the movement of
the agricultural sprayer in the field, as shown in Figure 2.

Figure 1. Front view of ASDS electro-hydraulic devices: (1) power supplies,
(2) electrical protection circuits, (3) modules for automation and control of
the inputs and outputs variables, (4) box with electronic circuits for signal
conditioning, (5) CAN network bus, (6) transmitter for analog sensors, (7)
frequency inverter for control of the spray pump, (8) frequency inverter for
control of the Industrial belt that simulates the tractor movement in relation

to the sprayers, (9) spray pump, (10) two piston pumps for injection of
pesticides, (11) pesticide reservoir tank, (12) proportional valve for pressure

and flow control, (13) valve actuation circuits via CAN network.

Figure 2. Development system for projects dedicated to the application of
liquid agricultural inputs: (1) spray nozzle, (2) system that emulates the

movement of the sprayer, (3) pesticide disposal tank, (4) user interface of
the development system, (5) spray booms.

B. Data Collection
Water-sensitive papers were used to collect the drop size

distribution pattern. This type of paper collects the watermarks
produced by the drops which can be analyzed by a pattern
recognition program to obtain the average diameters. A de-
tailed diagram of the experimental setup is shown in Figure 3.
The water-sensitive papers were displayed in an aluminum bar,
with an impermeable paint coating, positioned transversely to
the movement of the application and spaced so as to collect all
the information from the drop distribution of all the nozzles.

The spraying was performed at a height of 51 cm. The distance
between each nozzle was 50 cm (Figure 3) [15].

Figure 3. A zoom of the spray boom with the nozzles used for data
collection containing: 1) aluminum bar with an impermeable paint coating;

2) water-sensitive papers; 3) set of nozzles; 4) pressure sensor.

The position of the water-sensitive papers, in the aluminum
bar, obeys the critical points which are to be considered in
the distribution of mean diameters, that is, the papers placed
outside of the aluminum bar (P1 and P9 in Figure 3) in order
to collect the data of the drops with potential of drifting. Two
other papers were placed at the external nozzles to collect
the application pattern without overlapping (P2 and P8 in
Figure 3). A pair of papers was placed in the center of the
overlapping of the nozzle cones (P4 and P6 in Figure 3) and
three more papers were placed in the center of the cones,
perpendicular to the nozzle (P3, P5 and P7 in Figure 3).

Table I shows the operating conditions used to collect data
for each tested nozzle where Qp [m3/s] is the nozzle flow, Dp

[ /̀ha] is the application rate, Vp [m/s] is the speed of application
and d0 [mm] is the discharge orifice of the nozzle. Four
conditions were tested, one per nozzle with different discharge
orifice diameters of the models CH0.5, CH 1, CH 3 and CH 6
of the Magnojtet® company. These four types of nozzles were
selected with the help of a specialist in the area of agricultural
application in order to have a wide range of drop sizes within
the database.

TABLE I. OPERATING CONDITIONS FOR THE ASDS USING FULL
CONE NOZZLES (magnojet®).

Nozzle P Qp Dp Temp Humid Vp d0
[bar] [L/min] [L/ha] [oC] [%] [km/h] [mm]

1st CH0.5 3.4 0.53 67 23.6 51 10 0.5
2nd CH1 3.4 1.02 85 23.4 61 14 1.0
3rd CH3 3.4 1.46 100 24.0 49 18 1.5
4th CH6 2.4 1.90 120 23.7 58 20 2.0

Four conditions named full cone nozzles CH05, CH1,
CH3 and CH6 were considered. For each condition, there
were 5 replicates of which the first 3 had the same operating
conditions (S in Table III). The fourth repetition was performed
by lowering the sprayer boom pressure by 10% and the fifth
repetition was done by increasing the sprayer boom pressure
by 10%. For each paper positioned in the metal bar there are
two samples and thus, the total of the samples per repetition
are 18, so the total samples for each condition, which is
composed of 5 repetitions, are 90 samples. Accounting for all
four conditions, 360 samples were collected. The information
collected experimentally, from each water-sensitive paper, was
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for the following quality descriptors: D0.1, SMD, VMD, D0.9,
as well as the relative amplitude (RA) and the application rate
(AR).

TABLE II. ARRANGEMENT OF SAMPLES, FOR EACH CONDITION,
WHICH MAKE UP THE DATABASE.

Nozzle No repetition Total No papers No samples Total samples
S -10% +10%

1st CH0.5 3 1 1 5 9 18 90
2nd CH1 3 1 1 5 9 18 90
3rd CH3 3 1 1 5 9 18 90
4th CH6 3 1 1 5 9 18 90

Total collected samples 360

To obtain the average diameters in the papers sensitive to
the water, the tool DropScope® of the Ablevision® company
was used. The data exploration, the analysis of results and
the construction of the soft-sensors were performed with the
MATLAB® and Simulink® software.

C. Soft-sensor
The applications of the soft-sensors can be divided into

three large items: monitoring of processes, process control and
off-line assistance of operations [16]. In this work, the soft-
sensors were used in the monitoring of the spraying process,
specifically as a predictor of the quality of the variables
(PPQV), as well as in control to plan the operations (OPP). The
soft-sensor used as PPQV applied to the agricultural spraying
process is shown in Figure 4.

Figure 4. Block diagram of the soft-sensor used as predictor of process
quality variables (PPQV) in the agricultural spraying process.

In the block diagram, the control loop of the spraying
system is shown. In this loop, the inputs are the pressure and
flow references r(∆Pref , Qpref ). The outputs of this loop
are the pressure ∆P and flow measured in the system by
the sensors Qp, which are the actual value that the spraying
system has at a given time. In the case of the soft-sensor as
PPQV (Figure 4), the operating conditions (red square with
dotted lines) are the inputs to the soft-sensor. The operating
conditions are the pressure and flow, which come directly
from the spraying system, the speed of application Vp and
the diameter of the discharge orifice of the nozzle d0. In the
configuration as a predictor of quality variables, the soft-sensor

offers as output the prediction of the quality descriptors, that
is, the mean diameters: D0.1, SMD, VMD, D0.9.

On the other hand, the application of the soft-sensor, in
process control, as an operations planner in the process, is
shown in Fig 5. For this configuration, the soft-sensor receives
as input the quality descriptors of the spraying and delivers as
output the required operating conditions in the spraying system
to obtain the given quality values.

Figure 5. Block diagram of the soft-sensor used as an operations planner in
the process (OPP) in the agricultural spraying process.

In the block diagram of Fig. 5, it is shown that the soft-
sensor delivers the pressure and flow reference values for the
control loop. The soft-sensor also delivers the model of the
nozzle represented by the diameter d0 and the speed Vp that
the sprayer must have at the time of making the application.

IV. RESULTS AND DISCUSSION

First, an exploration of the data was made. To apply
techniques that work with maximization of variances, such
as PCA, or reduction of errors, it is important that the
data of the random observations fit a normal curve. Thus, a
quantile-quantile graph (Q-Q plot) was used to determine the
adjustment that the data can have to a normal distribution.
Then, a Grubbs test to all the collected observations in order
to detect possible outliers was carried out. The Q-Q plots and
the Grubbs test are explained in more detail in [15].

The model chosen to build the soft-sensors was the PCA
regression. The steps for the construction of the model are
presented in Algorithm 1. The algorithm is divided into two
procedures, the first procedure (REGRESSION) is the con-
struction of the principal component regression model. This
procedure has as entries the data matrix X , the matrix of
eigenvectors A, the matrix of scores of the PC’s Z and the
vector of data required for the model y. Also, this procedure
returns the value of the regression coefficients γ̂ and the
prediction value ŷ. Therefore, the regression model is delivered
based on the principal components. The second procedure in
the Algorithm 1, has as its main function to estimate output
values for new observed data (NEWOBSERV). Then, the
procedure receives a vector containing new observations xnew,
as well as receives the regression coefficients based on the PCs
γ̂ and the eigenvalue matrix A. In the procedure, a new score
matrix Znew, a new vector of values x̂new and a new observed
data ŷnew are estimated.
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Algorithm 1 PCA regression
Require: X consists of n observations of p predictor variables;

A Matrix of eigenvectors;
Z Matrix of scores of the PC’s;
y Vector of data required for the model;

procedure REGRESSION(X,A,Z, y)
Z = XA . Calculate the matrix Z of the scores PC
γ̂ = (Z′Z)

−1
Z′y . Returns the γ̂ value

ŷ = Zγ̂ . Returns the prediction ŷ value
end procedure
procedure NEWOBSERV(xnew, A, γ̂)

z′new = x′newA . Calculate the xnew scores value
x̂′new = z′newA

′ . Find the predicted value
ŷ′new = z′newγ̂ . Returns the predicted value

end procedure

Figure 6. Model construction algorithm.

To validate the model, four new repetitions were made,
one for each operating condition (Table I), each repetition
had 14 samples of water sensitive paper totalizing 56 new
observations. Figures 7b, 8d, 9f, 10h show the xbar charts
and error bars which describe the behavior of the PCA-based
models in the presence of new observations. It is important
to emphasize that the spraying process is highly random
and therefore there are several values which are above the
maximum (UCL) and minimum (LCL) values allowed. For the
first three conditions (samples: 1-14 (first condition CH05), 15-
28 (second condition CH1), 29-42 (second condition CH3)),
the estimation errors are low, which showed that the models
provide adequate estimates for the spraying quality descriptors.
Observing the responses of the models, Figures 7a, 8c, 9e, 10g,
one can consider that the best regression responses are for the
descriptors SMD, VMD and D0.9.

(a) D0.1 scatter response

(b) D0.1 xbar chart and error bars

Figure 7. Results of the soft-sensor for the D0.1 descriptor.

(a) D0.9 scatter response

(b) D0.9 xbar chart and error bars

Figure 8. Results of the soft-sensor for the D0.9 descriptor.

(a) SMD scatter response

(b) SMD xbar chart and error bars

Figure 9. Results of the soft-sensor for the SMD descriptor.

The regression coefficients estimated with the scores of the
principal components are shown in Table III. The coefficients
β relate the quality descriptors with the operating conditions.
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TABLE III. ESTIMATED REGRESSION COEFFICIENTS β̂.

D0.1 SMD VMD D0.9

P 0.41 0.36 0.50 0.45
Vp 0.14 0.16 0.14 0.07
d0 0.00 -0.03 0.21 0.33

(a) VMD scatter response

(b) VMD xbar chart and error bars

Figure 10. Results of the soft-sensor for the VMD descriptor.

V. CONCLUSION AND FUTURE WORK

This work presented the development of customized soft-
sensors for agriculture. The soft-sensors have shown the possi-
bility to aggregate value in the processes, that is, improve the
quality in the agricultural pesticide application. In addition,
they serve as versatile tools to help agricultural producers to
improve the application based on knowledge and the systems
control, providing support for decision making in agricultural
spraying for pest control. Furthermore, the models based on
PCA regression proved to be useful and have allowed finding
good estimators for spraying quality descriptors, as well as
the adjustment of the operating conditions and calibration of
the agricultural machinery. In future works, the soft-sensor
will be embedded in a circuit, and prepared to operate with a
CAN network, making it possible the actual sprayer operate
in agricultural field conditions.
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