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Introduction

The isolation and characterization of 17 polymorphic
microsatellite loci from the spiny lobster Panulirus echina-
tus (Decapoda: Palinuridae) by Illumina MiSeq sequenc-
ing is described. The analysis of genetic variability was
performed in 42 individuals from 3 different populations
(Saint Peter and Saint Paul Rocks, The Rocas Atoll and
CapeVerde).Thenumberof alleles ranged from2 to8,with
anaverageof 5.4±1.4 alleles per locus.The values of allelic
richness varied from 1.8 to 6.2 (average of 3.9± 1.0), while
PIC values ranged between 0.173 and 0.811. Overall mean
observed and expected heterozygosity was estimated to be
0.418 ± 0.165 and 0.587 ± 0.173, respectively. These are
the first microsatellite markers characterized for P. echi-
natus and it is expected that these markers will help to
obtain the necessary information for developing conser-
vation and management strategies for this highly valuable
fishery species.
Lobster fisheries, undoubtedly, is one of the most

financially valuable shellfish fisheries around the world,
especially spiny and clawed lobsters. The brown spiny
lobster Panulirus echinatus occurs on rocky reefs in the
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tropical western Atlantic Ocean and central Atlantic
Islands (Holthuis 1991). The species is fished through-
out its range, but intensively in some regions such as
off Brazil, the islands of St Helena (UK), Cape Verde
and the Canary Archipelago (Spain). Although commer-
cially important fisheries exist for the species, the activity
lacks management plan to ensure that lobster popula-
tions remain at sustainable levels. Fisheries legislation and
other policy tools are not established for this lobster
species in any of these countries. As biological informa-
tion on P. echinatus is still scarce, it is of paramount
importance to provide data that could be used to indicate
whether an impact on the global population is exist-
ing.
Commercial fisheries in certain habitats may compro-

mise distinct, locally adapted populations (Agardy 2000),
resulting in loss of genetic diversity which is measured by
the genetic variation distributed within as well as between
populations (Scribner et al. 2016). Thus, the knowledge
of genetic variability in P. echinatus and its populations is
essential to aid in the management of fisheries stocks (e.g.
Altukhov 1981; Shaklee and Samollow 1984).
Genetic data from molecular markers can be used

to measure genetic differentiation and variability among
marine populations, and therefore, address questions of
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fishery management relevance (e.g. identification of pop-
ulation and conservation units).
So far, only very few papers have been found in the

literature containing more than distribution records on
this species (e.g. site-specific population and reproductive
biology of P. echinatus, Pinheiro et al. 2003; Pinheiro and
Lins-Oliveira 2006;molecular identificationofphyllosoma
larva, Konishi et al. 2006; measurements of biometric
relationships, Barreto et al. 2009), therefore, very little is
known about the population diversity of P. echinatus.
Polymorphic simple sequence repeat (SSR) markers,

also known as microsatellites, are useful molecular mark-
ers for fisheries population and conservation genetic
studies due to their levels of intraspecific variability in
many taxa, a consequence of the high mutation rate of
these noncoding regions (Wright and Bentzen 1994). As
no molecular markers have been identified in P. echi-
natus until now and the species has limited genomic
information, it seems, therefore, an efficient alternative
for microsatellite discovery and subsequent PCR primer
design touse genomeassembled Illuminapaired-endDNA
sequences via next-generation sequencing (NGS) technol-
ogy (Abdelkrim et al. 2009).

In this study we have isolated and characterized a set of
20SSRmarkers of trinucleotide and tetranucleotidemotifs
from P. echinatus using NGS.

Materials and methods

An Illumina paired-end library was created using 1 ng of
P. echinatus genomic DNA, following the standard pro-
tocol of the Illumina Nextera XT Library Preparation
kit (Illumina, San Diego, USA). DNA was tagged and
fragmented by the Nextera XT transposome, followed by
limited-cycle PCR amplification, AMPure XP magnetic-
bead purification (Agencourt Bioscience, Beverly, USA)
and the Illumina Nextera XT bead-based normalization
protocol. The DNA library was sequenced using a MiSeq
Benchtop Sequencer (Illumina, SanDiego,USA). Contigs
were created from the resulting paired-end sequence data
(reads) using CLC Genomics Workbench 7.0.4 (Qiagen).
All these contigs were subsequently input into

Microsatellite Search BuildingDatabase (MSDB) (https://
github.com/lmdu/msdb; Du et al. 2013) for the detection
of possible microsatellite loci with at least four repeats
for trinucleotide and tetranucleotide motifs and designing
of primer pairs for each detected locus at their flank-
ing regions. Sequences with long mononucleotide repeat
stretches were ignored for marker development. Primer
designwas performedwith thePrimer3 (Rozen andSkalet-
sky 2000).
A total of 42 individuals were sampled from three dif-

ferent localities within the central Atlantic Islands of Saint
Peter and Saint Paul Rocks (0◦ 55′ 2′′ N, 29◦ 20′ 44′′ W; 15
individuals), TheRocasAtoll (3◦ 51′ 50′′ S, 33◦ 48′ 48′′ W;

15 individuals), and Cape Verde (14◦ 55′ 0′′ N, 23◦ 31′ 0′′
W; 12 individuals). Genomic DNA was isolated from
the pereiopod (walking legs) muscle using phenol–
chloroform–isoamyl alcohol (25:24:1) extraction of the
SDS/proteinase-K-digested tissue, followed by ethanol
precipitation (Sambrook et al. 1989). DNA extracts from
these samples were used to validate all designed primer
pairs via PCR.
Reactions were performed in a 10 µL total volume con-

taining ∼ 20 ng of genomic DNA, with 1.5 µL of 10×
buffer (Thermo Fisher Scientific, Waltham, USA), 2 to
2.5 mMMgCl2 (Thermo Fisher Scientific), 10 mM dNTP
mix (New England BioLabs), 0.25 mM of each primer,
2.0 µL de Q-solution (Qiagen, Hilden, Germany), and
1 U of Taq DNA polymerase (Thermo Scientific). All
amplifications were run in a Veriti 96-well Thermal Cycler
(Applied Biosystems) using the following PCR-cycle con-
ditions: 95◦C for 10 min, 30× (1 min at 95◦C, 1 min at
annealing temperature of 50–57◦C depending on primer
pair, 1 min at 72◦C), and 7 min at 72◦C. The amplifica-
tion products were screened by silver nitrate detection on
denatured 6% polyacrylamide gels.
The genotyped data was initially analysed using Micro-

Checker 2.2.3 (van Oosterhout et al. 2004) to test for the
presence of null alleles, large alleles dropout and scoring
errors by stuttering. Observed and expected heterozy-
gosities (HO and HE), the number of alleles (A), and
the polymorphic information content (PIC) were deter-
mined using Cervus 3.0 (Kalinowski et al. 2007). Allelic
richness (AR) as a measure of the number of alleles
per locus independent of the population size was calcu-
lated byFSTAT version 2.9.3.2 (Goudet 1995). Deviations
from Hardy–Weinberg equilibrium (HWE) and tests for
linkage disequilibrium were conducted using Genepop
software (Raymond and Rousset 1995). The Bonferroni
correction was applied when multiple pair-wise tests were
performed to assess the significance (P < 0.05).

Results and discussion

The genomic library, previously loaded as 16% of a
MiSeqReagent Kit v2 300 cycle sequencing run, produced
3,232,259 reads, which were assembled into 7196 contigs.
The software MSDB identified 2959 microsatellite loci,
being in the majority mononucleotide (1290; 43.60%) and
dinucleotide (1280; 43.26%) repeats. For ease of imaging
and scoring, we chose to examine only trinucleotide and
tetranucleotide loci, respectively showing 221 (7.47%) and
107 (3.61 %) repeats. From these, 27 loci were chosen for
primer designing and validation of which 20 consistently
amplified specific bands across individuals. Polymorphism
was identified in 17 loci across the entire data set, the
remaining three loci being monomorphic (Pech18, Pech19
and Pech20) (table 1).
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Table 2. Variability of 17 microsatellite loci and frequency of null
alleles P. echinatus populations.

Locus

All populations (n = 42)

AR Ho HE PIC PHWE FIS FNulls

Pech1 3.6 0.667 0.656 0.583 0.2629 −0.0718 −0.0112
Pech2 4.0 0.595 0.660 0.589 0.1778 0.0806 0.0345
Pech3 3.9 0.395 0.654 0.583 0.0006* 0.3998 0.1522
Pech4 4.5 0.472 0.698 0.644 0.0004* 0.3155 0.1278
Pech5 4.2 0.564 0.683 0.628 0.0616 0.1261 0.0656
Pech6 4.7 0.415 0.755 0.704 0.0000* 0.4051 0.1899
Pech7 3.3 0.424 0.493 0.439 0.3548 0.0820 0.0414
Pech8 2.4 0.095 0.293 0.266 0.0000* 0.8609 0.1504
Pech9 4.0 0.524 0.618 0.568 0.2030 0.1431 0.0542
Pech10 1.8 0.214 0.194 0.173 1.0000 −0.0943 −0.0193
Pech11 4.4 0.281 0.730 0.672 0.0000* 0.5892 0.2543
Pech12 3.8 0.469 0.515 0.470 0.1240 0.0639 0.0256
Pech13 3.5 0.524 0.616 0.538 0.1258 0.1517 0.0527
Pech14 6.2 0.595 0.842 0.811 0.0005* 0.2696 0.1293
Pech15 3.9 0.118 0.549 0.506 0.0000* 0.7747 0.2746
Pech16 4.8 0.405 0.696 0.652 0.0010* 0.4045 0.1666
Pech17 2.6 0.357 0.343 0.306 0.6560 −0.0275 −0.0140
Mean 3.8 0.418 0.587 0.537 − 0.2528 −
AR, allelic richeness; HO, observed heterozygosity; HE, expected
heterozygosity; PIC, polymorphic information content; PHWE,
probabilities of departure from Hardy–Weinberg equilibrium
(adjusted critical P < 0.0029); * significant Hardy–Weinberg dise-
quilibrium; FNulls, null allele frequency.

The analysis with the program Micro-Checker showed
in a pool of sampled individuals the presence of low-to-
moderate frequencies of null alleles in these loci which is
not surprising as this is commonly observed in a variety of
marine invertebrate species (Kaukinen et al. 2004; Dailia-
nis et al. 2011). Null frequencies below 0.2 are acceptable
in most microsatellite datasets (Dakin and Avise 2004).
Only in two loci (Pech11 and Pech15) this estimate was
higher than 0.2. The most probable reason for occurrence
of this phenomenon being scoring errors due to stuttering
or large allele drop out. No loci showed significant linkage
disequilibrium between any pair of loci after corrections
for multiple comparisons.
The genotyping of the entire dataset (N = 42), with

an overall frequency of missing single locus genotypes of
0.021 has also revealed 91 alleles at all 17 polymorphic loci,
ranging from 2 (Pech10) to 8 (Pech4), with an average of
5.4 ± 1.4 alleles per locus (table 1). The number of alleles
at trinucleotide and tetranucleotidemicrosatellites in spiny
lobsters has been reported to vary from 5.3 for Brazilian
P. argus (Diniz et al. 2005) to 11.9 for P. cygnus (Kenning-
ton et al. 2010).
The size of alleles in the most polymorphic locus,

Pech14, based onAR,HE and PIC varied from 160 to 178.
For the less polymorphic locus, Pech10, allele size ranged
from 78 to 86 bp; a trinucleotide and tetranucleotide motif
locus, respectively.

The level of polymorphism of each locus was also evalu-
ated by the allelic richness (AR), heterozygosities (H) and
the polymorphic information content (PIC) (table 2). The
values of allelic richness varied from 1.8 to 6.2 (average
of 3.9 ± 1.0), while PIC values ranged between 0.173 and
0.811. Mean PIC (0.537 ± 0.165) characterize this set of
microsatellite loci ashighly informativemarkers, as defined
by Botstein et al. (1980). Overall mean observed and
expected heterozygosity was estimated to be 0.418±0.165
and0.587±0.173, respectively.These estimateswere higher
when compared to mean HO (0.265) and HE (0.387) of
the scalloped spiny lobster (P. homarus) genotyped with
microsatellitemarkers (Delghandi et al. 2015).However,P.
echinatus heterozygosities were of lower magnitude when
compared to other spiny lobsters, such as P. argus (Diniz
et al. 2004, 2005; Tringali et al. 2008), P. cygnus (Ken-
nington et al. 2010), P guttatus (Truelove et al. 2015), P.
interruptus (Ben-Horin et al. 2009), and P. ornatus (Liu
et al. 2013). Except for P. ornatus, all these lobster species
belong to the same evolutionary lineage as indicated by
mtDNA phylogeny (Ptacek et al. 2001).
Eight microsatellite loci exhibited significant probabili-

ties of departure from HWE expectations after sequential
Bonferroni correction, adjusted critical P < 0.0029.
In these cases, the deviations occurred in the form of
heterozygote deficiency, perhaps resulting from the small
sample size or, considering the potential for extensive gene
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flow in this species, theWahlund effect (Johnson andBlack
1984). Additionally, null alleles, even in low frequencies
could have played an important part in the departures of
HWE.
In this study, we report the isolation, using the NGS

technology, and characterization of 17 polymorphic
microsatellite loci for the brown spiny lobster P. echina-
tus. These microsatellites have demonstrated potential for
population-level genetic studies and can provide valuable
information on the genetic variation and stock structure of
this lobster species. Therefore, we expect that these molec-
ular markers will help to obtain the necessary information
for developing conservation and management strategies
for this highly valuable fishery species.
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