CBCTA 2018

O USO CONSCIENTE DA BIODIVERSIDADE: PERSPECTIVAS PARA O AVANÇO DA CIÊNCIA E TECNOLOGIA DE ALIMENTOS

13 a 16 de Agosto de 2018 Belém . Pará . Hangar

FIBRAS ALIMENTARES, AMINAS BIOATIVAS, COMPOSTOS FENÓLICOS E ATIVIDADE ANTIOXIDANTE EM PÃO DE QUEIJO ENRIQUECIDO COM FEIJÃO-CAUPI BIOFORTIFICADO.

Rodrigo Barbosa Monteiro Cavalcante¹, Maria Beatriz de Abreu Glória², Marcos Antônio da Mota Araújo³, Maurisrael de Moura Rocha⁴, Kaesel Jackson Damasceno e Silva⁴, Regilda Saraiva dos Reis Moreira-Araújo^{1,5*}

¹Programa de Pós-Graduação em Alimentos e Nutrição (PPGAN), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil.

²Universidade Federal de Minas Gerais (UFMG), Faculdade de Farmácia (FAFAR), Departamento de Alimentos, Belo Horizonte, Minas Gerais, Brasil.

³Fundação Municipal de Saúde (FMS), Gerência de Planejamento (GEPLAN), Teresina, Piauí, Brasil.

⁴Embrapa Meio-Norte, Programa Nacional de Melhoramento de Caupi, Teresina, Piauí, Brasil.

⁵Universidade Federal do Piauí (UFPI), Departamento de Nutrição (DN), Teresina, Piauí, Brasil.

*Autor para correspondências: regilda@ufpi.edu.br

INTRODUÇÃO

O pão de queijo é um produto tradicional do Estado de Minas Gerais cuja produção tem aumentado consideravelmente, em associação com o crescimento do mercado, incluindo a exportação. No entanto, não há padronização na fabricação, identidade e qualidade (Anjos *et al.*, 2014; Machado & Pereira, 2010).

Enriquecer produtos de panificação com feijão é uma estratégia para estimular o consumo, visto que o feijão-caupi provê quantidades significativas de proteínas, carboidratos, fibras alimentares, vitaminas e minerais e baixo teor de gorduras. Verifica-se também a ocorrência de aminas bioativas, compostos fenólicos e oligossacarídeos indigeríveis (Carvalho *et al.*, 2012; Cavalcante *et al.*, 2017).

OBJETIVO

Desenvolver pão de queijo enriquecido com feijão-caupi biofortificado e analisar sua composição química e funcional.

MATERIAL E MÉTODOS

Local e Período do Estudo:

Laboratórios de Desenvolvimento de Produtos e Análise Sensorial de Alimentos e Bromatologia e Bioquímica de Alimentos da UFPI, no período de abril de 2017 a março de 2018.

Preparo do Pão de Queijo:

Matérias-primas	%
Polvilho doce	80-100%
Farinha de feijão-caupi	20%
Leite	10-50%
Óleo	5-20%
Ovo	10-30%
Queijo	5-25%
Sal	0-15%

Composição Centesimal e Valor Energético Total (VET):

A umidade foi determinada até obtenção de peso constante após secagem em estufa a 105 °C e o teor de cinzas após calcinação das amostras em forno mufla a 550 °C. A concentração de proteínas foi determinada pelo método macro *Kjeldahl*, com fator de conversão de 6,25 e o teor de lipídios por extração a quente utilizando o hexano como solvente em aparelho tipo *Soxhlet* (Aoac, 2005). O teor de carboidratos foi calculado por diferença e o VET de acordo com os fatores de conversão de *Atwater* (Watt & Merrill, 1963).

Fibras Alimentares:

O método consistiu na determinação do peso do resíduo resultante da eliminação do amido e das proteínas, e posterior precipitação das fibras solúveis na presença de etanol a 78% (Prosky *et al.*, 1988).

Aminas Bioativas:

A metodologia utilizada para a separação, detecção e quantificação foi a *High Performance Liquid Chromatography* (HPLC) por pareamento de íons em coluna de fase reversa (Adão & Glória, 2005).

Compostos Fenólicos e Atividade Antioxidante:

Método Espectrofotométrico. Fenólicos totais (Rossi & Singleton, 1965), flavonóides totais (Kim *et al.*, 2003) modificado por Blasa *et al.* (2006) e taninos condensados (Price *et al.*, 1978). DPPH (Brand-Williams *et al.*, 1995) e ABTS (Re *et al.*, 1999).

RESULTADOS E DISCUSSÃO

Tabela 1 - Composição química e VET de pão de queijo padrão e enriquecido com feijão-caupi.

Composição química (g/100g) e	Pão de Queijo Padrão	Pão de Queijo com FFC
VET	(média <u>+</u> DP)	(média <u>+</u> DP)
Umidade	23,4 ± 1,0 ^a	$23,3 \pm 1,2^{a}$
Cinzas	1.8 ± 0.07^{a}	$2,1 \pm 0,04^{a}$
Lipídeos	$14,2 \pm 0,2^{a}$	$16,2 \pm 0,2^{a}$
Proteínas	$7,2 \pm 0,2^{a}$	$9,3 \pm 0,1^{a}$
Carboidratos	53,4 ^a	49,1 ^a
Fibras Alimentares Totais	$10,6^{a}$	$9,6^{a}$
F.A.Solúvel	$0,6^a$	$0,7^a$
F.A.Insolúvel	10,0 ^a	$8,9^a$
Kcal	$370,2^{a}$	$379,4^{b}$

Tabela 2 - Teores de aminas bioativas em feijão-caupi (BRS Aracê), pão de queijo padrão e pão de queijo enriquecido.

Aminas bioativas	Feijão-caupi (BRS Aracê)	Pão de Queijo Padrão	Pão de Queijo com FFC
(mg/kg)	(média <u>+</u> DP)	$(m\acute{e}dia \pm DP)$	(média <u>+</u> DP)
Tiramina	nd	nd	nd
Putrescina	$1,9 \pm 1,7^{b}$	$2,5 \pm 1,2^{a}$	$3,6 \pm 3,0^{a}$
Cadaverina	$2,9 \pm 0,9^{ca}$	$3,8 \pm 1,2^{a}$	$7,2 \pm 2,7^{b}$
Histamina	$2,8 \pm 4,8^{b}$	$7,9 \pm 3,9^{a}$	$7,3 \pm 1,8^{a}$
Serotonina	nd	nd	nd
Agmatina	nd	$1,2 \pm 2,0^{a}$	$3,3 \pm 3,9^{b}$
Espermidina	$129,4 \pm 32,1^{c}$	$9,7 \pm 9,7^{a}$	$14,1 \pm 7,3^{b}$
Feniletilamina	nd	$0,4 \pm 0,6^{a}$	$0,1 \pm 0,2^{a}$
Triptamina	nd	nd	nd
Espermina	nd	nd	nd

Tabela 3 - Teores de compostos fenólicos em pão de queijo padrão e enriquecido.

1		
Compostos Bioativos	Pão de Queijo Padrão	Pão de Queijo com FFC
	Média <u>+</u> DP	Média <u>+</u> DP
Fenólicos Totais	$105,29 \pm 5,16^{a}$	188,39 ± 8,92 ^b
(mg GAE/100g)		
Flavonóides Totais	$51,75 \pm 1,6^{a}$	$85,89 \pm 2,77^{b}$
(mg EQ/100g)		
Taninos Condensados	$3,54 \pm 0,0^{a}$	$7,04 \pm 0,28^{b}$
(mg EC/100g)		

Tabela 4 - Atividade antioxidante em pão de queijo padrão e enriquecido com feijão-caupi.

Atividade Antioxidante	Pão de Queijo Padrão	Pão de Queijo com FFC
	Média <u>+</u> DP	Média <u>+</u> DP
DPPH	$307,43 \pm 14,67^{a}$	497,5 <u>+</u> 14,65 ^b
(µmol TEAC/100g)		
ABTS	$464,07 \pm 8,12^{a}$	$735,1 \pm 14,05^{b}$
(µmol TEAC/100g)		

CONCLUSÕES

O pão de queijo é fonte de proteínas e apresenta alto conteúdo de fibras. O acréscimo de feijão promoveu o aumento do valor energético total do produto. O pão formulado apresentou um incremento de espermidina e baixos teores de aminas biogênicas.

Os teores de fenólicos totais, flavonóides totais e taninos condensados aumentaram no pão de queijo enriquecido e verificou-se o aumento da atividade antioxidante *in vitro*.

REFERÊNCIAS

- Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of 'Prata' banana (*Musa acuminate* x *M. balbisiana*). Food Chemistry, 90(4), 705-711. Anjos, L. D., Pereira, J., Couto, E. M., & Cirillo, M. A. (2014). Modified starches or stabilizers in preparation of cheese bread. Ciência Rural, 44(9), 1686-1691. Association of Official Analytical Chemistry AOAC. (2005). Official Methods of Analysis of the AOAC International (16. ed.). Arlington: AOAC.
- Blasa, M., Candiracci, M., Accorsi, A., Piacentini, M. P., Albertini, M. C., & Piatti, E. (2006). Raw Millefiori honey is packed full of antioxidants. *Food Chemistry*, 97(2) 217–222.

 Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. *Food Science and Technology-Leb.-Wis.* & *Technologie*, 28(1), 25-30.

 Carvalho, A. F. U., Sousa, N. M., Farias, D. F., Rocha-Bezerra, L. C. B., Silva, R. M. P., Viana, M. P., Gouveia, S. T., Sampaio, S. S., Sousa, M. B., Lima, G. P. G., Morais, S. M., Barros, C. C., & Freire-Filho, F. R. (2012). Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. *Journal of Food Composition and Analysis*, 26(1-2), 81-88.

Cavalcante, R. B. M., Araújo, M. A. M., Rocha, M. M., & Moreira-Araujo, R. S. R. (2017a). Effect of thermal processing on chemical compositions, bioactive compounds, and antioxidant activities of cowpea cultivars. Revista

- Caatinga, 30(4), 1050-1058.

 Kim, D., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(1), 321-326.

 Machado, A. V., & Pereira, J. (2010). Effect of scalding on technological and rheological properties of cheese bread dough and cheese bread. Ciência e Agrotecnologia, 34(2), 421-427.

 Price, M. L., Scoyoc, S. V., & Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agriculture and Food Chemistry, 26(1), 1214-1218.

 Prosky, L., Asp, N., Schweizer, T. F., Devries, J. W., & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: interlaboratory study. Journal of the Association Official Analytical
- Chemists, 71(5), 1017-1023.

 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. Rossi, J. A., & Singleton, V. L. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 20(2), 144-158.

 Spss, Statistical Package for the Social Sciences SPPS, versão 21.0, 2016.

 Watt, B., & Merrill, A. L. (1963). Composition of foods: raw, processed, prepared. Washington DC: Consumer and Food Economics Research. Divison/Agricultural Service (Agriculture Handbook, 8).
- AGRADECIMENTO
 Ao CNPq pelo financiamento, via Edital Universal 01/2016, Processo 431314/2016-0.