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Summary

� Genome-wide association studies (GWAS) in plants typically suffer from limited statistical

power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain

power by meta-analysis using information from independent studies.
� We carried out GWAS for growth traits with six single-marker models and regional heri-

tability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-

GWAS, using gene and segment-based models, with data for 3373 individuals genotyped

with a communal EUChip60KSNP platform.
� While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associa-

tions at high-stringency in each population, gene-based Joint-GWAS revealed nine genes signifi-

cantly associated with tree height. Associations detected using single-SNP GWAS, RHM and

Joint-GWAS set-based models explained on average 3–20% of the phenotypic variance.

Whole-genome regression, conversely, captured 64–89% of the pedigree-based heritability in

all populations. Several associations independently detected for the same SNPs in different popu-

lations provided unprecedented GWAS validation results in forest trees. Rare and common asso-

ciations were discovered in eight genes involved in cell wall biosynthesis and lignification.
� With the increasing adoption of genomic prediction of complex phenotypes using shared

SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide

increasing power to pinpoint discrete associations potentially useful toward tree breeding and

molecular applications.

Introduction

Identifying the discrete genotype�phenotype associations under-
lying complex traits in forest trees, and plants in general, contin-
ues to be a challenge of far-reaching biological and economic
importance. Given the high genetic diversity, low extent of link-
age disequilibrium (LD) and lack of structure of forest tree popu-
lations, these were proposed as ideal systems for genetic
association studies (Neale & Savolainen, 2004). Earlier reports,
largely in species of Populus and Pinus, examined the variation in
candidate genes in which a few associations explaining small pro-
portions of the genetic variation were detected (Neale &
Savolainen, 2004; Thumma et al., 2005; Neale, 2007; Wegrzyn
et al., 2010; Khan & Korban, 2012; Guerra et al., 2013;

Thavamanikumar et al., 2014; Jaramillo-Correa et al., 2015).
With the development of accessible high-density single
nucleotide polymorphism (SNP) genotyping platforms, genome-
wide association studies (GWAS) were performed using marker
densities in the range of several thousand SNPs in collections of a
few hundred individuals (Cappa et al., 2013; Porth et al., 2013;
Evans et al., 2014; McKown et al., 2014; Allwright et al., 2016;
Du et al., 2016; Fahrenkrog et al., 2016). Relatively large effect
associations were detected for phenology and wood properties
traits. However, very few associations were found for complex
growth traits, and the proportion of genetic variation explained
by these individual associations was typically very small.

Many GWAS in forest trees have employed collections of trees
directly sampled from the wild. This sampling strategy aimed to
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minimize genetic structure and extent of LD to provide improved
resolution for discovering potentially useful causal variants for
marker-assisted selection (MAS). However, rare alleles detected
in wild populations may not be segregating or have a negligible
effect in an elite material background. Moreover, differently from
crop breeding in which backcross introgression of high-value wild
alleles into elite lines is commonplace, such a route is not an
option in forest trees. An alternative strategy to detect high-value
alleles by GWAS has been to develop more structured discovery
populations, such as the nested association mapping (NAM) pop-
ulations (Li et al., 2016; Wu et al., 2016). This approach puts the
population through a one-generation bottleneck, raising some
alleles to high and detectable frequency, while eliminating many
others (Hamblin et al., 2011). Although less genetic variation is
in principle available in such structured populations, the associa-
tions detected in genetically improved material should be consid-
erably more relevant to further breeding, as their effect would be
relevant in an already elite background. Following an equivalent
rationale, three studies have reported GWAS for growth and
wood quality traits in breeding populations of Eucalyptus (Cappa
et al., 2013; M€uller et al., 2017; Resende et al., 2017a). Interest-
ingly, the results were on par with those described earlier in natu-
ral populations, in which few associations explaining small
fractions of the genetic variation were detected. This finding cor-
roborates the complexity of the traits and the insufficient detec-
tion power to detect small effects.

The statistical power to detect associations between DNA vari-
ants and a trait depends largely on the experimental sample size
(Visscher et al., 2017). Due to the inherent challenges of creating
large populations for GWAS in plants, most studies utilized pop-
ulations smaller than a few hundred individuals, with the excep-
tion of studies using NAM populations in which several
thousand individuals have been used (reviewed by Xiao et al.,
2017). A potentially more viable alternative to gain statistical
power in plants can be obtained by combining information from
multiple populations using Meta-GWAS and Joint-GWAS
(M€agi & Morris, 2010; Yang et al., 2012; Bernal Rubio et al.,
2016; Li et al., 2016; Wallace et al., 2016; Wu et al., 2016).
Meta-GWAS combines the P-values from independent studies to
increase the power to detect variants with small effect sizes and is
a popular method for discovering new genetic risk variant in
human datasets (Evangelou & Ioannidis, 2013). Joint-GWAS,
alternatively, combines the populations before the association
analysis, leading to more resolution and the detection of more
associations for complex traits (Lin & Zeng, 2009). As each
experiment is independently designed, both methods have to
account for the heterogeneity created by population structure
and phenotype measurements, among other potential sources of
variability (Magosi et al., 2017).

A second approach to increase the power of a GWAS is to cap-
ture the information of all genetic variants in a genomic region,
including rare and low-frequency ones. Methods to exploit the
combined effect of multiple SNPs in genomic segments using
region or gene-based GWAS have been developed to account for
rare and low-frequency variants (Wu et al., 2011; Nagamine
et al., 2012; Bakshi et al., 2016). The regional heritability

mapping (RHM, Nagamine et al., 2012) is a region-based
GWAS approach with good potential for these cases, as it cap-
tures more of these underlying small genetic effects. This method
provides heritability estimates for short genomic regions, using
the genomic relationship matrix (GRM), and has the power to
detect regions containing common and rare SNP variants that
individually contribute too little variance to be detected by sin-
gle-SNP GWAS. As many trait-associated genetic variants identi-
fied from GWAS tend to be enriched in genic regions (Schork
et al., 2013), it is more powerful to test the aggregated effect of a
set of SNPs using a set-based association approach for the detec-
tion of complex trait genes (Bakshi et al., 2016).

In this study, we performed a Joint-GWAS for growth traits by
assembling a considerably large association population from indi-
vidual Eucalyptus breeding populations. Eucalyptus grandis,
Eucalyptus urophylla and their hybrids are among the most widely
planted tree species for pulp and solid wood production in the
tropics. Interspecific hybrids between E. grandis9 E. urophylla
make up almost the totality of large scale operational plantations
and are the main target of breeding programs due to their combi-
nation of desirable traits, most notably fast growth from E. grandis
and disease and abiotic stress resistance from E. urophylla (Myburg
et al., 2007). We assembled genome-wide SNP and growth trait
data for 3373 trees across four unrelated E. grandis9 E. urophylla
breeding populations. We evaluated different GWAS models to
correct for population stratification and relatedness, to detect asso-
ciations within and across these different breeding populations. We
also evaluated the performance of RHM in capturing larger frac-
tions of the additive genetic variance. Association analyses by genes
and segments were performed from summary data from Joint-
GWAS to increase the power to detect trait associations. Several
associations were independently detected for the same SNPs across
the unrelated populations, providing validation results for specific
loci. Associations were detected into genes related to cell wall
biosynthesis and lignification processes suggesting potential
pleiotropic effects. To the best of our knowledge, this is the first
study to apply Joint-GWAS in a forest tree.

Materials and Methods

Populations and phenotypic data

This study was carried out using trees in progeny trials of four
unrelated E. grandis9 E. urophylla hybrid breeding populations
(Pop1-IPB, Pop2-ARAB, Pop3-ARAC and Pop4-CNB), belong-
ing to three Brazilian paper and pulp companies: International
Paper of Brazil (IPB), Fibria Celulose (formerly Aracruz – ARA)
and Cenibra Celulose (CNB). Details of the size of the trial,
experimental design, number of families, age of measurement,
location and sample sizes used in the GWAS are described in
Table 1. Three of the four populations were used in previously
published genomic prediction studies Pop1-IPB (Lima, 2014),
and Pop3-ARAC and Pop4-CNB (Resende et al., 2012, 2017b).
While populations Pop1-IPB, Pop2-ARAB and Pop3-ARAC
were largely composed of first generation hybrids, Pop4-CNB
went through one additional selection cycle being equivalent to
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an outbred F2, as the parents were themselves hybrids (F1)
between E. grandis9 E. urophylla. All trees were phenotyped at
age 2–5 yr for diameter at breast height (DBH, cm) and total
height (HT, m) (Supporting Information Fig. S1).

SNP genotyping and quality control

In total, 3417 trees were genotyped using the Eucalyptus Illumina
Infinium EUChip60K (Silva-Junior et al., 2015), of which 44
with >10% missing data were removed, therefore 3373 remain-
ing for further analyses. A combined dataset was generated by
merging the genotyping data of each population. The genotypic
data for each population and for the combined data were filtered
to remove SNPs with call rate (CR) < 90% and monomorphic
SNPs, therefore maintaining rare SNPs with minor allele fre-
quency (MAF) > 0 in the analyses (full marker dataset). Two
alternative SNP datasets were also generated by retaining only
SNPs with MAF ≥ 0.01 and MAF ≥ 0.05, respectively
(Table S1). For the population stratification analyses, SNPs in
intergenic regions (putatively neutral) were selected based on
their localization outside of annotated gene models in the
Eucalyptus genome (Myburg et al., 2014). SNPs were then fil-
tered using PLINK v1.9 (Purcell et al., 2007) to generate a
pruned subset of SNPs in approximate linkage equilibrium (LE).

Population stratification analyses

The underlying genetic structure of the four populations and the
combined data was estimated based on a Bayesian clustering
method implemented in STRUCTURE v.2.3.4 (Pritchard et al.,

2000), using the intergenic SNPs in approximate LE (Table S1).
The admixture model was applied, with correlated allelic fre-
quencies, using no previous population information. The num-
ber of tested clusters (K ) ranged from 1 to 10, with 10
replications per K. The burn-in period and the number of
Markov chain Monte Carlo (MCMC) iterations were 50 000
and 150 000, respectively. The number of genetic groups was
determined based on the criteria proposed by Evanno et al.
(2005). The POPHELPER R package (Francis, 2016) was used to
generate the population structure bar plots by individuals. Princi-
pal component analysis (PCA) was performed using SNPRelate
(Zheng et al., 2012) to plot all individuals for the combined
dataset. To correct for population stratification in the GWAS
models, we performed a PCA using GCTA v1.26.0 (Yang et al.,
2011) in each population independently and for the combined
dataset. The number of significant principal components for each
population and combined data was determined by a broken stick
model (Jackson, 1993) using evplot function (Borcard et al.,
2011). The pairwise genetic distances between populations (FST)
were estimated according to Weir & Cockerham (1984) using
SNPRelate.

Linkage disequilibrium and heritability estimation

Genome-wide pairwise estimates of LD were calculated by the
classical measure of the squared correlation of allele frequencies
at diallelic loci (r2) for each chromosome separately and for all
four populations independently using PLINK v1.9 (Purcell et al.,
2007). The LD decay of r2 with distance in kbp was fitted by a
non-linear regression model between adjacent sites. The

Table 1 Main characteristics of the four Eucalyptus association populations used in the study.

Phenotypic data Pop1-IPB Pop2-ARAB Pop3-ARAC Pop4-CNB

Company International Paper Brazil Fibria Fibria Cenibra
Site Brotas, SP Aracruz, ES Aracruz, ES Sabin�opolis, Virgin�opolis,

Antônio Dias, MG
Coordinates 22°S; 48°W 19°S; 40°W 19°S; 40°W 18°S; 42°W
Total number of parents 46 52 47 10
Total number of
full-sibs (FS) families

58 68 75 43

Number of families
remaining in the analyses

45 68 75 37

Number of individuals/FS family
remaining in the analyses

22 13 10 21

Number of species involved
in the population composition

3 (E. grandis, E. urophylla,
E. camaldulensis)

5 (E. grandis, E. urophylla,
E. camaldulensis,
E. saligna, E. globulus)

4 (E. grandis, E. urophylla,
E. globulus, E. maidenii)

2 (E. grandis, E. urophylla)

Number of blocks 8 30 40 36
Number of tree per plot 6 1 1 1
Experimental Design RCBD ALD-IB ALD-IB RCBD
Total number of trees in trial 2784 5280 9600 4900
Number of trees used
in the GWAS analyses

979 875 758 761

Year when trees were planted 2006 2006 2006 2005
Year when trees were phenotyped 2011 2008 2008 2008

ALD-IB, alpha lattice design (incomplete block); RCBD, randomized complete block design.
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drift-recombination model (Hill & Weir, 1988) was used to fit a
nonlinear regression of the expectation of r2, using the R script
from Marroni et al. (2011) and the equation described by Rem-
ington et al. (2001). Finally, to visualize patterns of LD decay in
the four Eucalyptus breeding populations, the LD estimated (r2)
were plotted in a 1Mbp window. The variances components,
genomic and pedigree-based heritabilities for DBH and HT were
estimated for each population separately using the BGLR v.1.0.5 R
package (P�erez & de los Campos, 2014) (see Methods S1).

GWAS models

For the following GWAS analyses, we used the adjusted pheno-
typic data from each population separately, and for the combined
data we corrected these adjusted phenotypes for age and popula-
tion as described in Methods S2. Three different GWAS
approaches were used to detect associations: single SNP-based
models, regional heritability mapping (RHM) and SNP set-based
models. A brief description is presented below, and more details
can be found in Methods S3.

Single SNP-based models Six distinct GWAS models were
implemented in the EMMAX software (Kang et al., 2010), using
three linear model-based association (LMA) and three mixed lin-
ear model-based association (MLMA) models. The LMA models
were fitted without any correction for population stratification
and relatedness (Model 1: None); with only the Q-matrix from
STRUCTURE (Model 2: Q); and with significant principal
components from PCA (Model 3: P). The MLMA models is sim-
ilar to LMA models, except for the inclusion of the polygenic
effect captured by the GRM, which is evaluated with the kinship
matrix only (Model 4: K ); fitted with the kinship matrix and
Q-matrix (Model 5: K +Q); and fitted with the kinship matrix
and significant principal components (Model 6: K + P). All these
single-SNP GWAS models were performed for each population
independently and for the combined data (Joint-GWAS). The
proportion of the phenotypic variation explained by each marker
(h2m) were calculated as described in Methods S4.

Regional heritability mapping The RHM method was applied
to each population independently using GCTA (Yang et al.,
2011). This method divides the genome into windows of pre-
determined numbers of SNPs (regions) for each chromosome,
and the variance for each window is estimated. As described in
the original methodology (Nagamine et al., 2012), we used a
window size of 100 adjacent SNPs to build a regional relation-
ship matrix and the window was shifted every 50 SNPs. At the
end of the chromosome, a minimum of 100 SNPs encompasses
the last window. The whole-genomic and regional heritabilities
were estimated as h2g ¼ r2

g=r
2
y and h

2
r ¼ r2

r =r
2
y , respectively (see

Methods S3).

SNP set-based models To increase the power of the Joint-
GWAS (combined data), given that the effect sizes of individual
genetic variants potentially detected by single SNP-based models
could be very small, we tested the aggregated effect of sets of

SNPs. Two set-based methods were used: (1) a gene-based model
and (2) a segment-based GWAS model using segments of
100 kbp. Both approaches were performed using fastBAT (Bak-
shi et al., 2016) in GCTA (Yang et al., 2011). The proportion of
the phenotypic variation explained by each window (h2w) for set-
based models was estimated as described in Methods S4.

Assessments of the statistical significance in GWAS and
RHM To select significant associations different multiple test
corrections were applied to the P-values obtained in the GWAS
and the RHM approaches. For the single SNP-based GWAS
models, a genome-wide level using the Bonferroni procedure was
implemented to control for type I error at a = 0.05 and a sugges-
tive level with the Benjamini & Hochberg (1995) procedure was
used to control for false discovery rate (FDR) at 5%. A third less
stringent ad hoc threshold of �log10 (P) ≥ 4, was also used to
declare additional significant associations that were not detected
under Bonferroni and FDR corrections. This ad hoc threshold
was defined based on the threshold value established in a previous
study in population Pop4-CNB, using a permutation test with
Bonferroni correction for multiple tests (Resende et al., 2017a).
This threshold value is more stringent than the one (�log10
(P) ≥ 3.5) reported in a soybean study (Kaler et al., 2017) using a
comparable number of SNPs (31 260) and similar to the ad hoc
threshold considered in a Populus nigra study (Allwright et al.,
2016). The thresholds considered for the set-based GWAS were
the same as those used for the single SNP-based GWAS models,
but instead of the number of SNPs tested, the number of genes
was used for the gene-based GWAS and the number of regions
created by the segment-based GWAS. For the RHM approach,
to account for the overlapping windows for the RHM approach,
half of the total number of windows tested were used in the Bon-
ferroni and FDR at 5% multiple testing corrections. Addition-
ally, an ad hoc threshold (�log10(P) ≥ 2) was tested to declare
significant RHM windows associated with growth traits. Manhat-
tan plots were generated using the QQMAN (Turner, 2018) and
the GGPLOT2 (Wickham, 2009) R packages.

Results

SNP genotyping and population stratification

In total, 59 222 SNPs were targeted for genotyping using the
EUChip60K chip (Silva-Junior et al., 2015). More than 46 000
SNPs were retained for all populations and 51 274 SNPs for
the combined dataset following a filter for call rate (CR) ≥ 90-
%. After removing monomorphic markers (MAF = 0), c.
30 000 SNPs were retained for the four populations and
41 320 for the combined set with an overall final rate of miss-
ing data of only 1%. The distribution of the number of filtered
SNPs into MAF classes showed enrichment for low frequency
alleles (MAF 0–0.1, Fig. S2). Two alternative SNP datasets
with different MAF thresholds were also used to investigate
whether removing lower frequency SNPs had an impact on
GWAS results. Finally, sets of 7000 to 14 000 from the filtered
SNPs were selected in intergenic regions and in approximate
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LE for the population structure analyses (Table S1). The most
likely numbers of subpopulations varied between K = 2 for
Pop1-IPB and Pop2-ARAB to K = 5 for Pop4-CNB
(Table S1). When all four populations were combined the
most likely number of subpopulations was K = 2 (Fig. 1a),
using no previous population information in the admixture
model. The ancestry coefficient bar plots from STRUCTURE
showed K ranging from two to four subpopulations in the
combined dataset (Fig. 1a). For K = 2 Pop4-CNB was separated
from the other three populations, consistent with the highest
FST estimates observed between Pop4-CNB and the others (FST
range from 0.0712 to 0.0937). For K = 3, Pop2-ARAB and
Pop3-ARAC were grouped together, showing that individuals
from these two populations are more closely related
(FST = 0.0370) than the others, in agreement with the origin of
these two populations that belong to the same breeding pro-
gram and share some common parents. When K = 4 the com-
bined dataset was subdivided into four populations, although
some proportion of admixture was present. The numbers of
significant principal components according to a broken stick
model were used in the GWAS analyses to correct for popula-
tion stratification based on the PCA results. The significant
PCs defined in the four populations and the combined

population (Table S1) cumulatively explained 8.6%, 3.3%, 6.6-
%, 11.2% and 7.6% of the variation for each data, respectively.
The PCA for the combined dataset showed that all four popu-
lations have a similar genetic background, with the first two
principal components explaining only 3.2% and 2.4% of the
genetic variance (Fig. 1b).

LD, genomic and pedigree-estimated heritabilities

The pairwise estimates of LD (r2) were calculated between all
high-quality polymorphic SNPs (MAF > 0) on each chromosome
separately for the four populations independently. The average
genome-wide LD for pairs of SNPs within a 1Mbp distance
from each other ranged from 0.052 (Pop1-IPB) to 0.256 (Pop4-
CNB). The genome-wide decay of LD to an r2 below 0.2 were
considerably faster for Pop1-IPB (34.8 kbp), Pop3-ARAC
(42 kbp) and Pop2-ARAB (75.1 kbp) compared with that of
Pop4-CNB (637.7 kbp) (Fig. 1c). The more extensive LD on
Pop4-CNB may be explained by the more advanced selection
state of this population when compared with the others. The esti-
mated pedigree-based narrow-sense heritabilities (h2) were mod-
erate (0.374 for Pop4-CNB) to high (0.683 for Pop3-ARAC),
with the lowest and highest values observed for DBH. Estimates

(a)

(b) (c)

Fig. 1 Population structure, principal component analysis (PCA) and linkage disequilibrium (LD) decay for the four unrelated Eucalyptus

grandis9 E. urophylla hybrid breeding populations. (a) Bar plots from population structure for number of cluster (K) ranging from K = 2 to K = 4. (b) PCA
with two eigenvectors (PC 1 and PC 2) and (c) genome-wide pattern of LD (correlation coefficient r2) decay plotted up to 1Mbp pairwise single nucleotide
polymorphism (SNP) distances and a dashed line at r2 = 0.2 indicates the frequently used threshold of usable LD.
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of genomic heritabilities varied from 0.296 for HT in Pop4-
CNB to 0.528 for DBH in Pop3-ARAC, corresponding to a
large proportion (64–89%) of the pedigree-based heritabilities
(Table S2). Estimates of variance components are also reported
in Table S2.

Single-SNP GWAS

The LMA Models 1, 2 and 3 without the introduction of a
GRM (K of kinship) resulted in the detection of a large number
of associations. Most of these were deemed spurious due to the
structured nature of these breeding populations (Table 2). For
instance, in Model 1 (no correction) there were hundreds to
thousands of SNPs associated with growth traits for all popula-
tions. When the population stratification covariate obtained
either by STRUCTURE (Q) or PCA (P) was included in the LMA
model (Models 2 and 3), the number of associations for each
population reduced drastically, except for Pop1-IPB that showed
a slight increase. The quantile�quantile (QQ) plots show the
inadequacy of the LMA model without the kinship matrix for
GWAS analyses, since the observed and expected P-values dif-
fered considerably for a large number of SNPs (Fig. S3).

When the random effects captured by the kinship matrix (K )
and the fixed effects captured by population stratification
(STRUCTURE or PCA) were included in the MLMA models, no
associations were detected for DBH in each population separately
after correction for multiple testing (Table 2; Figs S4–S8). The
same was observed for total height, except for Pop4-CNB where
several significant associations (Figs 2, S7b,d) were detected using
a FDR (5%) threshold (Table 2), in agreement with its more
extensive LD (> 600 kbp, Fig. 1c) and smaller effective popula-
tion size (Table 1). All these significant associations detected by

single-SNP GWAS for Pop4-CNB are for common SNPs, with
allele frequencies ranging from 0.27 to 0.47, suggesting that this
approach is suitable for the detection of common variants. Never-
theless, when a more stringent adjustment for multiple testing
was used (Bonferroni at 5%), no significant association remained
(Table 2). Most P-values were similar to the expected diagonal in
the QQ plots in the MLMA models adjusted for GRM, which
indicates better appropriateness of these GWAS models
(Fig. S3). Furthermore, the models built with GRM produced a
drastic reduction in the number of significant markers, highlight-
ing the impact of relatedness on GWAS in these breeding popu-
lations. The two alternative marker datasets (MAF ≥ 0.01 and
MAF ≥ 0.05) did not show any difference as far as results for the
single-SNP GWAS because all SNPs found associated were com-
mon.

To increase the power of detection, a Joint-GWAS was per-
formed combining the data for all populations. Using this
approach, three associations were detected for DBH when the
kinship matrix was included after multiple-test correction (Bon-
ferroni at 5%) (Table 2; Fig. 3). For HT, no significant associa-
tion was found after inclusion of the GRM in the model
(Table 2; Fig. S8b,d). Although traditional multiple testing
thresholds (FDR and Bonferroni) are important to control for
type I error (false positive), they may be excessively stringent for
GWAS, when several thousand markers are used and a minority
are expected to be associated with a phenotypic response. A less
stringent ad hoc threshold (�log10(P) ≥ 4) was used to declare
additional significant associations not detected before. With this
threshold, eight variants putatively associated (P ≤ 0.00008) with
DBH were found in the Joint-GWAS analysis (Fig. 3, green
dashed line). Collectively, out of these 11 SNPs associated with
DBH from Joint-GWAS results (three associations and eight

Table 2 Number of significant single nucleotide polymorphism (SNP) associations for growth traits using linear model-based association (LMA; Models 1–
3) and mixed linear model-based association (MLMA; Models 4–6) models for the four Eucalyptus breeding populations and for the joint genome-wide
association study (Joint-GWAS; all) analyses.

Population Trait No. of SNPs
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
None Q P K K +Q K + P

Pop1-IPB DBH 32 110 3805 (260) 4212 (315) 4155 (318) 0 (0) | 7 0 (0) | 7 0 (0) | 7
Pop2-ARAB 34 859 11 147 (1783) 4373 (212) 2906 (109) 0 (0) | 3 0 (0) | 4 0 (0) | 2
Pop3-ARAC 30 979 17 954 (6729) 9464 (1668) 3655 (302) 0 (0) | 13 0 (0) | 6 0 (0) | 8
Pop4-CNB 28 795 12 542 (3411) 1149 (74) 1396 (34) 0 (0) | 4 0 (0) | 3 0 (0) | 2
Alla 41 320 24 635 (11 871) 18 395 (6291) 18 406 (5693) 3 (3) | 10 3 (2) | 11 2 (2) | 7
Pop1-IPB HT 32 110 2731 (119) 3201 (148) 3237 (163) 0 (0) | 7 0 (0) | 6 0 (0) | 7
Pop2-ARAB 34 859 5797 (350) 2854 (167) 2654 (145) 0 (0) | 3 0 (0) | 3 0 (0) | 3
Pop3-ARAC 30 979 13 815 (3338) 4927 (347) 2201 (80) 0 (0) | 6 0 (0) | 9 0 (0) | 9
Pop4-CNB 28 795 8303 (959) 1104 (242) 3263 (472) 27 (0) | 40 97 (0) | 78 12 (0) | 45
Alla 41 320 17 383 (4385) 13 560 (2791) 12 259 (2606) 0 (0) | 3 0 (0) | 4 0 (0) | 1

Also reported the number of SNPs putatively associated with growth traits using MLMA models (Models 4–6). Number of significant associations using
false discovery rate (FDR) of 5%. Numbers between parenthesis correspond to significant association using Bonferroni correction with an experimental
type I error rate of a = 0.05. Numbers after ‘|’ are the number of SNPs putatively associated using an ad hoc threshold of �log10(P) ≥ 4.
Model 1 (None), LMA without any correction for population stratification and relatedness; Model 2 (Q), LMA withQ-matrix from STRUCTURE; Model 3 (P),
LMA with significant principal components (PCs); Model 4 (K), MLMA with EMMAX kinship matrix (GRM); Model 5 (K +Q), MLMA with GRM andQ-
matrix; Model 6 (K + P), MLMA with GRM and significant PCs.
DBH, diameter at breast height; HT, total height.
aCombined dataset generated by merging the genotypic data of all four populations.
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putative associations) six are located in genes, including the three
most significant ones. Six of the 11 associations are common
SNPs (MAF = 0.058–0.422) and the remaining five SNPs are
rare (MAF = 0.001–0.015). When the ad hoc threshold was con-
sidered for HT, four associations were detected, in which the
most significant SNP (P = 0.000006) is also the most significant

one detected for DBH (EuBR07s38098526, see later Table 5)
and located on chromosome 7. The third SNP (EuBR08
s48262720) associated with DBH (FDR at 5%) was also
detected for HT on chromosome 8. These results are not unex-
pected given the high phenotypic correlation between these two
growth traits (r = 0.82). For the four SNPs putatively associated

Fig. 2 Manhattan plots for growth traits
(DBH, diameter at breast height; HT, total
height) using single-single nucleotide
polymorphism (SNP) genome-wide
association study (GWAS, black points,
Model 5: K +Q) and regional heritability
mapping (RHM, grey points), corrected for
population structure and the kinship matrix,
for the four unrelated Eucalyptus

grandis9 E. urophylla hybrids breeding
populations. Red and blue line indicate ad
hoc thresholds adopted for the single-SNP
GWAS and RHM analyses, respectively.
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with HT, three are rare (MAF = 0.015–0.017) and one is com-
mon (MAF = 0.429).

When the ad hoc threshold was considered for the single-SNP
GWAS corrected by kinship matrix and STRUCTURE (Model 5),
putatively associated SNPs were detected for both traits in all
populations (Table 2; Fig. 2, red line) and explained on average
only 3% of the phenotypic variance (Table 3). However, signifi-
cant GWAS hits found in each population after correcting for
both family and population structure were generally not shared
across populations. To investigate whether shared associations
across populations could provide an independent way to validate
the associations found, results from Model 2 (Q-matrix from
STRUCTURE) were used to create a comparison dataset for all pop-
ulations, leading to four and six associations shared for DBH
and HT, respectively (Fig. 4). These results were comparable to
those obtained using Model 3 (significant PCs), where the num-
ber of shared associations were three for DBH and seven for HT
(data not shown). Amongst the shared associations from Model
2 and 3 for DBH, one association (EuBR10s19747657) was
common between these two methods of correction for popula-
tion stratification. For HT, four associations were found in com-
mon between Model 2 and 3 for all populations, one located on
chromosome 1 (EuBR01s5300169) and the others on chromo-
some 2 within an interval of 13 kbp (EuBR02s42875938,
EuBR02s42876352 and EuBR02s42888917). Interestingly, the
number of common associations found among all populations
increased considerably when Pop4-CNB was excluded from the
analysis and comparisons were made only among Pop1-IPB,
Pop2-ARAB and Pop3-ARAC. Under this scenario, 157 and 40

significant associations were shared for DBH and HT, respec-
tively (Fig. 4). This considerable difference in results likely
reflects the significant genetic differentiation and smaller effective
population size of Pop4-CNB when compared with other popu-
lations in the structure analysis (Fig. 1a).

Regional heritability mapping

Regional heritability mapping (RHM) was performed for each
population independently to evaluate whether additional associ-
ated variants could be detected. For Pop1-IPB, Pop2-ARAB and
Pop3-ARAC no significant regions were declared significant with
this approach using multiple testing correction. Alternatively, for
Pop4-CNB, eight regions (each with 100 SNPs) were signifi-
cantly associated with total height on chromosome 2 (Fig. 2;
Table 4) at the suggestive level (FDR at 5%), with one of those
reaching the genome-wide level (Bonferroni at 5%). This result is
consistent with the single SNP-based GWAS, which detected 78
significant common variants clustered on chromosome 2 using
the correction for multiple testing (FDR at 5%) for Model 5
(Fig. 2). The most significant window (h2r = 0.07) detected by
RHM for HT in Pop4-CNB captured 24% of the genomic heri-
tability (h2g = 0.29). Altogether, each of the eight significant

Fig. 3 Manhattan plot of the associations for diameter at breast height
(DBH) for Eucalyptus using a single-single nucleotide polymorphism (SNP)
joint genome-wide association study (Joint-GWAS: 41 320 SNPs), adjusted
for kinship matrix and population structure (Model 5: K +Q), and age of
measurements and population of origin for the combined dataset. Red line
indicates Bonferroni-corrected threshold with an experimental type I error
rate at a = 0.05, blue line indicates a false discovery rate (FDR) at 5% and
green dashed line represents the ad hoc threshold.

Table 3 Proportion of the genomic heritability explained by each marker
(h2m) using single-single nucleotide polymorphism (SNP) genome-wide
association studies (GWAS) and by each window (h2w) using Joint-GWAS
gene and segment-based models.

Single-SNP
GWAS Trait

No. of
significant SNPsa

Min.b

of h2m

Max.c

of h2m

Average
of h2m

Pop1-IPB DBH 7 0.015 0.059 0.042
Pop2-ARAB 4 0.008 0.045 0.032
Pop3-ARAC 6 0.009 0.025 0.019
Pop4-CNB 3 0.001 0.044 0.021
Alld 11 0.0005 0.071 0.025
Pop1-IPB HT 6 0.016 0.048 0.039
Pop2-ARAB 3 0.023 0.031 0.026
Pop3-ARAC 9 0.003 0.093 0.041
Pop4-CNB 78 0.007 0.066 0.041
Alld 3 0.001 0.014 0.006

Joint-GWAS Trait
No. of significant
SNPs per windowa

Min.
of h2w

Max.
of h2w

Average
of h2w

Gene based DBH 3–6 0.024 0.149 0.087
Gene based HT 2–9 0.005 0.384 0.263
Segment based DBH 5 0.149 0.149 0.149
Segment based HT 2–9 0.178 0.385 0.299

Significant association obtained from results utilizing mixed linear model-
based association (MLMA; Model 5) for the four Eucalyptus breeding pop-
ulations and combined dataset (All). DBH, diameter at breast height; HT,
total height.
aNumber of significant associations declared using Bonferroni correction
with an experimental type I error rate of a = 0.05, or false discovery rate
(FDR) of 5% or using an ad hoc threshold of �log10 (P) ≥ 4.
bMinimum values.
cMaximum values.
dCombined dataset generated by merging the genotypic data of all four
populations.
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windows declared by RHM explained 5–10% of the total
genomic heritability captured by the whole-genome relationship
matrix. In addition to these eight associations, 12 more were
putatively associated considering the lower ad hoc threshold for
RHM adopted (�log10 (P) ≥ 2), where two windows are located
on chromosome 1 and the remaining 10 on chromosome 2. For
DBH in Pop4-CNB, no significant regions were detected. Still
under this lower ad hoc threshold, 12 windows in Pop1-IPB were
putatively associated with DBH on chromosome 7, with the most
significant one showing a regional heritability of 0.13, which
alone captures 25% of the total genomic heritability (h2g = 0.52).
Additionally, one association was declared significant for DBH
on Pop2-ARAB (chromosome 6) and two for Pop3-ARAC
(chromosome 6 and 9). For HT, two windows were putatively
associated for Pop1-IPB, one on chromosome 2 and one on 7
(Table 4). The associations detected by RHM explained on aver-
age 6% of the phenotypic variance, slightly superior to the single-
SNP GWAS (3%) for these complex traits.

Joint-GWAS from summary datasets

To further assess the power of combining all populations into a
single analysis, we analyzed the summary data from Joint-GWAS
into genic and segment-based SNP sets. Of the 36 349 total genes
in the E. grandis genome v.2.0 (Myburg et al., 2014), 31 770
genes were considered as gene sets in our analysis as they con-
tained SNPs targeted by the EUChip60K in their sequence or
vicinity (50 kbp). For the gene-based Joint-GWAS, nine genes
with six contiguous SNPs were significantly associated with HT
at the genome-wide level (Bonferroni at 5%) on chromosome 10,
after adjusting for kinship and population structure (Fig. 5b).

When considering only the kinship matrix, without the correc-
tion for population structure, a peak on chromosome 9 contain-
ing 15 genes was also significant. Other significant signals were
detected at the suggestive level (FDR at 5%), with one gene asso-
ciated with two close SNPs on chromosome 3 and another locus
with five SNPs on chromosome 7 (Fig. 5a). For the segment-
based Joint-GWAS (Fig. 5c,d), 4766 segments of size 100 kbp
were tested, with four of those regions being associated with HT
(Fig. 5c). The most significant region (Bonferroni at 5%) con-
tains three SNPs, located on chromosome 2 and near two genes,
that had not been detected in the previous GWAS analyses per-
formed for the trait. The second most significant region consider-
ing a genome-wide level is the same as the most significant one
detected by the gene-based approach. The remaining two associ-
ated segments were the same regions detected by the gene-based
method, showing an agreement between segment-based and
gene-based Joint-GWAS. Despite the detection of three signifi-
cant associations for DBH with single-SNPs Joint-GWAS, no
association was detected using the summary datasets for this trait
by multiple test correction. These results highlight the increased
power of set-based Joint-GWAS with significant genomic regions
explaining on average 20% of the phenotypic variance (Table 3).

Discussion

This study further advances the investigation of discrete genomic
regions controlling growth traits in forest trees. Significant associ-
ations were detected for height and diameter with the increased
power of Joint-GWAS experiments, which leveraged genome-
wide data from 3373 individuals across four Eucalyptus breeding
populations. Our study further corroborates the complex archi-
tecture of growth traits and suggests that combining data from
multiple independent populations is a viable option to increase
the sample size and increase the power to detect at least part of
the slightly larger effects segregating in breeding populations.

Detection of associations for complex traits in forest trees

Various studies attempted GWAS for growth traits in forest
trees, namely in Populus (Porth et al., 2013; Allwright et al.,
2016; Du et al., 2016; Fahrenkrog et al., 2016), Pinus
(Bartholom�e et al., 2016; Lu et al., 2017) and Eucalyptus (Cappa
et al., 2013; M€uller et al., 2017; Resende et al., 2017a). Despite
the considerably large number of individuals used in our study
for each population and for the combined dataset, our results
suggested that much larger numbers will be necessary to identify
discrete regions capturing larger fractions of the genetic variance
of complex traits as indicated by simulations (Spencer et al.,
2009; Visscher et al., 2017). Although the overall genomic heri-
tabilities estimated using all markers (0.296–0.528) accounted
for a large proportion (64–89%) of the pedigree-based heritabili-
ties, the discrete GWAS results contributed little genetic variance
given the relatively low number of associations identified for
these complex traits. Using the RHM approach, we identified 37
windows, 15 for DBH and 22 for HT (Table 4), each one
encompassing 100 SNPs likely to be containing rare and
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Fig. 4 Venn diagram of the number of significant associations identified
for growth traits using single-single nucleotide polymorphism (SNP)
genome-wide association study (GWAS) for the four unrelated Eucalyptus

grandis9 E. urophylla hybrid breeding populations. Comparison of the
number of significant associations identified for diameter at breast height
(DBH, black numbers) and total height (HT, grey numbers) by false
discovery rate (FDR) threshold at 5%, using linear model-based
association (LMA) model corrected for population structure (Model 2:Q).
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common variants. This approach was more effective than single-
SNP GWAS to capture rare variants that do not have large
enough effect to be declared significant at the genome-wide level,
as observed earlier (Nagamine et al., 2012; Riggio et al., 2013;
Resende et al., 2017a). Some genomic windows identified by
RHM individually explained 3–13% of the genomic heritability,
similar to a previous study by Resende et al. (2017a). Additional
genomic regions were identified using a Joint-GWAS approach
with a larger number of individuals (Figs 3, 5).

Accounting for population structure and family-based related-
ness in the single-SNP GWAS analysis, 356 significant SNPs
were detected for DBH and HT. These included 210 (59%)
associations within genes (184 unique genes) for all populations
independently as well as for the combined dataset (50% within
60 unique genes). The Joint-GWAS from summary data identi-
fied another 30 genes, out of which 28 were detected using gene-

based and two genes using segment-based models. We performed
functional annotation of these genes and altogether they encom-
pass different functional categories related to cell wall construc-
tion of growing tissues, cell wall cellulose biosynthetic process,
RNA/DNA-binding and ion-binding, transporter activity, tran-
scription factor activity, response to stimulus and others. Similar
results were obtained for growth traits in Populus (Du et al.,
2016), suggesting that tree growth is controlled by multiple fac-
tors affecting cell division and meristems expansion requiring reg-
ulation of complex metabolic pathways with indirect effects on
wood formation (Grattapaglia et al., 2009).

Genes underlying the most significant associations were classi-
fied using gene ontology (GO) enrichment analysis for E. grandis
terms with agriGO v2.0 (Tian et al., 2017). Significant GO
terms (FDR ≤ 5%) were identified encompassing four terms for
biological process (single-organisms process, signaling,

Table 4 Regional heritability mapping (RHM) results for windows significantly (�log10 (P) > 3.0) and putatively (�log10 (P) > 2.0) associated with growth
traits in the four Eucalyptus breeding populations.

Trait Population Chr. SNP start Position start (bp) SNP end Position end (bp) LRT h2r �Log10 (P)

DBH Pop1-IPB (626)a 7 EuBR07s31328798 31 328 798 EuBR07s32568262 32 568 262 10.76 0.13 2.98
7 EuBR07s33146968 33 146 968 EuBR07s35110610 35 110 610 10.34 0.07 2.89
7 EuBR07s32581478 32 581 478 EuBR07s33957780 33 957 780 10.19 0.07 2.85
7 EuBR07s25714206 25 714 206 EuBR07s30352510 30 352 510 10.18 0.06 2.85
7 EuBR07s31961430 31 961 430 EuBR07s33145504 33 145 504 9.53 0.07 2.69
7 EuBR07s20583725 20 583 725 EuBR07s22342031 22 342 031 8.67 0.06 2.49
7 EuBR07s22342887 22 342 887 EuBR07s25713595 25 713 595 8.53 0.06 2.46
7 EuBR07s36784209 36 784 209 EuBR07s38583112 38 583 112 8.15 0.04 2.36
7 EuBR07s21332450 21 332 450 EuBR07s24532470 24 532 470 7.93 0.05 2.31
7 EuBR07s16684296 16 684 296 EuBR07s19147010 19 147 010 7.91 0.05 2.31
7 EuBR07s28499843 28 499 843 EuBR07s31328715 31 328 715 7.38 0.06 2.18
7 EuBR07s24545298 24 545 298 EuBR07s28499722 28 499 722 7.18 0.05 2.13

Pop2-ARAB (683)a 6 EuBR06s32562797 32 562 797 EuBR06s34328105 34 328 105 7.96 0.05 2.32
Pop3-ARAC (660)a 6 EuBR06s26699092 26 699 092 EuBR06s27751254 27 751 254 9.62 0.12 2.72

9 EuBR09s31933985 31 933 985 EuBR09s33975533 33 975 533 8.02 0.07 2.33
HT Pop1-IPB (626)a 2 EuBR02s16102502 16 102 502 EuBR02s18417551 18 417 551 7.03 0.04 2.10

7 EuBR07s14930135 14 930 135 EuBR07s18103200 18 103 200 6.65 0.04 2.00
Pop4-CNB (560)a 2 EuBR02s42263455 42 263 455 EuBR02s43397707 43 397 707 14.59 0.07 3.87b

2 EuBR02s23849815 23 849 815 EuBR02s25008423 25 008 423 13.16 0.10 3.54c

2 EuBR02s42780242 42 780 242 EuBR02s43864353 43 864 353 13.15 0.06 3.54c

2 EuBR02s23213141 23 213 141 EuBR02s24367225 24 367 225 12.29 0.07 3.34c

2 EuBR02s17118873 17 118 873 EuBR02s19701439 19 701 439 11.30 0.06 3.11c

2 EuBR02s39648070 39 648 070 EuBR02s42778399 42 778 399 11.01 0.06 3.04c

2 EuBR02s22594380 22 594 380 EuBR02s23832192 23 832 192 11.01 0.06 3.04c

2 EuBR02s18112848 18 112 848 EuBR02s20898091 20 898 091 10.84 0.05 3.00c

2 EuBR02s20898153 20 898 153 EuBR02s23179227 23 179 227 9.37 0.06 2.66
2 EuBR02s36468959 36 468 959 EuBR02s39639880 39 639 880 9.16 0.07 2.61
2 EuBR02s27662134 27 662 134 EuBR02s31703058 31 703 058 8.66 0.07 2.49
2 EuBR02s29793530 29 793 530 EuBR02s32366267 32 366 267 8.54 0.06 2.46
2 EuBR02s35689626 35 689 626 EuBR02s37602857 37 602 857 8.54 0.06 2.46
2 EuBR02s24391700 24 391 700 EuBR02s25950796 25 950 796 8.33 0.06 2.41
2 EuBR02s19809602 19 809 602 EuBR02s22590567 22 590 567 7.99 0.04 2.33
2 EuBR02s15507347 15 507 347 EuBR02s18088025 18 088 025 7.65 0.04 2.25
2 EuBR02s43397812 43 397 812 EuBR02s44360147 44 360 147 7.41 0.05 2.19
2 EuBR02s31704444 31 704 444 EuBR02s33368834 33 368 834 7.13 0.05 2.12
1 EuBR01s24700230 24 700 230 EuBR01s26451182 26 451 182 6.89 0.04 2.06
1 EuBR01s17433597 17 433 597 EuBR01s19071730 19 071 730 6.74 0.03 2.03

DBH, diameter at breast height; HT, total height; LRT, likelihood ratio test; h2r , regional heritability.
aTotal number of windows.
bBonferroni correction with an experimental type I error rate of a = 0.05.
cFalse discovery rate (FDR) of 5%.
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localization and cellular component organization or biogenesis),
four for cellular component (macromolecular complex, cell,
organelle and membrane part) and two for molecular function
(binding and transporter activity). The binding category, includ-
ing DNA, RNA, protein and ion-binding, was the most repre-
sented (56%), which can better explain the growth trait
heritability as it has more associations. This was also noted by
Boyle et al. (2017), who showed a strong linear relationship

between the sizes of the functional categories and the proportion
of heritability that they explained.

Associations for growth pinpoint genes involved in cell wall
biosynthesis

Our study focused on commonly measured growth traits that,
together with wood specific gravity, constitute the mainstay of

(a) (b)

(c) (d)

Fig. 5 Manhattan plots of the associations for total height (HT) using gene-based (31 770 genes) and segment-based (4766 windows) joint genome-wide
association study (Joint-GWAS) for the combined dataset using four unrelated Eucalyptus grandis9 E. urophylla hybrid breeding populations. (a) Gene-
based Joint-GWAS adjusted for kinship matrix, age of measurements and population of origin. (b) Gene-based Joint-GWAS adjusted for all covariates
mentioned before with the inclusion of population structure. (c) Segment-based Joint-GWAS adjusted for kinship matrix, age of measurements and
population of origin. (d) Segment-based Joint-GWAS adjusted for all other covariates with the inclusion of population structure. Red line indicates
Bonferroni-corrected threshold with an experimental type I error rate at a = 0.05, blue line indicates a false discovery rate (FDR) at 5% and green dashed
line represents an ad hoc threshold of �log10 (P) = 4.0.
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tree breeding and productivity in Eucalyptus and forest trees in
general. Interestingly, some SNP associations map to genes were
related to cell wall biosynthesis. In our Joint-GWAS analysis, the
most significant SNP (Bonferroni at 5%) associated with DBH
and HT (EuBR07s38098526, MAF = 0.015) was detected in the
exon of the gene model (Eucgr.G02075/AT1G14720) encoding
for xyloglucan endotransglucosylase/hydrolase 28 (XTH28)
(Table 5). Another xyloglucan endotransglucosylase/hydrolase 5
(XTH5, Eucgr.G0190/AT5G13870), also located on chromo-
some 7, was detected using gene-based Joint-GWAS from sum-
mary data in HT with eight SNPs in the segment (Table 5), in
which the top putatively associated SNP (lowest P-value) is a
common variant (EuBR07s34941110, MAF = 0.123). Xyloglu-
can endotransglycosylase/hydrolase (XTH) enzymes act to
remodel cell wall hemicelluloses, with various functions includ-
ing wall strengthening and xylem formation (Bourquin, 2002;
Cosgrove, 2005). Both XTH28 and XTH5 cleave and re-ligate
xyloglucan polymers, a hemicellulose that is an essential con-
stituent of the primary cell wall. Therefore, they participate in
the cell wall development of growing tissues (Van Sandt et al.,
2007), with evident effect on root growth and cell wall extension
(Maris et al., 2009).

The Joint-GWAS approach also detected a common SNP
(EuBR06s6100971, MAF = 0.423) that was putatively associated
with DBH located on chromosome 6 in gene model
Eucgr.F00486 (AT5G42100) and that encodes for a glucan
endo-1,3-b-glucosidase (Table 5). This enzyme is a type of glyco-
syl hydrolase (GHs) whose function is the hydrolysis of any
O-glycosyl bond (Lopez-Casado et al., 2008). The hydrolysis of
(1,3)-b-D-glucosidic linkages in (1,3)-b-D-glucans is important
for carbohydrate metabolic process and cell wall organization

(Lopez-Casado et al., 2008). A GWAS in Populus (Du et al.,
2016) also detected an association in the glucan endo-1,3-b-
glucosidase gene (Potri.018G000900). We also identified a sig-
nificant SNP (EuBR04s17486529, FDR at 5%) in three of the
four populations (Fig. 4) associated with DBH in the
Eucgr.D00955 gene located on chromosome 4. This gene
(Eucgr.D00955/AT4G17180) encodes an O-glycosyl hydrolases
family 17 protein, another type of GHs. An additional significant
SNP (EuBR05s70210869, FDR at 5%) shared between three
populations was associated with total height on chromosome 5.
This common variant in gene Eucgr.E04103 (AT1G61820),
encoding a b-glucosidase 46 (BGLU46), which is also a type of
GHs, may be involved in lignification by hydrolyzing monolignol
glucosides (Escamilla-Trevi~no et al., 2006).

The analysis of the larger number of shared associations
among three of the four populations also showed a significant
SNP (EuBR04s17531959, FDR at 5%) associated with DBH
on chromosome 4 in a galacturonosyltransferase 4 (GAUT4)
gene (Eucgr.D00963/AT5G47780). The GAUT4 is involved
in pectin and xylans biosynthesis in cell walls, with a role in
cell expansion and promoting growth (de Godoy et al., 2013;
Bryan et al., 2016). Pectin is a structural heteropolysaccharide
contained in the primary cell walls (Voragen et al., 2009) and
xylan is a type of hemicellulose (Studer et al., 2011). Another
common variant (EuBR10s8284185, FDR at 5%) identified in
three populations was associated with DBH located on chro-
mosome 10 in a xanthine dehydrogenase 1 (XDH1) gene
(Eucgr.J00782/AT4G34890). The XDH1 is a key enzyme
involved in purine catabolism and plays an important role dur-
ing plant growth and development, senescence and response to
stresses (Hesberg et al., 2004; Yesbergenova et al., 2005;

Table 5 Main associations detected in Eucalyptus breeding populations for growth traits (DBH, diameter at breast height; HT, total height) pinpointing
genes involved in cell wall biosynthesis.

GWAS data Trait SNP Chr. Position (bp) �Log10 (P) REF/ALT Eg – Gene At – Gene Annotation

Joint-GWAS Single-SNP DBH EuBR07s38098526 7 38 098 526 8.21a G/A Eucgr.G02075 AT1G14720 Xyloglucan
endotransglucosylase/
hydrolase 28

Joint-GWAS Single-SNP DBH EuBR08s48262720 8 48 262 720 5.84b A/G Eucgr.H03281 AT3G06720 Armadillo/beta-catenin
-like repeats-containing
protein-related

Joint-GWAS Single-SNP DBH EuBR06s6100971 6 6100 971 4.10c A/G Eucgr.F00486 AT5G42100 Glucan 1,
3-beta-glucosidase A

Pop1-IPB/Pop2-ARAB/
Pop3-ARAC

DBH EuBR04s17486529 4 17 486 529 –b C/T Eucgr.D00955 AT4G17180 O-Glycosyl hydrolases
family 17 protein

Pop1-IPB/Pop2-ARAB/
Pop3-ARAC

DBH EuBR04s17531959 4 17 531 959 –b G/A Eucgr.D00963 AT5G47780 Galacturonosyltransferase
4

Pop1-IPB/Pop2-ARAB/
Pop3-ARAC

DBH EuBR10s8284185 10 8284 185 –b G/A Eucgr.J00782 AT4G34890 Xanthine dehydrogenase
1

Joint-GWAS Gene-based HT EuBR07s34941110 7 34 941 110 4.36c G/A Eucgr.G01909 AT5G13870 Xyloglucan
endotransglucosylase/
hydrolase 5

Pop1-IPB/Pop2-ARAB/
Pop3-ARAC

HT EuBR05s70210869 5 70 210 869 –b C/T Eucgr.E04103 AT1G61820 Beta glucosidase 46

There are more than one value (–).
aBonferroni correction with an experimental type I error rate of a = 0.05.
bFalse discovery rate (FDR) of 5%.
cAd hoc threshold of �log10 (P) ≥ 4.
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Nakagawa et al., 2007). The simultaneous silencing of XDH1
and XDH2 showed reduced growth in Arabidopsis (Nakagawa
et al., 2007).

The significant association with DBH at 5% FDR threshold
on chromosome 8 in the Joint-GWAS analysis (Fig. 3, blue line)
is located inside gene model Eucgr.H03281, a gene encoding for
an armadillo/beta-catenin-like repeats-containing protein-related,
whose function is involved in the cellulose biosynthetic process.
In a recent GWAS study in another Eucalyptus species, E. pellita,
we also found a significant association for growth inside
Eucgr.F03806, a gene that codes for another armadillo/beta-
catenin-like repeat positioned on a different chromosome (6)
(M€uller et al., 2017). This gene in Arabidopsis thaliana
(AT1G77460) transcribes the protein cellulose synthase interac-
tive 3 (CSI3), which regulates primary cell wall biosynthesis and
cellulose microfibrils organization (Lei et al., 2013).

Concluding remarks

In this study, we carried out a GWAS for growth traits by gather-
ing a considerably larger association population than previous
forest tree studies, with 3373 individuals across four breeding pop-
ulations of Eucalyptus in an attempt to evaluate the impact of a
large sample size on the ability to detect discrete associations. We
tested several GWAS models with variable levels of correction for
population stratification and relatedness and different segment-
based approaches in an effort to capture a wider frequency spec-
trum of variants. Although the different associated genes identified
in our study will require further validation, consistency with
GWAS results from other studies provides valuable preliminary
leads for further investigation. It is noteworthy that it was claimed
that the first approved Eucalyptus transgenic (Nature News, 2015)
produced between 4 and 20% more wood than the wild type
(Ledford, 2014). This transgenic was engineered to contain an
endo-1,4-b-glucanase (CEL1) from Arabidopsis that affects plant
growth (Shani et al., 2006), this gene is related to the cellulose syn-
thase-like C family that encodes a b-1,4 glucan synthase (Cocuron
et al., 2007). The identification of several genes involved in cell
wall biosynthesis in our study may therefore provide new targets
for transgenic and genome editing approaches.

Overall, our results do not differ substantially from those
reported in GWAS for growth traits in different forest trees to
date. However, the access to different large populations allowed
us to provide evidence of validation of marker-trait associations,
a cornerstone for the scientific credibility of GWAS results. We
found that some SNPs or genes were associated with growth
across independent populations, to the best of our knowledge,
the first such results in forest trees. Our results also further cor-
roborate the evidence that growth is controlled by many variants
of relatively small effect, such that the infinitesimal model fits the
data well. While slightly more encouraging GWAS results have
been reported for simpler wood properties and phenology traits,
the large proportions of genomic heritability that we captured by
whole-genome data for growth point to the fact that genomic
prediction approaches could be considerably more efficient for
tree breeding, at least for the time being (Grattapaglia, 2017).

However, as more tree breeding programs start to adopt genomic
data to predict phenotypes using a publicly shared SNP platform
like the EUChip60K used in this work, the much larger collective
datasets should provide increased power to dissect individual
associations not only to accelerate breeding, but also to advance
the mechanistic understanding of the complex relationships
between sequence variation and phenotypes.
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