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Gene co-expression networks associated
with carcass traits reveal new pathways for
muscle and fat deposition in Nelore cattle
Bárbara Silva-Vignato1* , Luiz L. Coutinho1, Mirele D. Poleti2, Aline S. M. Cesar1, Cristina T. Moncau3,
Luciana C. A. Regitano4 and Júlio C. C. Balieiro5

Abstract

Background: Positively correlated with carcass weight and animal growth, the ribeye area (REA) and the backfat
thickness (BFT) are economic important carcass traits, which impact directly on producer’s payment. The selection
of these traits has not been satisfactory since they are expressed later in the animal’s life and multigene regulated.
So, next-generation technologies have been applied in this area to improve animal’s selection and better understand
the molecular mechanisms involved in the development of these traits. Correlation network analysis, performed by
tools like WGCNA (Weighted Correlation Network Analysis), has been used to explore gene-gene interactions and
gene-phenotype correlations. Thus, this study aimed to identify putative candidate genes and metabolic pathways that
regulate REA and BFT by constructing a gene co-expression network using WGCNA and RNA sequencing data, to
better understand genetic and molecular variations behind these complex traits in Nelore cattle.

Results: The gene co-expression network analysis, using WGCNA, were built using RNA-sequencing data normalized
by transcript per million (TPM) from 43 Nelore steers. Forty-six gene clusters were constructed, between them, three
were positively correlated (p-value< 0.1) to the BFT (Green Yellow, Ivory, and Light Yellow modules) and, one cluster
was negatively correlated (p-value< 0.1) with REA (Salmon module). The enrichment analysis performed by DAVID and
WebGestalt (FDR 5%) identified eight Gene Ontology (GO) terms and three KEGG pathways in the Green Yellow
module, mostly associated with immune response and inflammatory mechanisms. The enrichment of the Salmon
module demonstrated 19 GO terms and 21 KEGG pathways, related to muscle energy metabolism, lipid metabolism,
muscle degradation, and oxidative stress diseases. The Ivory and Light yellow modules have not shown significant
results in the enrichment analysis.

Conclusion: With this study, we verified that inflammation and immune response pathways modulate the BFT trait.
Energy and lipid metabolism pathways, highlighting fatty acid metabolism, were the central pathways associated with
REA. Some genes, as RSAD2, EIF2AK2, ACAT1, and ACSL1 were considered as putative candidate related to these traits.
Altogether these results allow us to a better comprehension of the molecular mechanisms that lead to muscle and fat
deposition in bovine.
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Background
Heavy carcass weight is critical for meat producers since
it is used as the primary parameter for payment in the
slaughterhouses [1]. Positively correlated with carcass
weight and animal growth, the ribeye area (REA) can be
used as an indicator of muscularity, prime cuts, and the
edible mass of carcass. Inversely proportional to REA,
the backfat thickness (BFT) is related to the percentage
of fat in the carcass. BFT is essential to protect the
carcass during cooling, avoiding problems such as cold
shortening, drip loss and dark cutting [2–4].
Despite the economic relevance for producers and to

affect the final weight of the animals, the selection of
these traits has not been satisfactory, since their max-
imum potential is expressed later in animal’s life [1].
Therefore, a better understanding of the biological pro-
cesses that regulate these characteristics could help to
elucidate the mechanisms of genetic inheritance, and
consequently will increase animal selection accuracy. In
this context, next-generation sequencing technologies
have revolutionized genome and transcriptome analysis
of complex organisms, generating large datasets and
allowing the identification of new genes, metabolic path-
ways and biological processes that influence the pheno-
type [5–7]. Moreover, novel approaches have been
developed to more reliably analyze large and multivariate
datasets by associating them with traits of interest. Cor-
relation network analysis has been widely used to
analyze large datasets as a promissory method from sys-
tems biology, able to represent the complexity of a cellu-
lar transcription network [8–10].
The Weighted Correlation Network Analysis (WGCNA)

is a system biology method that is used to explore the cor-
relation patterns among genes in transcriptomic studies,
providing a unique insight into the structure and behavior
of molecular interactions [8, 9]. The WGCNA describes
and permits the visualization of networks derived from
large datasets. WGCNA can be used to explore the struc-
ture of modules within a co-expression network, to meas-
ure the relationship between genes and modules (module
membership), explore the relationship between modules,
or even to rank genes or modules associated to the studied
traits [8].
Several works utilized gene co-expression networks

analysis, in particular, the WGCNA tool, to evaluate
complex traits in different species such as mice [11],
humans [12], pork [13, 14], lamb [10] and, cattle [15–
18] demonstrating the correlation between genes and
phenotype successfully.
Kong et al. [16] utilizing the WGCNA tool to under-

stand the molecular differences between efficient and in-
efficient cattle concerning residual feed intake in a
Hereford x Angus population, identified a significant
module with 764 genes negatively correlated with the

trait of interest. With the results, the authors could infer
that efficient animals probably have an increased energy
production and better absorption of food nutrients com-
pared to inefficient ones. Sabino et al. [10] used the
WGCNA to do a nutrigenomics investigation in lambs,
considering diet and sex differences in muscle and liver
tissue, revealing a sex-dependent dietary effect on the
transcriptome of the studied animals. In previous work
from our group, Oliveira et al. [18] employed WGCNA
tool to do an integrative miRNA-mRNA (microRNA –
messenger RNA) study associated with intramuscular fat
deposition in Nelore cattle, revealing potential regulatory
mechanisms of gene signaling networks involved in fat
deposition in bovine.
The present study aimed to gain molecular insights

into economic important carcass traits of Nelore cattle
and to identify putative candidate genes and metabolic
pathways that regulate REA and BFT, by constructing a
gene co-expression network using WGCNA and RNA
sequencing data. Modules correlated with REA and BFT
were identified, and the genes within each significant
module were extracted to perform functional enrich-
ment analysis, permitting us to better understand gene
interaction, biological processes, and the metabolic path-
ways behind these complex traits.

Results
For this study, we used RNA-sequencing normalized
data by transcript per million (TPM) from 14,529 genes
of 43 animals with contrasting genomic estimated breed-
ing values (GEBV). Table 1 shows animal identification,
phenotypic values, GEBVs, number of raw reads,
mapped reads and percentage of mapped reads. The her-
itability values for REA and BFT were h2 = 0.27 and h2 =
0.21, respectively [19]. Additional file 1: Table S1 shows
the contrasting GEBV groups for both traits, demon-
strating that mean values in the low group were statisti-
cally different (p-value< 0.001) from the high group for
REA and BFT. For REA, mean GEBV were − 2.94 in the
low group (standard deviation, SD = 0.59) and, 3.14 in
the high group (SD = 0.56); for BFT, mean GEBV were −
0.91 (SD = 0.12) and 1.24 (SD = 0.28) in the low and high
group, respectively. The correlation analysis between the
phenotypic (REA mean and SD values = 59.75 ± 9.50
cm2; BFT mean and SD values = 7.00 ± 3.41 mm) and
GEBV values both for REA and BFT showed a strong
correlation, with r = 0.79 and r = 0.84 for REA and BFT
respectively, justifying our selection using genomic
values. On the other hand, the correlation analysis be-
tween the GEBV of REA x BFT demonstrated that these
traits were independent of one another in this particular
study, with r = − 0.06.
The gene co-expression network analysis, performed

using WGCNA program, resulted in the identification of
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Table 1 Phenotypic and genomic values, number of raw-reads, number and percentage of mapped reads from the selected 43
Nelore cattle
Animal REA (cm2)a GEBV REAb BFT (mm)c GEBV BFTd Raw readse Mapped readsf %g

1 56.25 − 2.13 15.00 1.62 24.40 10.30 42.21

2 73.25 3.22 4.00 −0.79 11.81 5.49 46.49

3 67.50 1.39 7.00 −0.91 24.89 16.07 64.56

4 79.00 0.85 7.00 −1.17 11.75 5.86 49.87

5 69.25 0.5 7.00 −0.83 16.43 7.11 43.27

6 58.75 1.51 15.00 1.63 20.40 13.57 66.52

7 58.00 −0.98 7.00 −0.84 19.98 8.27 41.39

8 80.25 2.69 10.00 0.77 23.35 12.62 54.05

9 54.00 −2.76 9.00 −0.02 25.56 16.87 66.00

10 62.50 2.09 14.00 1.63 12.36 5.57 45.06

11 75.25 1.65 6.00 −0.85 18.01 11.88 65.96

12 48.50 −3.54 9.00 −0.06 17.83 8.13 45.60

13 72.00 4.71 6.00 0.07 9.75 6.68 68.51

14 68.75 2.79 10.00 0.93 23.87 17.84 74.74

15 65.50 −0.44 6.00 −0.79 14.20 12.77 89.93

16 73.25 2.92 15.00 1.19 25.60 12.77 49.88

17 75.00 1.36 12.00 1.00 13.85 9.24 66.71

18 58.75 −2.24 9.00 0.73 16.04 12.32 76.81

19 74.75 0.53 5.00 −0.79 13.76 7.09 51.53

20 59.75 −2.13 11.00 1.1 11.20 5.67 50.63

21 71.00 1.16 5.00 −0.88 16.98 11.51 67.79

22 58.75 −2.51 8.00 0.35 18.08 10.12 55.97

23 79.75 3.47 5.00 −1.06 17.10 11.42 66.78

24 62.00 0.29 4.00 −1.02 17.13 11.25 65.67

25 59.75 −0.1 11.00 0.91 19.37 9.15 47.24

26 55.75 −0.86 11.00 1.48 16.22 10.58 65.23

27 52.00 −2.92 8.00 0.49 12.47 5.38 43.14

28 56.75 1.92 9.00 1.37 12.30 6.48 52.68

29 54.00 −2.19 4.00 0.05 15.57 6.67 42.84

30 56.25 −2.67 4.00 −0.5 14.52 6.84 47.11

31 58.00 −1.4 2.50 −1.03 8.79 4.08 46.42

32 66.20 3.22 4.00 −0.37 21.97 10.13 46.11

33 47.75 −2.4 2.00 −0.75 20.65 9.49 45.96

34 50.75 −3.88 6.00 −0.1 18.21 9.35 51.35

35 42.50 −3.45 6.00 0.31 13.29 6.20 46.65

36 51.25 −2.79 5.00 0.09 19.93 9.59 48.12

37 64.50 2.85 4.00 −0.01 17.13 7.75 45.24

38 63.00 2.53 9.00 0.68 20.53 6.40 31.17

39 52.50 −3.95 8.00 0.6 11.31 5.26 46.51

40 54.25 −1.01 12.00 0.93 23.86 11.27 47.23

41 66.75 3.26 3.50 −0.58 25.92 12.83 49.50

42 65.50 2.9 7.50 0.32 13.94 6.41 45.98

43 47.50 −1.67 10.00 1.04 25.05 12.76 50.94

Mean 59.75 0.29 7.00 0.07 17.13 9.35 53.85

SDh 9.50 2.44 3.41 0.87
aRibeye area; bgenomic estimated breeding values for REA; cBackfat thickness; dgenomic estimated breeding values for BFT; emillions of raw reads; fmillions of
mapped reads; gpercentage of paired-end mapped reads; hStandard Deviation
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46 module eigengenes (ME) (Fig. 1). Figure 2 illustrates
the hierarchical clustering tree (dendrogram) of all genes
and modules colors and, in the supplementary material,
there is a heatmap plot of the gene network (Add-
itional file 2: Figure S1). Among the 46 identified ME,
the Ivory, Light Yellow, Green Yellow, and Salmon mod-
ules showed a significant module-trait association
(p-value< 0.1) with at least one of the studied pheno-
types, demonstrating positive correlations of r = 0.3 with
BFT (Ivory, Light Yellow and Green Yellow) and, a nega-
tive correlation of r = − 0.3 with REA (Salmon) (Fig. 1).
The entire lists of genes in each of these modules were
further analyzed using DAVID (Database for Annotation,

Visualization and Integrated Discovery) version 6.8 and,
WebGestalt 2017 (WEB-based GEne SeT AnaLysis
Toolkit).
The Green Yellow module, positively correlated to

BFT (p-value< 0.1), presented 146 co-expressed genes
assigned for the enrichment analysis. Eight Gene Ontol-
ogy (GO) terms divided into four Biological Processes
(BP), four Molecular Functions (MF), and two KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways
were identified in the analysis performed using DAVID
(FDR 5%) (Fig. 3, Additional file 3: Table S2).
The two KEGG pathways found were Influenza A

(bta05164) and Herpes simplex infection (bta05168). The
biological processes were defense response to virus
(GO:0051607), innate immune response (GO:0045087),
negative regulation of viral genome replication (GO:004
5071) and, ISG15-protein conjugation (GO:0032020). The
MF were double-stranded RNA binding (GO:0003725),
ubiquitin-protein transferase activity (GO:0004842), NAD+
ADP-ribosyltransferase activity (GO:0003950) and, GTPase
activity (GO:0003924). Most of them related to inflamma-
tion mechanisms and the immune system.
The functional enrichment analysis by WebGestalt re-

vealed three KEGG pathways (Table 2), the different
pathway identified in this analysis was the NOD-like re-
ceptor signaling pathway (bta04621), also related to im-
mune response.
The Salmon module, negatively correlated with REA

(p-value< 0.1), was constituted by 136 genes. Figure 4
and Additional file 4: Table S3 demonstrates the results
of the functional enrichment analysis performed by DA-
VID (FDR 5%), we found five BP, eleven Cellular Com-
ponents (CC) and, three MF terms.
The biological processes were mostly related to energy

metabolism, like ATP synthesis coupled proton transport
(GO:0015986), tricarboxylic acid cycle (GO:0006099) and,
fatty acid beta-oxidation (GO:0006635). From the eleven
CC identified, seven were mitochondrial constituents,
such as mitochondrial inner membrane (GO:0005743),
mitochondrial respiratory chain complex I (GO:0005747),
mitochondrial matrix (GO:0005759) and, mitochondrial
proton-transporting ATP synthase complex (GO:0005753).
The MF were proton-transporting ATP synthase activity
(GO:0046933), NADH dehydrogenase (ubiquinone) activity
(GO:0008137) and, electron carrier activity (GO:0009055),
also associated to the muscle energy metabolism.
Seventeen KEGG pathways were identified by DAVID

(Fig. 4, Additional file 4: Table S3) contrasting with 21
showed in WebGestalt enrichment analysis (FDR 5%,
Additional file 5: Table S4). All 17 pathways found by
DAVID also appeared in WebGestalt analysis. The four
different KEGG pathways identified by the second pro-
gram (Table 3) were Arginine biosynthesis (bta00220),
Phenylalanine, tyrosine and tryptophan biosynthesis

Fig. 1 Module-trait associations between the module eigengenes
(ME) and the studied traits, ribeye area (REA) and backfat thickness
(BFT). Each row corresponds to a module eigengene, column to a
trait. Each cell contains the Pearson’s correlation coefficients
(numbers outside parentheses) and, the p-values of the correlation
(numbers within parentheses). The graphic is color-coded by
correlation according to the color legend, red represents a positive
correlation and blue represents a negative one
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(bta00400), Butanoate metabolism (bta00650) and,
Lysine degradation (bta00310). Among the common
pathways, we can highlight Fatty acid metabolism
(bta01212), Oxidative phosphorylation (bta00190) and
Citrate cycle (TCA cycle) (bta00020) associated to the
muscle energy metabolism; and PPAR signaling pathway
(bta03320), associated to the muscle lipid metabolism.
And some pathways related to muscle degradation and
oxidative stress diseases, such as Parkinson’s disease
(bta05012) and Alzheimer’s disease (bta05010).
At last, the Ivory and Light Yellow modules, positively

correlated to the BFT (p-value< 0.1), presented 17
co-expressed genes and, 87 co-expressed genes respect-
ively (Additional files 6 and 7: Tables S5 and S6, respect-
ively). The genes within these modules were not
significantly enriched by DAVID (FDR 5%) nor by Web-
Gestalt (FDR 5%).

Discussion
The commercial value of the bovine carcass is deter-
mined by the adequate development of muscle and
adipose tissue. Therefore, an increase in muscle and
fat masses in growing cattle is an important issue for
farmers and beef industry. Studies involving Bos indi-
cus animals have shown a lower propensity for sub-
cutaneous fat deposition and Longissimus muscle area
when compared to Bos taurus breeds [2, 3]. Com-
pared to other Nelore studies, our phenotypic values
for REA (mean value = 59.75 cm2) can be considered
on the average, taking into account that studies in
Nelore cattle show amounts varying from 40 to 100
cm2 [1, 2, 20, 21]. On the other hand, the BFT
phenotypic values (mean value = 7.00 mm) were higher
than that found in the literature for Nelore, with
mean values ranging from 1.93 to 4.84 mm and, even

higher than presented in some Bos indicus x Bos
taurus crossbreed studies [1, 3, 20–22].
The variation in ribeye area and backfat thickness in

Nelore cattle is harmful both for producers and the beef
industry since these traits influence carcass yield and
consequently, producer’s payment [3]. It’s well known
that both environment and genetics contribute to the
phenotypic variations within a population or in the same
breed. So, to better understand the genetic and molecu-
lar influences behind these economically important
traits, our goal was to construct co-expressed gene net-
works and identify putative candidate genes and meta-
bolic pathways that regulate these traits, using the
WGCNA tool and RNA sequencing data.
Forty-six gene clusters were constructed, between

them, three were positively correlated (p-value< 0.1) to
the BFT (Green Yellow, Ivory, and Light Yellow mod-
ules) and, one cluster was negatively correlated
(p-value< 0.1) with REA (Salmon module). From the
three positive correlated modules assigned to BFT, just
the genes within the Green Yellow were significantly
(FDR 5%) enriched by DAVID and WebGestalt.
The functional enrichment analysis for the co-

expressed genes from the Green Yellow module
demonstrated that they are mainly involved in in-
flammatory mechanisms and immune response. In
previous work, Oliveira et al. [18], studying intra-
muscular fat deposition in this same Nelore cattle
population also found co-expressed gene modules
enriched for inflammatory response and immune sys-
tem GO terms. Tao et al. [23] studying the muscle
and adipose transcriptomic profile of Indigenous x
Western Chinese pig breeds associated with growth
performance and quality carcass traits – intramuscu-
lar fat, marbling, and loin muscle area –, identified
genes related to immune response and inflammation.

Fig. 2 Cluster dendrogram of all genes from the selected Nelore steers. Cluster dendrogram of all genes, with dissimilarity based on topological
overlap. The different colors in the bottom represent gene modules
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These authors identified highly expressed and
up-regulated genes in the muscle tissue of Chinese
Indigenous breeds (higher BFT content) enriched for
immune response, mitochondria, Herpes simplex in-
fection, Parkinson’s disease, and apoptosis GO terms,
corroborating our findings.
The backfat, not only, is important in the

industrialization process acting as a thermal insulator
during carcass cooling but is an indispensable source of
energy in the animal’s body, carrying fat-soluble vitamins
and essential fatty acids [2, 3, 24, 25]. This trait also is
representative of the total body fat in the carcass. Ac-
cording to Schröder and Staufenbiel [26], an increase of
just 1 mm in the BFT reflects in approximately 5 kg of
the total body fat content in bovine.
The increase in total body fat is defined by an adipose

tissue expansion together with adipocyte hypertrophy
[27]. The fat deposition is a consequence of the balance
between energy intake and expenditure. The excess of
nutrients and energy can lead to an increase in fat accu-
mulation – also called obesity in human and mouse
studies – and, consequentially activate inflammatory and
stress responses. So, this inflammatory process created
by the increase in fat can disrupt systemic metabolic
homeostasis and inhibit insulin receptor signaling, in-
volving immune cells and immune response pathways.
Although the adipose tissue is the primary source of in-
flammation induced by excess fat accumulation, it is suf-
ficient to activate inflammatory signaling pathways and
increase the amount of pro-inflammatory immune cells
in other tissues, like skeletal muscle, liver, pancreas, and
brain [28–32]. The molecular mechanisms behind fat
deposition in bovine are still unclear, so studying the

lipid metabolism from another mammalian species can
clarify our knowledge about the differences in backfat in
this cattle population.
In our preview study, with the same Nelore population

[64], we identified biological processes related to the im-
mune response in differentially expressed genes assigned
to the BFT trait, similarly to the results found herein.
Interestingly, the RSAD2 gene (Radical domain of
S-adenosyl methionine containing 2) was down-regu-
lated in the group with lower GEBV values for BFT in
our previous study and, herein it was identified in Green
Yellow module, which was positively correlated to BFT
(p-value< 0.1).
RSAD2 is an interferon-regulated gene associated with

innate immune response during viral infections [33, 34].
Additionally, this gene participates in lipid biosynthesis
and the modulation of lipid droplet contents [35, 36].
Dogan et al. [36], working with obese-induced mouse
detected higher expression of RSAD2 in animals with
lower fat amounts, showing that this gene controls lipid
droplets formation, but it is the RSAD2 impairment that
drives fat accumulation. These authors further associated
this gene with endoplasmic reticulum (ER) stress and
the activation of inflammatory mechanisms in obese ani-
mals. According to Warfel et al. [31] and Ramos-Lopez
et al. [37], one of the main contributors to the activation
of inflammatory pathways and immune response during
obesity is the metabolic stress of organelles, such as ER
and mitochondria.
Like RSAD2, the EIF2AK2 (Eukaryotic translation initi-

ation factor 2 alpha kinase 2; Alias PRKR, PKR) is a key
inducer of inflammation, responsive to interferons (IFN)
and, associated with ER stress and fat accumulation [37,

Fig. 3 Functional enrichment analysis from the gene list of the Green Yellow module, performed by DAVID v6.8 (FDR < 0.05). Gene Ontology
terms: BP – Biological Process; MF – Molecular Function
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38]. In Green Yellow module, EIF2AK2 was associated
with inflammatory pathways, and immune response GO
terms. This gene encodes a protein called PKR, a serine/
threonine kinase, activated by double-stranded RNA, cy-
tokines, stress signals, and IFN. The PKR protein can be
activated by lipids and, participate in major inflamma-
tory signaling events, such as JNK (c-Jun N-terminal
kinase) activation during lipids exposition and ER stress

[28, 38]. Nakamura et al. [28] hypothesized that the in-
crease in PKR activity in obese states could be caused by
an excess of energy and nutrient supply, representing an
adaptive attempt to interact with synthetic pathways that
would further accumulate energy. In our study, higher
expression of the EIF2AK2 gene was positively corre-
lated with BFT, supporting the association of this gene
with fat accumulation.

Table 2 KEGG Pathways (FDR < 0.05) identified by WebGestalt 2017 from the gene list of the Green Yellow module

KEGG Pathway IDa Description N Geneb FDRc Gene names

bta05168 Herpes simplex infection 9 4.77E-04 PML, IFIT1, HLA-DMB, EIF2AK2, DDX58, IRF9, TAP1, OAS2, IFIH1

bta05164 Influenza A 8 1.17E-03 PML, HLA-DMB, EIF2AK2, DDX58, RSAD2, IRF9, OAS2, IFIH1

bta04621 NOD-like receptor signaling pathway 6 4.40E-02 CATHL5, IRF9, LOC511531, LOC512486, GBP5, OAS2
aKEGG Pathway Identification (ID); bNumber of genes; cAdjusted p-value for a false discovery rate (FDR) of 5%

Fig. 4 Functional enrichment analysis from the gene list of the Salmon module, performed by DAVID v6.8 (FDR < 0.05). Gene Ontology terms: BP
– Biological Process; CC – Cellular Component; MF – Molecular Function
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Another gene family identified in the Green Yellow
module was poly (ADP-ribose) polymerases (PARP) rep-
resented by PARP9, PARP10, PARP12, and PARP14.
PARPs activity is stimulated by excess fat, high-fat diet,
aging, oxidative stress, DNA damage and, inflammation
states. These enzymes are involved in lipid metabolism,
mostly by controlling redox balance and NAD+ homeo-
stasis in mitochondrial metabolism [39, 40]. According
to Jokinen et al. [39], obesity can be characterized by
low levels of NAD+ in the adipose tissue that can stimu-
late PARP activity. Mohamed et al. [41] examined the ef-
fect of high-fat diet in mouse skeletal muscle cultured
cells (C2C12), and they found that oversupplied obese
animals had their levels of PARP2 increased together
with reduced mitochondrial functions and NAD+ levels
in the cultured muscle cells.
The NOD-like receptor signaling pathway (bta04621),

the only one enriched by WebGestalt (Table 2), partici-
pates in the innate immune response and, can be acti-
vated by increased levels of glucose and free fatty acids,
as well as reactive oxygen species derived from the in-
flammation state during obesity [27, 42]. Yin et al. [27]
studying adipocytes metabolism from the adipose tissue
of obese x non-obese women, verified an up-regulation
of the NOD-like receptor signaling pathway in the adi-
pocytes from the obese group. So, genes and metabolic
pathways presented in the Green Yellow module, related
to immune response and inflammatory processes, have
an important paper in the lipid metabolism in mammals,
demonstrating that there is a correlation between the in-
crease in the expression of genes involved in these path-
ways and the BFT in cattle.
The other significantly enriched gene module, Salmon,

showed a negative correlation (r = − 0.3, p-value< 0.1)
with the ribeye area. REA is an important quality carcass
trait related to the amount of meat, that is used as an in-
dicator of cuts yield, the percentage of muscle, animal
growth and carcass weight [1–3, 43].
Some of some GO terms and KEGG pathways

identified here, like the fatty acid beta-oxidation
(GO:0006635), mitochondrion (GO:0005739), mito-
chondrial proton-transporting ATP synthase complex
(GO:0005753), Citrate cycle (TCA cycle) (bta00020)
and, Oxidative phosphorylation (bta00190) are part of
the complex cascade of events that occur in the

skeletal muscle for generate energy. Muscles have an
essential role in energy metabolism, the regulation of
skeletal muscle metabolism involves multiple path-
ways and different molecules committed in the uptake
and storage of energy. The glucose and fatty acid me-
tabolism are the major sources of energy in this tissue.
Their energy demand is mainly fulfilled by phospho-
creatine and ATP produced during glucose and fatty
acid oxidation [44]. In the glucose metabolism, glu-
cose delivered by blood enters the myocyte, and its
oxidation generates energy by phosphorylation. In the
fatty acid metabolism, the primary source of energy
for the muscle is the non-esterified fatty acids (NEFA)
derived from circulation and, from lipolysis of triacyl-
glycerols (TG) located mostly in the adipose tissue or,
accumulated in the muscle (intramuscular TG). Once
in the cytosol, NEFA are esterified to long-chain acyl
CoA that is destined for mitochondrial beta-oxidation
and, subsequently enter the TCA cycle generating
ATP [45, 46]. Cesar et al. [47] and Oliveira et al. [18],
studying fat-related traits in this Nelore population,
also identified energy metabolism pathways in the
skeletal muscle of the animals.
Marrades et al. [48], investigating two groups of sub-

jects (lean versus obese) high feed diet consuming,
identified ACADM gene (Medium chain acyl-CoA de-
hydrogenase) in the Fatty acid β-oxidation pathway and,
SUCLG2 (β subunit succinate-CoA ligase, GDP-forming)
in the TCA cycle pathway, down-regulated in the
subcutaneous adipose tissue of obese subjects. Likewise,
Jeong et al. [49] identified the TCA Cycle and Fatty Acid
Oxidation genes in the Longissimus muscle of Korean
bulls, following castration. Their enrichment analysis
also demonstrated CPT1B (Carnitine palmitoyltransfer-
ase IB) and Hydroxyacyl-CoA dehydrogenase (HADH)
genes assigned to Fatty oxidation pathway; and,
Succinate-CoA ligase [GDP-forming] (SUCLG), and Iso-
citrate dehydrogenase (IDH) gene families in the TCA
Cycle pathway. Also, they found some ATP (Adenosine
triphosphatase), NDUF (NADH dehydrogenase [ubi-
quinone]) and COX (Cytochrome c oxidase) genes
present in the Oxidative phosphorylation pathway, simi-
lar to our findings.
Three HADH genes appeared in Salmon module en-

richment analysis, HADH (Hydroxyacyl-CoA

Table 3 KEGG Pathways (FDR < 0.05) unique identified by WebGestalt 2017 from the gene list of the Salmon module

KEGG Pathway IDa Description N Geneb FDRc Gene names

bta00220 Arginine biosynthesis 3 9.41E-03 GOT1, GOT2, GPT2

bta00400 Phenylalanine, tyrosine and tryptophan biosynthesis 2 1.75E-02 GOT1, GOT2

bta00650 Butanoate metabolism 3 2.70E-02 HADHA, ACAT1, HADH

bta00310 Lysine degradation 4 3.51E-02 HADHA, DLST, ACAT1, HADH
aKEGG Pathway Identification (ID); bNumber of genes; cAdjusted p-value for a false discovery rate (FDR) of 5%
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dehydrogenase), HADHA (Hydroxyacyl-CoA Dehydro-
genase Trifunctional Multienzyme Complex Subunit
Alpha) and, HADHB (Hydroxyacyl-CoA Dehydrogenase
Trifunctional Multienzyme Complex Subunit Beta). To-
gether they were identified in ten KEGG pathways, in-
cluding two of the WebGestalt analysis (Table 3 and
Additional file 4: Table S3). Costa et al. [50], studying
the fatty acid profile of the Longissimus muscle of a cat-
tle population, found HADHA gene associated with sev-
eral terms related to the fatty acid metabolism, like
oxidation of lipid and, accumulation of specific fatty
acids. Furthermore, HADH enzymes are crucial in the
mitochondrial beta-oxidation, participating in the two
final steps of this process [51]. According to Zhang et al.
[45] and Xu et al. [51], an up-regulation of the mito-
chondrial beta-oxidation process leads to a lower body
fat content due to diminishing TG content. Maybe this
could explain why some fatty acid metabolism terms and
pathways appeared associated with REA, in our skeletal
muscle study.
Adjacent to the pathways and terms associated with

energy metabolism, we also found some associated
with the muscle lipid metabolism, like the PPAR sig-
naling pathway (bta03320). The PPAR pathway is re-
sponsible for the regulation of adipocyte tissue
development, adipogenic differentiation and, lipogen-
esis. The PPARs (peroxisome proliferator-activated re-
ceptors) are nuclear receptors that take part in a
number of biological processes, like skeletal muscle
lipid oxidation, inflammation, mitochondrial respir-
ation, energy homeostasis and, thermogenesis [52–54].
Several studies identified PPAR genes associated with
fat traits in cattle [18, 47, 53–55].
Huang et al. [54] analyzing the transcriptomic profile

of the subcutaneous adipose tissue from Wagyu and
Holstein cattle confirmed the importance of the PPAR
signaling pathway as a key regulator of lipid metabolism
in bovine. These authors also found acetyl-CoA
acyltransferase 1 (ACAT1) and acyl-CoA synthetase
long-chain family member 1 (ACSL1) genes up-regulated
in the BFT of Wagyu cattle. Here, the ACAT1 and
ACSL1 genes were found in a gene module negatively
associated with REA. These genes not only were verified
in the PPAR signaling pathway; ACAT1 was identified in
four GO terms and nine pathways (Additional file 4:
Table S3), two of them only by WebGestalt (Table 3) –
Butanoate metabolism (bta00650) and Lysine degrad-
ation (bta00310). The ACSL1 was found in the mito-
chondrion (GO:0005739) and, four KEGG pathways
(Additional file 4: Table S3).
ACAT1 is a fatty acid deposition gene that catalyzes

the conversion of cholesterol to cholesteryl esters [56–
58]. Yue et al. [58] selected the ACAT1 as a candidate
gene to study adipogenesis in bovine adipose-derived

mesenchymal stem cells. Like ACAT1, ACSL1 is crucial
for the lipid metabolism, contributing to fatty acid bio-
synthesis, transport, storage and degradation; and, taking
part in the mitochondrial beta-oxidation process [54,
59]. Zhao et al. [60] evaluating different tissues of
Qinchuan cattle verified that ACSL1 mRNA was highly
expressed in the skeletal muscle (Longissimus thoracis)
and subcutaneous fat, affirming that this gene may con-
tribute to the determination of fatty acid composition in
bovine skeletal muscle. Recently, Poleti et al. [61] found
ACSL1 protein as differentially abundant when studying
the intramuscular fat deposition in the LD muscle of this
Nelore population.
Another noteworthy gene verified in the PPAR path-

way is SLC27A6 (Solute Carrier Family 27 Member 6),
part of the solute carrier superfamily (SLC). The solute
carrier family 27A (SLC27A) is a group of molecules
ubiquitously expressed, involved in the lipid metabolism
by transporting fatty acid proteins [62, 63]. According to
Melo et al. [63], despite the SLC27A family is essential
for body lipid distribution, the SLC27A1 was found more
expressed in the skeletal muscle than adipose tissue, sug-
gesting that this gene has a critical role in the absorption
and storage of fatty acids by the muscle.
Beside the SLC27A1, we also identified other SLC

members in the Salmon module – SLC25A3, SLC25A4,
SLC25A11, SLC25A12 and, SLC26A9 – associated to
three cellular components and two oxidative stress dis-
eases pathways (Additional file 4: Table S3). In previous
work with this Nelore population, we have already found
SLC genes more expressed in the group with the lowest
GEBV for REA [64]. Junior et al. [1], considered
SLC38A1 and 2 as candidate genes for muscle growth
associated with REA, in a GWAS study with Nelore cat-
tle. In another way, Costa et al. [50] identified the
SLC37A4 involved in relevant lipid metabolism bio-
logical functions, such as the concentration of lipid, me-
tabolism of triacylglycerol and homeostasis of
cholesterol, when studying the bovine Longissimus
muscle. Thus, the enrichment analysis of the Salmon
module demonstrates the complex regulation of skeletal
muscle energy and lipid metabolism, helping us to
understand molecular insights occurring in the bovine
LD muscle that can influence REA.

Conclusions
With the construction of co-expressed gene modules,
we verified that inflammation and immune response
pathways and biological processes could modulate the
BFT in Nelore cattle. RSAD2, EIF2AK2, and PARP genes
could be considered as putative candidate genes for BFT
trait. For REA, we found that energy and lipid metabol-
ism, mainly the fatty acid metabolism, were the major
pathways regulating this trait in this cattle population.

Silva-Vignato et al. BMC Genomics           (2019) 20:32 Page 9 of 13



We highlight ACAT1 and ACSL1 as putative candidate
genes, associated with the energy and lipid metabolism
in the skeletal muscle. These results allow us a better
comprehension of the molecular mechanisms that are
behind these economically important traits, that lead to
muscle and fat deposition in bovine.

Methods
Animals and phenotypes
A total of 385 Nelore steers descending 34 unrelated
bulls, representing the main pedigree lineages of Brazil-
ian Nelore cattle, raised between 2009 to 2011, were
used in this study. All animals were raised in the same
nutritional and handling conditions and, finished in
feedlot. More details were provided in [19].
The animals were slaughtered at an average age of 25

months in a commercial abattoir located in Bariri (São
Paulo, Brazil) under Federal Inspection Service (SIF)
supervision and, Brazilian Ministry of Agriculture, Live-
stock and Food Supply (MAPA) regularization. As men-
tioned in our previous research [64], 5 g of the
Longissimus dorsi (LD) muscle (12th-13th ribs) was col-
lected from the right side of the carcasses at the time of
slaughter and stored in liquid nitrogen until RNA-Se-
quencing analyses. A sample of the LD muscle
(10th-13th ribs) was excised at 24 h after slaughter from
the left side of the carcasses and transported to the
Embrapa Pecuária Sudeste Laboratory (São Carlos, São
Paulo, Brazil) to measure REA and BFT. The REA was
dimensioned with a grid of points (values presented in
cm2) and, the BFT was measured with a graduated ruler
(values shown in mm). All the experimental procedures
were approved by the Institutional Animal Care and Use
Committee Guidelines from Embrapa (approval code
CEUA 01/2013).
To the co-expression network analysis, we selected 48

animals with contrasting genomic estimated breeding
values (GEBV, Additional file 1: Table S1) from the total
population of 385 animals, where 12 represents the
higher values and 12 the lowest values of REA (mean
and SD values = 3.14 ± 0.56 and − 2.94 ± 0.59) and BFT
(mean and SD values = 1.24 ± 0.28 and − 0.91 ± 0.12), re-
spectively. After that, the lists of the animals were com-
bined, and the repeated ones were removed, totaling 43
animals. The GEBV were calculated by GenSel program
[65], based in the SNP marker information, obtained by
the BovineHD 770 k BeadChip (Infinium BeadChip, Illu-
mina, CA, USA), as described in [66]. The a priori gen-
etic and residual variance values were obtained from the
Bayes C analysis where the genetic and a priori residual
variance was equal to 1 [67]. A new Bayes C analysis
was performed with the previous values for genetic and
residual variances to estimate the GEBV values for each
animal. Correlation analysis between the phenotypic

values of REA and BFT x the GEBV for these traits and,
the GEBV for REA x GEBV for BFT were performed in
the R program.

RNA-sequencing

– RNA extraction: Total RNA was extracted from
approximately 100 mg of muscle tissue (n = 43)
using Trizol reagent (Life Technologies, Carlsbad,
CA, USA), according to the manufacturer’s
instructions. The RNA integrity was verified using
Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA).
All the samples presented an RNA Integrity Number
(RIN) greater than 7.

– Library preparation: A total of 2 μg of total RNA of
each sample was used for library preparation
following the TruSeq RNA Sample Preparation kit
v2 guide (Illumina, San Diego, CA, USA) protocol.
Libraries were quantified utilizing quantitative PCR
with the KAPA Library Quantification kit (KAPA
Biosystems, Foster City, CA, USA), and libraries
mean size was estimated by the Bioanalyzer 2100.

– Sequencing, quality control and alignment:
Samples were diluted for the same concentration
and grouped in pools. The sequencing flowcell
lanes were clustered with the TruSeq PE Cluster
kit v3-cBot-HS (Illumina, San Diego, CA, USA)
and then, sequenced using HiSeq2500 ultra-high-
throughput sequencing system (Illumina, San
Diego, CA, USA) with the TruSeq SBS kit v3-HS.
A more detailed description can be found in [47].
SeqClean software (https://sourceforge.net/projects/
seqclean/files/) was employed to remove the adapters
sequences used in the library preparation step, and
low-complexity reads. For the quality control, FastQC
version 0.10.1 software (http://www.bioinformatics.-
babraham.ac.uk/projects/fastqc/) was applied. TopHat
version 2.1.0 software [68] was used to map the read
alignment against the reference genome Bos taurus
UMD3.1 (http://www.ensembl.org/Bos_taurus/Info/
Index/). Lastly, read counts for all annotated genes
were calculated adopting HTSeq software version
0.6.1 (https://htseq.readthedocs.io/en/release_0.10.0/)
[69]. Only read sequences that uniquely align to know
chromosomes were used in this study.

Co-expression network analysis
To perform the co-expression network analysis, we
used the WGCNA (Weighted Correlation Network
Analysis) package from R [8], with RNA-Sequencing
data (n = 43) with their counts normalized by transcript
per million (TPM). After the data input, a cleaning and
preprocessing step were done to remove outlier sam-
ples and genes with excessive numbers of missing

Silva-Vignato et al. BMC Genomics           (2019) 20:32 Page 10 of 13

https://sourceforge.net/projects/seqclean/files/
https://sourceforge.net/projects/seqclean/files/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ensembl.org/Bos_taurus/Info/Index/
http://www.ensembl.org/Bos_taurus/Info/Index/
https://htseq.readthedocs.io/en/release_0.10.0/


entries. So, from a list of 15,631 genes inputted, 14,529
ones were used to construct gene networks with the
“blockwiseModules” function.
First, a matrix of similarity was constructed by cal-

culating Pearson correlations, to measure the similar-
ity between the gene expression profiles of all the
samples. Then, the similarity matrix was transformed
into an adjacency matrix (A) raised to a β exponent
(soft threshold) based on the free-scale topology cri-
terion. In this study, the β parameter was equal to 6,
and the free-scale topology was R2 = 0.80. The topo-
logical overlap matrix (TOM) was used to define mod-
ules based on dissimilarity (1-TOM). The minimum
and maximum module size (genes per module) were
five and 12,000, respectively. Modules were merged
based on the dissimilarity between their eigengenes,
which is the first principal component of each module
and, represents the gene expression profile within the
module [8]. For modules grouping, was used a thresh-
old of 0.25 corresponding to a correlation of 0.75. Fi-
nally, for each gene module was assigned a color,
genes not assembled to any modules were grouped in
the Grey module.
Module-trait associations were estimated using the

correlation between the module eigengene (ME) and the
GEBV values of REA and BFT, allowing the identifica-
tion of modules highly correlated with the interest traits.
Genes of modules with significant module-trait associa-
tions (p-value< 0.1), for at least one trait, were assigned
for functional enrichment analysis.

Functional enrichment analysis
An Overrepresentation Enrichment Analysis (ORA)
was performed by DAVID (Database for Annotation,
Visualization and Integrated Discovery) version 6.8
[70]; and, WebGestalt 2017 (WEB-based GEne SeT
AnaLysis Toolkit) [71]. DAVID software revealed all
Gene Ontology (GO) terms (BP, CC, and MF) and
KEGG pathways of the co-expressed genes with a
False Discovery Rate (FDR) of 5%. WebGestalt was
used to find additional relevant KEGG pathways
(FDR 5%) that may not appear in DAVID analysis, to
better understand the biological mechanisms in-
volved in each trait studied. The Bos taurus genome
was used as background for both analyses.

Additional files

Additional file 1: Table S1. Test of means (t-test) of backfat thickness
(BFT) and ribeye area (REA) between groups with High (H) and Low (L)
genomic estimated breeding values (GEBV) for REA and BFT in the
Longissimus dorsi muscle of Nelore steers. (XLS 35 kb)

Additional file 2: Figure S1. Heatmap plot of the gene network using
a subset of 400 genes. The heatmap plot depicts the Topological Overlap

Matrix (TOM) among a subset of 400 genes from the analysis. Each row
and column represents a single gene. The light colors represent the low
overlap between modules, progressively darker red color represents
higher overlap. Darker color blocks along the diagonal represent gene
modules. The gene dendrogram and module assignment are shown
above and along the left side of the graph. (PNG 107 kb)

Additional file 3: Table S2. Functional enrichment analysis from the
gene list of the Green Yellow module, performed by DAVID v6.8 (FDR < 0.05).
The table contains the Gene Ontology category, identification and description,
p-value adjusted for a false discovery rate of 5%, nominal p-value, number of
genes and gene names for each category. (XLS 30 kb)

Additional file 4: Table S3. Functional enrichment analysis from the
gene list of the Salmon module, performed by DAVID v6.8 (FDR < 0.05).
The table contains the Gene Ontology category, identification and
description, p-value adjusted for a false discovery rate of 5%, nominal
p-value, number of genes and gene names for each category. (XLS
38 kb)

Additional file 5: Table S4. KEGG Pathways (FDR < 0.05) identified by
WebGestalt 2017 from the gene list of the Salmon module. The table
contains the KEGG Pathway identification, description, number of genes
and gene names for each pathway. (XLS 31 kb)

Additional file 6: Table S5. Gene list from the Ivory module. The table
contains the Ensembl gene identification, gene symbol and gene
description of the entire list of genes from the Ivory module. (XLS 28 kb)

Additional file 7: Table S6. Gene list from the Light Yellow module.
The table contains the Ensembl gene identification, gene symbol and
gene description of the entire list of genes from the Light Yellow
module. (XLS 38 kb)
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