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Dias-Júnior CQ, Kesselmeier J and

Williams J (2018) Total OH Reactivity

Changes Over the Amazon Rainforest

During an El Niño Event.

Front. For. Glob. Change 1:12.

doi: 10.3389/ffgc.2018.00012

Total OH Reactivity Changes Over
the Amazon Rainforest During an
El Niño Event
Eva Y. Pfannerstill 1*, Anke C. Nölscher 1†, Ana M. Yáñez-Serrano 1†,

Efstratios Bourtsoukidis 1, Stephan Keßel 1, Ruud H. H. Janssen 2, Anywhere Tsokankunku 1,

Stefan Wolff 1, Matthias Sörgel 1, Marta O. Sá 3, Alessandro Araújo 4, David Walter 1,
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The 2015/16 El Niño event caused unprecedented drought and warming in the Amazon

basin. How tropical forests react to such extreme events in terms of volatile organic

compound (VOC) emissions is of interest as the frequency of these events is predicted to

increase through climate change. The diverse VOCs emitted can be significant for plants’

carbon budgets, influence ozone and particle production, and through their reactivity

impact OH concentrations. Total OH reactivity is a directly measureable quantity that

gives the reaction frequency of OH radicals with all reactive species in the atmosphere

in s−1. Here we present a comparison of the OH reactivity diel cycle from November

2015, i.e., extreme drought and elevated temperatures associated with strong El Niño

conditions, with November 2012, a “normal” El Niño Southern Oscillation (ENSO)-neutral

period. Interestingly, the diel maximum of OH reactivity during the El Niño event occurred

at sunset instead of, under normal conditions, early afternoon. The absolute total diel

OH reactivity, however, did not change significantly. Daytime OH reactivity averages were

24.3± 14.5 s−1 in 2012 and 24.6± 11.9 s−1 in 2015, respectively. Our findings suggest

that a combination of stronger turbulent transport above the canopy with stress-related

monoterpene and, possibly, other biogenic volatile organic compound (BVOC) emissions

were responsible for the increased reactivity at sunset.

Keywords: El Niño, OH reactivity, Amazon, drought, warming, abiotic stress, biogenic volatile organic compounds

(BVOCs)

INTRODUCTION

Amazonia contains more than half of the world’s tropical forests (Morley, 2000), 25% of the Earth’s
biodiversity (Dirzo and Raven, 2003), and nearly 15% of terrestrial biomass (Houghton et al., 2001;
Bar-On et al., 2018). As such the Amazon rainforest is an ecosystem of global relevance for water,
energy, and carbon cycles (Malhi, 2002;Werth, 2002; Aragão et al., 2014). Its biosphere-atmosphere
interface is of utmost significance for a complete understanding of global biogeochemical cycles.
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How the Amazon biosphere and the overlying atmosphere will
react to future climate change is therefore an important question.
Most near- and long-term IPCC models predict warming,
combined with decreasing precipitation and soil moisture in
Amazonia (Intergovernmental Panel on Climate Change, 2014).
Drought and increasingly elevated temperatures are already
being observed (Li et al., 2008; Marengo et al., 2011; Feldpausch
et al., 2016; Jiménez-Muñoz et al., 2016; Marengo and Espinoza,
2016; Erfanian et al., 2017; Aragão et al., 2018; Yang et al.,
2018) and are predicted to occur more often there in the
future. Tropical forests are vulnerable to climate change variables
such as precipitation decrease and warming. These can lead to
increased tree mortality and reduced net primary productivity,
with the result that the forest is no longer a sink, but a source
of atmospheric carbon (Metcalfe et al., 2010; Brienen et al.,
2015; van der Laan-Luijkx et al., 2015; Feldpausch et al., 2016;
McDowell et al., 2018). The frequency of El Niño events is
predicted to increase (Timmermann et al., 1999; Cai et al.,
2015), as well as anthropogenic land use change (i.e., forest loss),
which exacerbates water deficits and elevated temperatures in
Amazonia (Zeng et al., 1996; Baidya Roy, 2002; Swann et al., 2015;
Alkama and Cescatti, 2016; Zemp et al., 2017).

A highly relevant factor in atmospheric chemistry, which is
expected to alter in response to climate change (Monson et al.,
2007), is the emission of biogenic volatile organic compounds
(BVOCs) by plants. Tropical forests represent the main source
for BVOCs on Earth (Guenther et al., 2012). These relatively
short-lived (minutes to days) atmospheric species are important
as they can influence local tropospheric ozone and particle
formation. Some plant BVOCs, e.g., isoprene and monoterpenes,
are thought to act as antioxidants against stress-induced reactive
oxygen species or help plants cope with abiotic stress by changing
membrane properties (Sharkey et al., 2008; Vickers et al., 2009;
Karl et al., 2010; Jardine et al., 2013; Sharkey and Monson,
2017). Once released to the atmosphere, the BVOCs mainly react
with OH radicals formed from the ozone photoproduct O1D
and water. This oxidation pathway has important implications
for secondary organic aerosol formation and, in turn, for
cloud formation, and climate (Pöschl et al., 2010; Ehn et al.,
2014; Palm et al., 2018); as well as for the modulation of
greenhouse gas and pollutant concentrations (e.g., methane
and CO; Arneth et al., 2010; Peñuelas and Staudt, 2010). For
carbon cycle closure, BVOCs represent a challenge: without
stress, 1–2% of net primary production (NPP) by land plants
is emitted as monoterpenes and isoprene (Sharkey and Loreto,
1993; Kesselmeier et al., 2002; Harrison et al., 2013). These
numbers may be regarded as small related to NPP and gross
primary production (GPP), but the amount of carbon lost as
VOC emissions can be highly significant relative to net ecosystem
productivity (Kesselmeier et al., 2002). Furthermore, if multiple
abiotic stress factors such as heat, drought, or high irradiance are
applied, up to 10% (Peñuelas, 2003) or even in extreme cases 67%
(Sharkey and Loreto, 1993) of plant carbon can be allocated to
BVOCs.

Studies of BVOCs in tropical forests tend to be, for
technical reasons, limited to a modest number of abundant
compounds such as isoprenoids, and some oxygenated species

(e.g., Kesselmeier et al., 2000; Rinne et al., 2002; Kuhn et al.,
2004, 2007; Rottenberger et al., 2004; Rizzo et al., 2010; Jardine
et al., 2015; Yáñez-Serrano et al., 2015, 2018). This is despite the
fact that plants are known to release more than 30,000 different
VOCs (e.g., Harley, 2013). A measure for the combined effect
of all VOCs and other OH reactive species in ambient air, i.e.,
the total OH sink, is termed the total OH reactivity. Total OH
reactivity in Amazonia is thought to be dominated by isoprene
and other reactive BVOCs (Nölscher et al., 2016) that are emitted
as a function of temperature and light (e.g., Rinne et al., 2002).
These emissions are higher in the dry season than in the wet
season. However, especially in the dry season a significant part
of OH reactivity remains unexplained by individually measured
trace gases, the so-called “missing reactivity” (Nölscher et al.,
2016; Williams et al., 2016).

Here we compare OH reactivity measurements at a central
Amazonian site under two contrasting regimes which are due
to the influence of El Niño Southern Oscillation (ENSO): (1)
ENSO-neutral conditions (November 2012) and (2) strong El
Niño conditions with record-breaking precipitation deficit and
heat (November 2015). The 2015/16 drought and warming event
is unprecedented in records since 1900 and is attributed to
an unusually strong El Niño period (Jiménez-Muñoz et al.,
2016; Varotsos et al., 2016; Erfanian et al., 2017; Paek et al.,
2017; Wang and Hendon, 2017; Yang et al., 2018). Satellite data
of 2015/16 show a regional land surface temperature anomaly
of up to + 4◦C for October through December 2015 in the
Amazon basin (Jiménez-Muñoz et al., 2016) and that 43% of
the Amazon biome encountered a significant negative maximum
climatological water deficit (Aragão et al., 2018). Due to these
extreme conditions, stress-related plant emissions may occur.
Therefore, by extension we may hypothesize that compared to
ENSO-neutral conditions, El Niño conditions would lead to
increased total OH reactivity as a result of elevated, stress-
induced emissions. In this study we examine the OH reactivity
behavior in data collected in these two contrasting regimes, both
in absolute terms, and as a function of time of the day.

MATERIALS AND METHODS

Sampling Site
The Amazonian Tall Tower Observatory (ATTO) site (Andreae
et al., 2015) is located in a dense, non-flooded terra firme
forest 150 km northeast of Manaus, Brazil, at 120m above
sea level (Figure 1). The main wind direction at the site,
as in the whole trade wind influenced region, is northeast
(MacGregor and Nieuwolt, 1998; Pöhlker et al., in review;
Figure 2). This means that it is mainly influenced by air masses
that have passed over several hundred km of undisturbed
old-grown rainforest (Supplementary Figure 1). The walk-
up tower (Instant UpRight, Dublin, Ireland) is located at
S 02◦08′38.6′′, W 58◦59′59.9′′ (height above ground level:
80m). It has been in operation since 2012, and is equipped
with instrumentation for continuous measurements such as
meteorology, micrometeorology, greenhouse gases, phenology,
inorganic trace gases, and aerosol particles. During intensive
observation periods, these are complemented by, amongst others,
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FIGURE 1 | (A) Location of the ATTO site. (B) 80m walk-up tower with inlet at

41m height above ground level.

VOC, and total OH reactivity measurements. The maximum
canopy top height in the footprint area of the tower is∼35m and
more than 400 tree species have been identified there (Andreae
et al., 2015). The average tree height did not change significantly
over time because this forest consists of trees in all stages of life
and the timespan between the two measurement periods was
relatively short in comparison with the lifetime of a tree. The
zero-plane displacement height (0.9 h, where h is canopy height)
is 31.5m. Supplementary Figures 2, 3 show the footprint and the
origin of up to 80% of the flux for this displacement height.

Measurement Periods
The intensive measurement campaign in 2015 was set at the end
of the dry season (June–October). During this season, cumulative
precipitation generally does not exceed 120mm per month
(Restrepo-Coupe et al., 2013). Sampling took place continuously
fromNovember 11 until November 23, 2015. This period fell into
the extreme 2015/16 El Niño event (Jiménez-Muñoz et al., 2016;
Erfanian et al., 2017; Wang and Hendon, 2017; Yang et al., 2018).
There was no rainfall during the measurement period—the last
rain event before the campaign took place on November 9, the
next one on November 27, 2015.

The data used to compare this period with an ENSO-
neutral November were collected in 2012 (10 full days between
November 1 and 28). The sampling details for this campaign
are described elsewhere (Nölscher et al., 2016 and Yáñez-Serrano
et al., 2015). During the 2012 campaign, inlets were situated at
several heights on the 80m walk-up tower, however, for this

FIGURE 2 | Frequency distribution of wind directions and wind speed in

m s−1 measured (A) at 36m above ground level from November 01 to 28,

2012 and (B) at 41m above ground level from November 11 to 23, 2015.

comparison we only considered OH reactivity and VOC data
measured at the 38m inlet, which was closest to the 41m inlets
used in 2015. Ozone, NO2, NO, CO, and CH4 were monitored at
38m during both campaigns. The vertical distance from the 38m
inlet to the tallest trees directly adjacent to the tower was 10m
(Figure 1 in Chor et al., 2017).

OH Reactivity and Trace Gas
Measurements
During the two campaigns, total OH reactivity was determined
using the Comparative Reactivity Method (CRM, Sinha et al.,
2008). It is based on the competitive reaction between pyrrole
(Westfalen AG, Münster, Germany) and reactive compounds
from ambient air inside a glass reactor. OH radicals are created by
flushing humidified nitrogen (6.0 grade, Westfalen AG, Münster,
Germany) over a Hg/Ar UV lamp (LOT Quantum Design,
Darmstadt, Germany). The different modes used in CRM−C1
(dry pyrrole + UV light), C2 (OH + pyrrole), and C3 level
(ambient air + pyrrole + OH)—are described in detail in Sinha
et al. (2008). In our study, the C3 level was measured for 48min
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starting at the full hour and the C2 level for 12min at the end
of the hour. The C1 level was determined at least every 2 days,
and calibrations with a pyrrole gas standard (Westfalen AG,
Münster, Germany) were performed every 3–6 days. Changes
in pyrrole mixing ratio were monitored by a Quadrupole
Proton Transfer Reaction-Mass Spectrometer [PTRMS, Ionicon
Analytik, Innsbruck, Austria (Lindinger et al., 1998)] at m/z= 68
(dwell time: 5 s). Measurement intervals were 7 s. The PTRMS
was operated at 50◦C drift temperature, 2.2 mbar drift pressure,
600V drift voltage, and 127 Td. In parallel, another Quadrupole
PTRMS, calibrated regularly with a multicomponent pressurized
gas VOC standard (Apel-Riemer Environmental Inc., Colorado,
USA), was deployed to monitor two important contributors
to OH reactivity (Nölscher et al., 2016): Isoprene (detected
as m/z 69) and the sum of isoprene oxidation products [m/z
71, methyl vinyl ketone (MVK), methacrolein (MACR), and
isoprene hydroperoxide (ISOPOOH)]. Their mixing ratios were
measured with fast response (1Hz) in 2015. Eleven more masses
were monitored additionally in 2012 (see Yáñez-Serrano et al.,
2015 and Nölscher et al., 2016).

Sampling
A heated and insulated polytetrafluoroethylene (PTFE) inlet tube
(1/2′′ = 1.27 cm outer diameter), toppedwith a routinely changed
PTFE filter (pore size: 5µm) to avoid contamination by insects or
particles, was positioned at ca. 41m height above ground level on
the tower. Air samples were continuously drawn at a flow rate of
≈ 30 slpm into an air-conditioned laboratory container located
below the tower. In order to avoid underpressure in the CRM
reactor, the sampled air passed through a chemically inert pump
with a Teflon membrane (Neuberger KNF, Freiburg, Germany)
at ca. 500 sccm before entering the CRM instrument. The inlet
residence time determined by spiking with methanol was 19 s.

Flux Calculations
Isoprene was measured with the above described PTRMS at
a time resolution of 1 s. It was sampled from a separate 3/8′′

inlet at 41m above ground level at a flow rate of about
10 L min−1. The delay time of the PTRMS signal was corrected
by maximizing the covariance between the water cluster signal
of the PTRMS with the signal of an open path water analyzer
(Li-COR 7500, LI-COR Inc., Lincoln, USA). A CSAT3 sonic
anemometer (Campbell Scientific Inc., Logan, USA), situated
at a distance of 0.5m to the isoprene inlet, was used for high
frequency three-dimensional measurement of the wind speed.
The software package EddyPro R© (LI-COR Inc., Lincoln, USA)
was applied to calculate eddy covariance fluxes of CO2, water and
isoprene by correlating fluctuations of the vertical wind vector to
the fluctuations of the CO2, water, and isoprene concentrations.
The method of Vickers and Mahrt (1997) was employed for de-
spiking and raw data statistical screening. Half-hourly averaged
fluxes were flagged according to the data quality control method
ofMauder and Foken (2004). Only data with highest quality (flags
0 and 1) was kept for further analyses. High frequency losses for
sampling frequencies between 0.1 and 0.8Hz have been found
to be below 10% (Guenther and Hills, 1998; Spirig et al., 2005;
Holst et al., 2010; Jensen et al., 2018). We calculated footprints

according to the two-dimensional model of Kljun et al. (2015)
for a geographic domain of 2 × 2 km centered at the tower. We
used the Tovi Footprint Analysis Toolbox (LI-COR Inc., Lincoln,
USA) to calculate half-hourly footprints and aggregated them for
the measurement period.

Total OH Reactivity Data Analysis
The PTRMS signal at m/z= 68 (protonated mass of pyrrole) was
used for calculating pyrrole mixing ratios. Pyrrole PTRMS data
were corrected for high O+

2 concentration in the ion source of
up to 12%, which ionized isoprene as m/z = 68. This artifact
caused by ambient isoprene (slightly higher signal on m/z =

68) was corrected for using the isoprene mixing ratios collected
by the VOC-PTRMS measuring from a parallel inlet at the
same height, and an experimentally derived yield of isoprene
after the reactions in the CRM reactor have taken place. This
correction was below the total uncertainty of the measurements
[on average 0.28 ± 0.18 (standard deviation) ppbv of pyrrole,
which corresponds to an OH reactivity of ca. 1.6 s−1].

CRM data analysis was conducted following the general
procedures described in Keßel (2016). During C2 (background)
measurements, ambient air passed through a catalytic converter
that removes all VOCs. Humidity can differ between C2 level
and C3 level (ambient air), especially as the C2 level is measured
only once per hour and ambient humidity is subject to change
in the meantime. This difference has to be accounted for because
the amount of OH radicals generated in the reactor depends on
humidity. C2 data therefore were corrected using a relationship
derived from an empirical test as recommended inMichoud et al.
(2015). The C2 correction applied to match C3 level humidity
amounted on average 0.92 ± 0.31 ppbv of pyrrole, which equals
ca. 5.3 s−1 of OH reactivity.

The CRM method is sensitive to NO and NO2 due to
OH recycling caused by HO2, which is formed in the reactor
simultaneously with OH (Sinha et al., 2008;Michoud et al., 2015).
However, NO and NO2 mixing ratios at the ATTO site were
at all times below 3 ppbv, which is the threshold over which a
significant effect is visible in the CRM instrument (maximum
observed NO: 0.91 ppbv; maximum NO2: 1.38 ppbv). Therefore,
no interference from NOx was expected.

An ozone interference for CRM was discovered recently
(Fuchs et al., 2017). The interference for this instrument was
characterized using an ozone generator (Dynamic Gas Calibrator
146C, Thermo Environmental Instruments LLC, Franklin, USA).
The resulting correction was ca. 0.018 ppbv of pyrrole per ppbv of
ozone, which corresponds to ca. 0.1 s−1 per ppbv of ozone. This
correction increased OH reactivity values by up to 1%.

The calculation of total OH reactivity based on three modes
(C1, C2, and C3 levels) assumes pseudo 1st order conditions
[i.e., [pyrrole] >> [OH]]. As the experiments are conducted
at pyrrole/OH ratios of 1.2 to 2 in order to provide detectable
differences between the CRM modes, a correction needs to be
applied. A chemical model (Facsimile) was used to derive a
relationship between true total reactivity and calculated reactivity
from the CRM equation. This correction reduced the OH
reactivity value by maximum 6%.
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Finally, a dilution factor of 1.28 was applied to account for the
humidified nitrogen mixed with the ambient air in the reactor.

The detection limit (LOD) was 4.2 s−1 (derived from 2σ
standard deviation on C2 levels). Accuracy of the measurements
was ca. 30%, with a precision of 10–20% depending on the
quantity of reactivity (for total uncertainty, dependent on the
amount of OH reactivity: see Supplementary Figure 4).

Total OH reactivity expected from individually measured
compounds is the sum of the OH reactivities of the respective
compounds:

Rtotal = ΣkX+OH[X] (1)

Contributions of measured trace gases (X, where [X] is their
respective concentration in molecules cm−3) to total OH
reactivity (Rtotal in s−1) were calculated using the reaction rate
constants (kX+OH in cm3 molecule−1 s−1) of trace gases (X)
with the OH radical as shown in Supplementary Table 1 for
November 2015. For the purpose of this calculation, it is assumed
that the different inlets of trace gas measurements and OH
reactivity were co-located. The difference betweenmeasured total
OH reactivity and the sum of individual trace gas contributions
to OH reactivity is termed “unexplained” or “missing” OH
reactivity.

All data analysis was conducted using IGOR Pro 6.37.

Canopy Stomatal Conductance Calculation
Stomatal conductance is generally estimated using an approach
described by Ball (1987). It is derived from the ratio of
measured water flux and estimated release capacity based on the
water vapor gradient between leaf and atmosphere at ambient
temperatures measured inside the canopy [assuming a water
vapor saturation of 100% inside the leaf. We note that this
assumption has been recently challenged for conifer leaves, where
humidity was below 100% (Cernusak et al., 2018)]. As a general
rough approximation, we considered the whole canopy as a single
large leaf and relative humidity inside the canopy (26m) as the
driving force of the water vapor gradient.

Analysis of Turbulent Transport
Turbulence drives the transport of reactive species out of the
canopy from below and from the boundary layer aloft to the
height at which OH reactivity is measured. Therefore, it is useful
to assess the strength of turbulent transport and whether it was
different between the 2 years.

The Richardson number is an indicator for atmospheric
stability and the occurrence of turbulence. It expresses the ratio
of buoyant consumption vs. mechanical (shear) production of
turbulence (Stull, 1988). The gradient Richardson number (Rig)
was calculated from average diel wind and temperature data for
both observation periods. Observations at various measurement
heights were interpolated with a logarithmic function to obtain
continuous gradients (measurement heights above ground level
were in 2012: 4, 36, 46, 81m for wind data and 0.4, 1.5, 4.4,
12, 26, 36, 55, 73m for temperature data; in 2015: 14, 22, 40,
55, 81m for wind data and 0.51, 1.67, 4.4, 26, 36, 40, 73m for
temperature data). Rig was then calculated for each hour of the

day in 1m height resolution from 20m up to 80m using the
following equation (e.g., Stull, 1988):

Rig =

g
θv

∂θv
∂z

( ∂u
∂z )

2
+ ( ∂v

∂z )
2 (2)

where g is the acceleration due to gravity (9.81m s−2), θv is the
virtual potential temperature (K), z the height above ground level
(m), and u and v the wind vectors (m s−1) in the x and y direction,
respectively.

A second variable of interest is the atmospheric boundary
layer (ABL) height, since this determines the depth over which
emitted species will be mixed. To assess the potential impact
of ABL dynamics, the MXL/MESSy model (Janssen and Pozzer,
2015) was used to investigate two case study days (November 22,
2015 and November 10, 2012). The MXL model has been shown
before to reproduce tropical boundary layer dynamics well in
comparison with a turbulence resolving large eddy simulation
(Vilà-Guerau de Arellano et al., 2011) and in comparison
with ABL height as observed by Lidar (Janssen et al., 2013).
Observations of surface sensible and latent heat fluxes, potential
temperature and specific moisture were used to constrain the
simulated boundary layer development. Additionally, ABL height
observations were available for 2015. For both years, a subsidence
rate of 3·10−5 s−1 was applied to account for large-scale
downward vertical motions.

RESULTS AND DISCUSSION

OH Reactivity During El Niño Compared to
an ENSO-Neutral Period
A comparison of diel (24 h) temperature and humidity cycles
between a November under strong El Niño influence (2015)
and an ENSO-neutral November (2012) is shown in Figure 3A.

The El Niño period was hotter and less humid than a “usual”
dry season. Maximum temperatures of the day (from 1min
diel medians of the 2015 measurement period) reached up to
34.4◦C, compared to 32.2 ◦C in 2012. The lowest median relative
humidity of the day (from 1min medians) during the 2015
measurement period was 47.8% (2012: 62.4%). This corresponds
to a difference in average absolute humidity of 17% (21.4 g m−3

in 2012, 18.3 g m−3 in 2015). The El-Niño-attributed extreme
drought was also reflected in soil water content, which was
reduced by 20–25% with 0.149 ± 0.003 m3 m−3 (average ±

standard deviation for November 2015) compared to 0.184 ±

0.008 m3 m−3 in ENSO-neutral November 2014 (used here
because of data unavailability for 2012). The unusually dry and
hot conditions at the ATTO site reflect general observations
of the Amazon basin and the whole of South America for the
2015/16 El Niño (Jiménez-Muñoz et al., 2016; Erfanian et al.,
2017; Yang et al., 2018).

Diel cycles of OH reactivity measured above the forest
canopy (at 41m height above ground level) were compared
between November 2012 and November 2015 (Figure 3B).
Photosynthetic active radiation (PAR) measurements show that
sunrise and sunset occurred at ca. 5:30 and 18:00 LT (local
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FIGURE 3 | (A) Median diel cycles of relative humidity and temperature for measurement periods in November 2012 and November 2015. (B) Diel medians of OH

reactivity for Nov 2012 (hourly) and Nov 2015 (half-hourly), and photosynthetic active radiation (PAR) for Nov 2015 measured at 41m height above ground level. The

shaded areas depict 25–75th percentiles of OH reactivity.

time, i.e., UTC-4), respectively. For most of the day, the OH
reactivity pattern in the respective measurement periods was
very similar. Nighttime OH reactivity was low, often close to
the detection limit of 4.2 s−1. Due to the larger uncertainty of
low reactivity values (see Supplementary Figure 4), nighttime
and early morning differences between the 2012 and 2015 diel
cycles can be considered as insignificant. Both cycles showed a
maximum at noon of on average 27.0 ± 14.2 s−1 (2015) and
36.4 ± 22.1 s−1 (2012) with very similar respective medians
of 28.1 s−1 (2015) and 26.8 s−1 (2012). A striking difference,
however, was that the averages and medians of 13 days of
OH reactivity in 2015 showed a second, and higher, maximum
around the time of sunset (35.2 ± 14.5 s−1, compared to 27.4
± 18.8 s−1 in 2012 / medians: 36.5 s−1 (2015) and 22.0 s−1 in
2012 at 17:00 LT). A less distinct sunset increase is also indicated
in the 75th percentile of the 2012 data, but for that year the
median was decreasing as one would expect when night falls
and photosynthetic activity of the plants declines. In contrast
to the diel pattern, the absolute daytime OH reactivity did not
differ significantly between both observation periods: Average
OH reactivity values above the LOD of 10 days between 6:00
and 19:00 LT were 24.3 ± 14.5 s−1 in 2012, compared to 24.6
± 11.9 s−1 in 2015. The hour from 18:00 till 19:00 was included
here into “daytime” values, because the evening OH reactivity
maximum under El Niño influence sometimes remained until
18:30.

Only a few VOC species were measured in 2015 because
the campaign was focused on fast response measurements
of isoprene. Therefore, total OH reactivity can only be
compared with the reactivity of isoprene, the sum of three
isoprene oxidation products (MVK/MACR/ISOPOOH,
m/z= 71), NOx, and CO (Figure 4), methane, and ozone

(not displayed due to insignificant contribution to OH reactivity,
see Supplementary Table 1). Isoprene and isoprene oxidation
products have been reported to be the main known contributors
to OH reactivity at the ATTO site, however with average
unexplained fractions of 49% in the wet season and 79% in
the dry season (Nölscher et al., 2016). In 2015, isoprene levels
were similar as reported previously by Nölscher et al. (2016,
for 2012) and Yáñez-Serrano et al. (2015). Although NOx did
not contribute significant amounts of OH reactivity at any time
(maximum: 0.48 s−1), a higher number of forest fires during
the El Niño influenced period compared to other dry seasons
(Aragão et al., 2018) was visible in NOmixing ratios. Indeed they
were four times as high as in an ENSO neutral November (here:
2013 due to data unavailability in 2012) with an average of 0.061
± 0.068 ppbv in November 2015 and of 0.014 ± 0.078 ppbv in
November 2013. Long-term measurements of NOx at the site
until 2015 never exceeded 2 ppb, with median values consistently
below 250 ppt (Wolff, 2015). The high NOx values observed in
November 2015 with peak values of 2.1 ppb demonstrate the
exceptional conditions caused by the strong El Niño event.

The total OH reactivity time series (Supplementary Figure 5)
shows that except for 2 days within the measurement period, the
daily reactivity maximum in 2015 was observed during or shortly
after sunset. The 2 days where this effect was not visible were each
preceded by a day with ambient relative humidity above 95%.
During the rest of the El Niño influenced observation period,
relative humidity always remained below 95%, which indicates
that the evening OH reactivity maximum may be related to dry
conditions. From the data collected by the VOC-PTRMS running
in parallel, it is possible to calculate the theoretical OH reactivity
contributed to measured total OH reactivity by isoprene and
its oxidation products (Figure 4). Isoprene accounted for most
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FIGURE 4 | Diel half-hourly medians over 13 days of measurements in November 2015 for calculated OH reactivity of isoprene, isoprene oxidation products, NOx and

CO, diel medians of measured OH reactivity; and hourly medians of the isoprene oxidation product vs. isoprene ratio. Filled areas represent the 25–75th percentiles of

data. Not depicted: contributions of ozone (max. 0.05 s−1), and methane (max. 0.22 s−1). Photosynthetic active radiation (PAR) is displayed on the right axis

(half-hourly medians).

of the OH reactivity during most of the day (e.g., 78% on
average at 14:00 LT), but on average only for 33% during
the unusual increase at sunset (17:00 LT). Isoprene oxidation
products accounted for up to 20% (19:30 LT), CO for up to
11% (5:00 LT) of OH reactivity (Figure 4). The unexplained
(“missing”) fraction of total OH reactivity was largest at 17:30
LT (60% on average). The isoprene flux (Figure 5) followed
PAR and temperature, as expected. However, it persisted, albeit
weakly, until 18:30 LT. As plants continued to emit isoprene,
other biogenic emissions might as well have continued during
sunset and contributed to unexplained OH reactivity.

The isoprene oxidation product-to-isoprene ratio is generally
higher in the dry season than in the wet season, but in November
2015 (ca. 0.4 at 12–15:00 LT, Figure 4) it was higher than reported
for the dry seasons in 2013 (Yáñez-Serrano et al., 2015) or in
2001 (Kuhn et al., 2007), with values below 0.4 in both cases.
This means that the even drier conditions during the strong
El Niño period could have caused a higher oxidative efficiency
than during average dry seasons. Part of the unexplained evening
reactivity might stem from elevated values of oxidized VOCs
other than MVK/ methacrolein/ ISOPOOH.

Possible Influence of Turbulent Transport
Another potential reason for the shift of the diel OH reactivity
maximum could be a change in turbulent transport of reactive
species from the canopy below or from the boundary layer
above the point of observation. Especially below the canopy, soil,
and underwood emissions could contain highly reactive species
(Nölscher et al., 2016). Indeed it has been recently reported that

strong emissions of sesquiterpenes from the forest floor occur
under drier conditions (Bourtsoukidis et al., 2018).

To assess the stability of the canopy and surface layer, the
potential temperature profiles of November 2012 and 2015 were
compared (Figure 6). Overall, the structure of both profiles is
similar; with the El Niño influenced profile shifted to higher
temperatures and with less pronounced gradients. However, in
2012 an inversion is present during the daytime hours at a
height of 1.5m, which caps a stably stratified layer just above
the forest floor. These stable conditions close to the ground
surface suggest that emissions of reactive species from the soil
may not have been transported upwards through and out of
the canopy. Such thermal stratification of the lower canopy has
been observed in Amazonian forests before and could be related
to absorption of radiation by the upper canopy (Kruijt et al.,
2000; Andreae et al., 2015; Gerken et al., 2017; Santana et al.,
2018). In 2015, net radiation measured at the ATTO site was
on average ≈100Wm−2 higher than in 2012, which may have
facilitated penetration of radiation further into the canopy and
hence the break-up of the inversion (Figure 6). In addition,
wind shear in the canopy was higher in 2015 than in 2012
(Supplementary Figure 6), which could also have contributed
to the generation of turbulence and transport away from the
forest floor (Santana et al., 2018). As a result, a larger part of
unexplained daytime OH reactivity during the El Nino event
might stem from soil emissions than in 2012.

Average diel gradient Richardson number patterns derived
from meteorological measurements are displayed for November
2015 and November 2012 in Figure 7. It is visible that turbulent
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FIGURE 5 | Diel hourly averages and medians of isoprene fluxes measured at 41m above ground level at the ATTO site between November 11 and 23, 2015. Boxes

and whiskers represent the 25–75th and 5–95th percentiles, respectively. The diel medians of photosynthetic active radiation (PAR) and ambient temperature

measured at the same height are displayed on the right axes.

FIGURE 6 | Vertical potential temperature profiles between forest floor and 73m height above ground level for November 2012 and November 2015. Three different

profiles represent temporal variation for the evening hours (local time).

conditions above and inside the canopy (Rig < 0.25) persisted
longer in the evening in 2015. Between 17:00 and 18:00 LT, the
conditions for vertical transport were far less favorable in 2012
than in 2015, when canopy emissions were likely transported
up to 41m. Consequently, the observed sunset increase in
OH reactivity might be related to this turbulent transport.
However, the peak OH reactivity being not reflected in isoprene
mixing ratios, additional change in biogenic emissions has to be
considered.

For a closer investigation of the boundary layer dynamics,
the MXL/MESSy boundary layer model was run for two case

study days (November 22, 2015 and November 10, 2012,
Supplementary Figures 7, 8; note that the boundary layer model
is not suitable for representing the nocturnal boundary layer
and therefore the simulations end at 17:00). As shown in
Supplementary Figure 8 in comparison with observations, MXL
captures the diurnal variability of the ABL for the 2015 case well-
until about 14:00 LT. After 14:00 LT, other factors like cloud
formation (which are not included in the model) could have
impacted boundary layer depth. ABL height observations were
not available for 2012. What can be inferred, however, is that
the lower surface forcing (sensible heat flux) in 2012 led to
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FIGURE 7 | Diel patterns of gradient Richardson numbers from 20 to 80m height above ground level for (A) November 2012 and (B) November 2015. The critical

Richardson number (0.25) is indicated with a thicker line. The dashed line represents canopy top (35m).

a lower boundary layer in 2012, assuming that other forcings
(e.g., subsidence) were equal to the 2015 case. The shape of
the modeled daytime boundary layer development did not differ
much between 2012 and 2015, with ABL height peaking around
14:30 LT for both years. The simulated maximum ABL height
is about 200m higher in 2015 than in 2012, because of higher
sensible heat fluxes. This means that reactive species which are
emitted from the canopy during daytime were mixed over a
deeper layer under the 2015 conditions and more diluted by
entrainment of cleaner air from aloft, which should in principle
cause lower reactivities. However, this did not lead to significant
differences in overall daytime reactivity between the 2 years,
possibly because higher emissions balanced the higher dilution.

Possible Influence of Plants’ Emission
Behavior
Stomatal or Non-stomatal BVOC Release?

Persisting isoprene emission fluxes until after 18:00 LT (Figure 5)
indicate the possibility of continuing BVOC emissions as a
reason for the evening OH reactivity maximum under El
Niño conditions. Plant volatiles can be released from the
leaf tissue either under stomatal control or without. The
pathway depends on localization and physicochemical nature
of the VOC species (Niinemets et al., 2004; Harley, 2013). In
order to explore a possible drought stress-related difference in

plants’ emission behavior as a reason for the shift of diel OH
reactivity maxima between an El Niño and an ENSO-neutral
November, canopy stomatal conductance was derived fromwater
fluxes, air temperature, and humidity measured in November
2015. As expected, canopy stomatal conductance increased at
sunrise (between 5:00 and 6:00 LT), associated with BVOC
release reflected in increasing OH reactivity (Figure 8). When
temperatures had increased to a level that water loss via the
stomata would become unfavorably large, conductance decreased
(around 10:00 LT) and did not increase again until the next
morning. This diel cycle shows the same pattern as in studies
of stomatal conductance of tropical trees such as Dolman et al.
(1991) and Granier et al. (1992), even though the approach
applied here is more indirect. Diel medians of canopy stomatal
conductance did not increase significantly at 17:00–17:30 LT,
when OH reactivity was in its maximum. Santos et al. (2018)
showed that drought during the 2015 El Niño decreased average
stomatal conductance in an Amazon forest. Therefore, the release
of unmeasured compounds responsible for the OH reactivity
increase most likely was not affected by plants’ stomata.

For BVOCs that are not stored in specialized storage
compartments of the leaf, release from plants independent of
stomatal control has been reported especially for isoprene (Fall
and Monson, 1992) and monoterpenes (Loreto et al., 1996).
Niinemets and Reichstein (2002) found that β-ocimene and
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FIGURE 8 | Diel half-hourly medians and 25–75th percentiles (shaded areas) of canopy stomatal conductance at 26m (inside canopy), and of CO2 flux at 41m height

above ground level. The diel cycle of photosynthetic active radiation is displayed as gray shades.

limonene emissions were unaffected by stomatal closure (in
contrast to oxygenated monoterpenes). A general overview has
been reported by Niinemets et al. (2004). In the absence of
stomatal opening during the evening hours, such an emission
mechanism independent of stomatal conductance could be
responsible for the OH reactivity maximum seen at sunset under
extremely dry conditions at the ATTO site. As isoprene was
among the measured species and can only to a small extent
explain total OH reactivity, one group of compounds that is likely
to be at least partly responsible is monoterpenes. Monoterpenes
were not monitored during the observation period described
here, but 1 month prior to the El Niño influenced campaign
(see section Monoterpene emissions). The decrease of ambient
temperature at the end of the day started ca. 1 h later in 2015 than
in 2012 (Figure 3). This means that the build-up of temperature-
related VOCs such as monoterpenes might have lasted longer
than usual. OH radical formation is dependent on sunlight.
Therefore, during the sunset hour, the most important sink of
BVOCs was decreasing rapidly and additionally released BVOCs
were more likely to accumulate in the atmosphere. As discussed
in 3.2, these emissions were more efficiently transported
out of the canopy up to the point of observation than in
2012.

Monoterpene Emissions

VOC data acquired at the ATTO site in October 2015, 1
month before our campaign, show (1) higher monoterpene
emissions than in other dry seasons (Yáñez-Serrano et al., 2018)
and (2) a second monoterpene maximum at sunset (Figure 9).
October 2015 was already influenced by El Niño, but it was
less dry and hot than November. Average temperatures were
0.6◦C lower, average RH was 5.7% higher. In the monoterpene
time series (Supplementary Figure 9), a tendency toward higher
monoterpene emissions is visible on drier and warmer days.
Biogenic monoterpene emissions are well-known to be promoted
by elevated temperatures (e.g., Guenther et al., 1993). At high
temperatures, monoterpene emissions can be uncoupled from
NPP (Jardine et al., 2017). Based on these observations, we

speculate that it is very likely that monoterpene emissions during
the exceptionally warm conditions in November 2015 were even
higher than in October 2015. Using the emission factors for
evergreen tropical broadleaf plants trees from Guenther et al.
(2012) and the G93 equation for monoterpene emissions from
Guenther et al. (1993), we estimate that the temperature increase
for 17:00 LT of ca. 2.5◦C in November 2015 compared to October
2015 could have caused ca. 28% higher monoterpene emissions.

In November 2015 at the ATTO site, maximum leaf surface
temperatures at the top of the canopy reached up to 42.6◦C (11:00
LT). In an ENSO-neutral November (due to data availability
here November 2014), the maximum was 4.0◦C lower and
average leaf temperatures at 17:00 LT were 3.9◦C lower than in
2015. Interestingly, Jardine et al. (2017) reported a dependence
of monoterpene speciation in the Amazon region on leaf
temperature. They found that extreme heat in 2015/16 triggered
a shift of plant emissions toward more reactive monoterpenes
such as β-ocimene, which is ≈ 100 times more reactive toward
OH than the usually predominant α-pinene. Estimating a 28%
increase of monoterpene mixing ratios at 17:00 LT, an OH
reactivity of up to 7.8 s−1 if dominated by β-ocimene (4.8 s−1

when assuming a speciation as observed by Jardine et al., 2017)
could be explained by monoterpenes, which is 22% of total OH
reactivity andmore than one third of the unexplained (“missing”)
fraction.

Among other purposes, monoterpenes are thought to serve
plants in stress relief, e.g., as antioxidants against elevated levels
of cell-damaging reactive oxygen species and ozone (Loreto et al.,
2004). Ozone levels at the ATTO site were on average 69% higher
in November 2015 (16.7 ± 6.6 ppbv) than in November 2012
(9.9 ± 4.3 ppbv), with respective maxima of 40.6 ppbv in 2015
and of 20.5 ppbv in 2012. This difference can be attributed to a
larger number of and more closely located forest fires [Aragão
et al., 2018, and represented in elevated NOx values (see section
OH reactivity during El Niño compared to an ENSO-neutral
period)]. The ozonemaximum occurred between 15:00 and 18:00
LT (Figure 10). It might have induced an oxidant stress reaction
in plants which is reflected in higher monoterpene emissions.

Frontiers in Forests and Global Change | www.frontiersin.org 10 December 2018 | Volume 1 | Article 12

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Pfannerstill et al. El Niño Amazon OH Reactivity

FIGURE 9 | (A) Diel cycles of temperature and relative humidity measured at 41m above ground level in October 2015. (B) Diel cycle of ambient monoterpene mixing

ratios measured at 38m above ground level during 12 days in October 2015 showing half-hourly monoterpene medians (circles) and averages (triangles). Boxes and

whiskers represent the 25–75th and 5–95th percentiles, respectively. The diel cycle of photosynthetic active radiation (PAR) is displayed on the right axis.

Moreover, due to the low OH concentration normally present
at dusk being further suppressed by high OH reactivity, and the
higher ozone levels at the same time, enhanced ozone-terpene
reactions at the end of the day will lead to more efficient SOA
formation. Reactions of the predominant terpene at the site (α-
pinene) with ozone producemore particles than with OH (Griffin
et al., 1999; Bonn and Moorgat, 2002; Jokinen et al., 2015). SOA
formation is additionally furthered by a high VOC/NOx ratio
(Donahue et al., 2005; Presto et al., 2005) as it is observed in
the tropical forest. A fraction of the SOA will become cloud
condensation nuclei (CCN). We therefore tentatively speculate
this may represent a possible could formation feedback.

In addition to the temperature and ozone effects, drought
stress has been reported to enhance monoterpene emissions in
several different plant species (Ormeno et al., 2007; Llusià et al.,
2008; Blanch et al., 2009; Šimpraga et al., 2011). However, in some
other studies drought had the opposite effect (e.g., Bourtsoukidis
et al., 2014; Llusia et al., 2016; Lüpke et al., 2016; Saunier et al.,
2017). Some species even show a trade-off between isoprene and
monoterpenes: isoprene emissions can be reduced in favor of
monoterpene emissions (Harrison et al., 2013).

Not much is known about the effect of combined multiple
stress factors on plants’ VOC emission behavior, although this is
what usually occurs in nature (e.g., in this study a combination
of water deficit, heat, and 69% higher ozone levels). However,
Holopainen and Gershenzon (2010) suggest an additive effect
of multiple abiotic stresses on BVOC emissions. We therefore
conclude that the largely unexplained OH reactivity maximum
observed during the sunset hours in 2015 could to some
extent be explained by higher and more reactive monoterpene

emissions from vegetation due to a combination of factors:
Higher temperatures that decreased later in the course of the
day, water deficit and ozone stress, combined with more efficient
transport.

The 66% increase of OH reactivity seen at 17:00 LT in 2015
compared to 2012 (+ 14.5 s−1) would equal, depending on the
compounds, an equivalent of several ppbv of unmeasured VOCs
(e.g., ca. 2 ppbv of β-ocimene). 2 ppbv is within the variability of
the ozone diel cycle (Figure 10), meaning that, based on ozone
mixing ratios, a release of monoterpenes, or other compounds
that react quickly with ozone cannot be ruled out.

Other Stress-Induced BVOC Emissions

Assuming non-stomatal release and build-up of monoterpenes as
a potential cause of the high OH reactivity at sunset, stress factors
may have induced the release of other reactive BVOCs alongside
with monoterpenes. Water deficit stress is known to alter plants’
mesophyll chemistry for maintaining osmotic potential (Ruehr
et al., 2009) and can modify their BVOC composition and
emission behavior. Drought stress is able to induce new emissions
(Niinemets, 2010). For example, Šimpraga et al. (2011) found a
burst of an unidentified green-leaf volatile associated with acute
water deficit in beech trees.

Apart from triggering monoterpene emissions (see above),
ozone can induce the release of additional BVOCs. For example,
Bison et al. (2018) observed sesquiterpene emissions, which had
not been there without ozone stress, after the Brazilian tropical
tree species Croton floribundus was exposed to high ozone levels.
Ozone-driven sesquiterpene emissions have been observed in
other species as well (e.g., Bourtsoukidis et al., 2012).
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FIGURE 10 | Quarter-hourly diel cycle of Ozone measured at 38m height above ground level in November 2015 with medians (circles) and averages (triangles). Boxes

and whiskers represent the 25–75th and 5–95th percentiles, respectively. The half-hourly median diel cycle of OH reactivity is displayed on the right axis.

O’Connell et al. (2018) report that drought had a more
severe influence on biogeochemical cycles in tropical forest
soils than previously thought, in particular concentrations of
inorganic phosphorous (which usually is a limiting factor
in tropical forest net primary productivity) were decreased,
and organic phosphorous concentrations increased. Drought-
impacted soil chemistry (e.g., changed nutrient availability)
could therefore strongly influence plants. Nutrient availability
might also affect VOC emission from soils, which may be
highly relevant considering a recent report about significant
sesquiterpene release from soil (Bourtsoukidis et al., 2018).

The 2015 OH reactivity maximum occurred during the light-
dark transition of sunset. Several studies have shown VOC
bursts of isoprene, acetaldehyde, and/or (stress-related) green-
leaf volatiles after light-dark transitions (Karl et al., 2002; Graus
et al., 2004; Hayward et al., 2004; Brilli et al., 2011; Jardine et al.,
2012; Jud et al., 2016). These so-called “post-illumination bursts”
are thought to be associated with fast changes in intracellular pH
in fast light-to-dark-transitions (Brilli et al., 2011), a “pyruvate
overflow mechanism” (Karl et al., 2002; Hayward et al., 2004), or
a “pyruvate dehydrogenase bypass pathway” (Jardine et al., 2012).
However, Jud et al. (2016) reported that acute drought stress
lead to a disappearance of the “post-illumination bursts.” Only
when recovering from stress, green-leaf volatiles were enhanced
after the light-to-dark transition. Moreover, these bursts have
only been observed under laboratory conditions. In a forest,
illumination changes gradually and differently for every single
leaf.

Green-leaf volatiles (GLVs) and sesquiterpenes are highly
reactive toward the OH radical. If drought and/or ozone
stress induced their release from vegetation alongside with
monoterpenes, they might explain part of the unexplained OH
reactivity. Courtois et al. (2009) observed 264 stress-related
VOCs emitted by tropical trees, amongst which there were 137

different sesquiterpenes and 13 GLVs. Applying an average of
known literature reaction rate coefficients of sesquiterpenes and
GLVs with OH (kX+OH = 9.71 × 10−11 cm3 molecule−1 s−1),
an average of 40 pptv of each of the 137 sesquiterpenes and
13 GLVs would be sufficient to explain the 14.5 s−1 increase
in total OH reactivity seen at 17:00 LT in 2015 compared to
2012.

SUMMARY AND CONCLUSIONS

Influence of Extreme Drought and High
Temperature Conditions on the Diel Cycle
of OH Reactivity
The diel cycle of total OH reactivity in November 2015 exhibits
two maxima—one around noon, and a second, higher one, in
the sunset phase of the day, which is only by 40% explained by
the measured VOC species. This is in contrast to the diel cycle
in November 2012, where only one maximum occurred around
noon. The absolute amount of OH reactivity over the course
of the day did not differ significantly between both observation
periods, contradicting our initial hypothesis that drought stress
would increase total OH reactivity.

The difference in diel behavior is attributed to extreme
warming and drought linked to the 2015/16 El Niño event,
reflected in lower soil and ambient humidities, and a higher
number of regional forest fires. In the evening hours, less stable
conditions inside and above the canopy favored air transport
to 41m (observation height). Additionally, we conclude that a
combination of factors lead to higher, probably non-stomatal,
emissions of unmeasured BVOCs during the El Niño period
which, transported above the canopy by turbulence, resulted in
a sunset maximum in OH reactivity. The key factors identified
are:
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a) The temperature decrease at the end of the day began 1 h later
in November 2015, which suggests that temperature-related
BVOCs such as monoterpenes were still released during the
sunset hour, while their most important sink (OH radicals)
was already decreasing.

b) Temperature levels were generally elevated in comparison
to other dry seasons, causing above-normal emissions of
monoterpenes and, potentially, other BVOCs.

c) Monoterpene speciation in the emissions was probably shifted
toward more reactive species, such as β-ocimene, due to the
high temperatures.

d) Drought stress might have induced additional emissions
of monoterpenes and/or other BVOCs associated with
maintaining osmotic pressure and/or antioxidant purposes in
the evening hours.

e) A higher number of forest fires prompted elevated ozone
levels (+ 69%) especially in the afternoon/evening, with
possible oxidant stress implications for plants. Monoterpenes,
sesquiterpenes, and/or green-leaf volatiles may have been
released to mitigate this stress.

Implications for an Amazon Rainforest
Subject to Future Global Change
Under stress such as elevated temperatures and water deficit, up
to 10–67% of NPP by land plants is thought to be allocated to
BVOCs (Sharkey and Loreto, 1993; Peñuelas, 2003). This poses
a challenge to carbon cycle closure. The observations presented
in this study have implications for future Amazon rainforest
carbon balance and air chemistry, because it is expected that the
frequency of strong El Niño events will increase due to climate
change (Timmermann et al., 1999; Cai et al., 2015), and the
expanding anthropogenic deforestation exacerbates precipitation
deficits and warming in the Amazon region (Zeng et al., 1996;
Baidya Roy, 2002; Swann et al., 2015; Alkama and Cescatti, 2016;
Zemp et al., 2017). Therefore, it can be expected that warming
and drought events like the one in 2015/16 will occur more
often in the Amazon region (Marengo and Espinoza, 2016). Such
periods of continuous elevated stress levels (oxidative, thermal,
drought) generally result in a shift of the Amazon ecosystem
from sink to source of atmospheric carbon (Metcalfe et al., 2010;
Brienen et al., 2015; van der Laan-Luijkx et al., 2015; Feldpausch
et al., 2016)—one of the reasons being elevated emissions of
stress-mitigating BVOCs. With total OH reactivity observations,
we show that, although the total sum of daytime OH reactivity
was not altered, the diel cycle and amount of VOC mixing ratios
as well as the diel cycle of the size of the OH sink did change in
a rainforest under drought and heat stress. This change in the
timing of the release of ambient OH reactivity can potentially
impact atmospheric chemistry above the Amazon rainforest
with subsequent implications for, amongst others, atmospheric
oxidation capacity, photochemistry, and SOA formation. The
increase of OH reactivity above the canopy at the end of the day
would tend to favor terpene-ozone over terpene-OH reactions.
This is because OH radical concentrations decrease with fading
sunlight. Terpene-ozone reactions are more efficient in SOA
production, and therefore potentially elevated CCN formation

occurred at the time of nocturnal boundary layer formation. Our
findings show that under El Niño conditions, total daytime OH
reactivity was equivalent to ENSO-neutral conditions. However,
as CO2 uptake by the forest is reduced under drought, heat and
oxidative stress, the fraction of carbon uptaken that is released
as VOCs has potentially increased. The effect of drought and
warming needs more investigation in order to understand how
diel rainforest carbon cycles and air chemistry will be modified
under future climate change.

Plants emit more than 30,000 VOCs (Harley, 2013), and most
studies of tropical forest VOCs have so far only focused on few
of them. Often, compounds of very low concentration can be
chemically highly important due to their high reactivity (Yáñez-
Serrano et al., 2018). For a complete understanding of rainforest
atmospheric chemistry and to close the gap of unidentified
(“missing”) OH reactivity (Nölscher et al., 2016), more VOCs
should be taken into account in future studies.
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