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Meat quality is a complex trait that is influenced by genetic and environmental factors,
which includes mineral concentration. However, the association between mineral
concentration and meat quality, and the specific molecular pathways underlying this
association, are not well explored. We therefore analyzed gene expression as measured
with RNA-seq in Longissimus thoracis muscle of 194 Nelore steers for association
with three meat quality traits (intramuscular fat, meat pH, and tenderness) and the
concentration of 13 minerals (Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn).
We identified seven sets of co-expressed genes (modules) associated with at least
two traits, which indicates that common pathways influence these traits. From pathway
analysis of module hub genes, we further found an over-representation for energy and
protein metabolism (AMPK and mTOR signaling pathways) in addition to muscle growth,
and protein turnover pathways. Among the identified hub genes FASN, ELOV5, and
PDE3B are involved with lipid metabolism and were affected by previously identified
eQTLs associated to fat deposition. The reported hub genes and over-represented
pathways provide evidence of interplay among gene expression, mineral concentration,
and meat quality traits. Future studies investigating the effect of different levels of mineral
supplementation in the gene expression and meat quality traits could help us to elucidate
the regulatory mechanism by which the genes/pathways are affected.

Keywords: AMPK pathway, co-expression analysis, intramuscular fat, RNA sequencing, tenderness

Abbreviations: AMPK, AMP-activated protein kinase; CPM, Counts per million; ECM, Extra Cellular Matrix; IMF,
Intramuscular Fat Content; ME, Module eigengene; MM, Module Membership; QC, Quality Control; WBSF7, Warner-
Bratzler Shear Force after 7 days of meat aging; WGCNA, Weighted Gene Co-expression Network Analysis.
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INTRODUCTION

Meat is an important source of nutrients in the human diet.
Meat quality traits such as intramuscular fat content (IMF),
mineral concentration, and fatty acid profile influence consumer
purchase decision (Ahlberg et al., 2014; Mateescu, 2014) and
human health (Pighin et al., 2016). Mineral deficiency, mainly
iron and zinc (Ritchie and Roser, 2018), and protein deficiency
(Clugston and Smith, 2002), have been reported as worldwide
health hazards. In addition, IMF, meat pH, and muscle mineral
concentration also affect meat tenderness, flavor, and juiciness,
which are major sensory traits related to eat satisfaction (Engle
et al., 2000; Ahlberg et al., 2014; Pannier et al., 2014).

Brazil is one of the largest exporters of meat and meat
products, and the Brazilian cattle herd is mainly composed
of Nelore and its crosses (ABIEC, 2018). Despite being well
adapted to tropical climate, Nelore cattle has typically less
tender and marble meat when compared with European breeds
due to several genetic and environmental factors (Cesar et al.,
2015; Tizioto et al., 2015). Genome-wide association (GWAS) of
SNPs (Tizioto et al., 2013, 2015; Cesar et al., 2014) and copy-
number variations (CNVs) (Silva et al., 2016) in conjunction
with transcriptomic studies (Diniz et al., 2016; Silva-Vignato
et al., 2017; Geistlinger et al., 2018; Gonçalves et al., 2018),
have illustrated the genetic factors affecting complex traits in
Nelore. However, growing evidence suggested interplay among
gene expression, mineral concentration, and meat quality traits,
which are still unclear.

Multi-omic data integration has been useful to reveal
potential causal and regulatory mechanisms underlying
complex animal production, reproduction and welfare traits
[reviewed in Suravajhala et al. (2016)]. Integrating genomic,
transcriptomic, and phenotype data has contributed to an
improved understanding of complex traits by identifying
regulatory candidate genes and biological functions (Ponsuksili
et al., 2013; Cesar et al., 2018; Geistlinger et al., 2018; Gonçalves
et al., 2018). Based on that, Mateescu et al. (2017) carried out
a GWAS combined with gene network analysis for association
with the carcass, meat quality traits and mineral concentration.
Among the identified pathways, the authors pointed out calcium-
related processes, apoptosis, and TGF-beta signaling involved
with these traits.

Genome-wide association and differential gene expression
analyses have been fruitful in investigating the role of genes in
complex phenotypes. However, biological systems are a result
of complex interactions among genes and multiple regulatory
mechanisms, which are not explored in the above-mentioned
studies. To address the relationship between transcriptome and
traits, co-expression networks have been successfully employed.
This approach allows to identify and cluster highly connected
genes and associate them to the phenotypes, shedding light on
the common pathways underlying these traits as well as the
main regulators (Langfelder and Horvath, 2008). To date, there
is no information about this approach integrating meat quality
traits and mineral concentration in beef cattle. In addition, we
still have a lack of knowledge about the interplay among gene
expression, mineral concentration, and meat quality traits. Thus,

to explore regulatory pathways, putative gene regulators, and to
study their relationship with muscle and mineral metabolism
in Nelore skeletal muscle, we integrated gene expression, eQTL
variation, mineral concentration (macro and micro minerals),
and meat quality traits (intramuscular fat, shear force, and meat
pH) based on a network approach.

MATERIALS AND METHODS

Ethics Statement
The Institutional Animal Care and Use Committee (IACUC)
from the Empresa Brasileira de Pesquisa Agropecuária
(EMBRAPA – Pecuária Sudeste) approved all experimental
procedures involving the animals used in this study.

Animals and Phenotyping
A total of two hundred Nelore steers (produced at Embrapa
Pecuária Sudeste, São Carlos – Brazil) were used in this
study. The experimental design, production system, and animal
management were previously described (Tizioto et al., 2015;
Diniz et al., 2016). Briefly, animals were raised in the grazing
system until 21 months of age when they were taken to three
feedlots under similar nutritional and sanitary management. The
Nelore steers with an average age of 25 months were harvested
at commercial facilities after about 90 days of feeding and the
Longissimus thoracis (LT) muscle samples were collected.

The steaks (2.5 cm) harvested as a cross-section of the LT
muscle (11th and 13th ribs) collected at slaughter were used
to measure the beef quality traits as described (Tizioto et al.,
2013; Cesar et al., 2014). The traits evaluated were tenderness
(Warner-Bratzler shear force – WBSF7, kg) measured 7 days after
slaughter, meat pH measured 24 h after slaughter along with
intramuscular fat (IMF%) (Tizioto et al., 2013).

Tissue samples were used for total RNA extraction (Diniz
et al., 2016) and mineral measurement (Tizioto et al., 2014).
The concentration of macro minerals [calcium (Ca), magnesium
(Mg), phosphorus (P), potassium (K), sodium (Na), sulfur (S)]
and micro minerals [chromium (Cr), cobalt (Co), copper (Cu),
manganese (Mn), selenium (Se), iron (Fe), and zinc (Zn)] were
measured using inductively coupled plasma-optical emission
spectrometry (ICP OES; Vista Pro-CCD ICP OES1, radial view,
Varian, Mulgrave, Australia) as described by Tizioto et al. (2014).

Genome Expression Profile, Sequencing,
and Data Processing
The LT muscle samples were collected immediately after
slaughter, snap frozen in liquid nitrogen and kept at −80◦C
until RNA extraction. To extract RNA, approximately 100 mg
of frozen tissue was used, and total RNA was purified using
Trizol R© standard protocol (Life Technologies, Carlsbad, CA,
United States). The mRNA concentration and quality were
evaluated in the Bioanalyzer 2100 R© (Agilent, Santa Clara,
CA, United States).

The Illumina TruSeq R© RNA Sample Preparation Kit v2 Guide
(San Diego, CA, United States) protocol was used to generate
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cDNA libraries for each sample using 2 µg of total RNA
as input. Library preparation and sequencing were conducted
by ESALQ Genomics Center (Piracicaba, São Paulo, Brazil).
cDNA libraries were purified and validated using Agilent 2100
Bioanalyzer (Santa Clara, CA, United States). Paired-end (PE)
sequencing was performed on Illumina Hiseq 2500 R© (San Diego,
CA, United States) platform following the standard protocols.
The samples were multiplexed and run on multiple lanes to
obtain 2× 100 bp reads.

The PE reads were filtered using the Seqyclean package version
1.4.13 (1Zhbannikov et al., 2017), which removed all reads with
a mean quality under 24, length under 65 bp, as well as the
adapter sequences. Quality control (QC) of raw RNA-Seq reads
was carried out with FastQC version 0.11.2 (2Andrews, 2010) and
MultiQC version1.4 (3Ewels et al., 2016).

Read mapping and gene counting were carried out by STAR
aligner version 2.5.4b (Dobin et al., 2013) using a reference
genome (Bos taurus, ARS-UCD1.2) and gene annotation file
(release 106) obtained from NCBI (NCBI, 2018). One sample
with mapping rate lower than 70% was removed out for
further analyses.

The data editing was done using the Bioconductor package
edgeR version 3.20.9 (Robinson et al., 2010). Taking into account
that low expressed genes are less reliable and indistinguishable
from sampling noise (Tarazona et al., 2015), the read counts per
gene were normalized to counts per million (cpm function). The
genes with less than one cpm in more than 90% of the samples
were filtered out. Gene counts were normalized applying the
variance stabilizing transformation (VST) from DESeq2 version
1.18.1 (Anders and Huber, 2010).

Potential biases due to technical variation in gene expression
among samples were evaluated by applying a Principal
Component Analysis (PCA) and hierarchical clustering on
normalized data using NOISeq version 2.22.1 (Tarazona et al.,
2015). A linear model was fitted in order to adjust the gene
expression matrix for batch effect (flow cell). To this end,
the removeBatchEffect function from Limma (version 3.34.9) R
package (Ritchie et al., 2015) was used. Three samples were
identified as outliers. Thus, 12 known housekeeping genes were
selected based on the literature (ACTB, API5, EIF2B2, GAPDH,
GUSB, HMBS, PGK1, PPIA, RPL13A, VAPB, YWHAZ) to
evaluate their variability on the samples. The housekeeping genes
expression confirmed these samples as outliers, and therefore,
they were filtered out.

Network Gene Co-expression Analysis
A co-expression approach was applied using the WGCNA
R package version 1.63 (Langfelder and Horvath, 2008).
The method adopted for constructing the networks included
two steps: First, a similarity co-expression network was
calculated with Pearson’s correlation for all genes, followed by
transformation to a signed adjacency matrix (AM) by using the
soft thresholding power β, to which co-expression similarity is

1https://github.com/ibest/seqyclean
2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://multiqc.info/

raised. Based on the criteria of approximating scale-free topology,
we chose the power of β = 12 such that the resulting network
satisfies the scale-free topology (linear regression model fitting
index R2 = 0.80).

Outlier animals (n = 2) were identified based on hierarchical
clustering and filtered out (as they had a lower number of counts
compared to other samples) after WGCNA quality control, as
suggested by the WGCNA authors. Accordingly, 194 animals
and 11,996 genes were used to construct an undirected, signed
network. Topological overlap measure (TOM) was computed
from AM where TOM was converted to dissimilarity TOM. Based
on TOM dissimilarity, we used the dynamic tree cut v.1.63.1
(Langfelder et al., 2008) to identify the modules as the branches
of the resulting dendrogram. As parameters, the minimum size
per module was set to 50 genes with a high sensitivity to split
the clusters (deepSplit = 4). Genes with a similar expression
pattern across samples were grouped into the same module and
arbitrarily labeled by number.

Weighted Gene Co-expression Network Analysis was used for
summarizing the obtained modules by a concept of eigengene.
Eigengenes are the first principal component of the expression
matrix for each module and represent the weighted average of
expression profile for each module. Modules highly correlated
were merged based on the ME dissimilarity threshold of 0.2
leading to the final set of modules for constructing the network.

Trait Association Analysis and Module
Selection
After the phenotypic data were mean-centered and scaled, a
linear model was fitted to analyze the association between the
expression profiles of the MEs and the phenotypes (Li et al.,
2018). The model included the place of birth, the season of
production, and animal’s age, according to the equation:

yijkl = µ+ Ci + Gj + Ak + Tl + εijkl

Where:
yijkl: is the expression level of the eigengene in each module

(n = 23);
µ : is the intercept of ME;
Ci : is the fixed effect for the place of birth (three

levels = CPPSE, IMA, NOHO);
Gj: is the fixed effect for the season of production (three

levels = 2009, 2010, 2011);
Ak : is the covariate for the animal’s age, in days;
Tl : is the trait observation for each animal;
εijkl: is the random residual effect associated with

each observation.
Modules associated with at least two beef quality or mineral

traits (p ≤ 0.05) were selected for further analyses.

Pathway Over-Representation Analysis
Pathway analysis was performed using ClueGO version 2.5.1 to
identify gene KEGG pathways over-represented in the selected
modules (Bindea et al., 2009). Redundant terms were grouped
based on the kappa score = 0.4 (Bindea et al., 2009). The p-value
was calculated and corrected with a Bonferroni step down. Only
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pathways with a p-value (pV) p ≤ 0.05 were selected. These
analyses were carried out based on the B. taurus annotation, and
the network visualization was performed on Cytoscape version
3.6.1 (Shannon et al., 2003).

Hub Gene Selection
Highly connected genes (hub genes) are supposed to be the
main regulators in the network and have a pivotal biological
role concerning the associated trait (Langfelder and Horvath,
2007, 2008). Hub genes in the associated modules were
selected based on the module membership ≥ 0.8 (Langfelder
and Horvath, 2008). Among them, hub genes partaking
in over-represented biological pathways previously identified
were retained. Moreover, over-representation pathway analysis
including all hub genes was applied following the approach
previously described.

Integration of eQTL and Co-expression
Modules
A list of eQTLs from the same population and dataset (Cesar
et al., 2018) evaluated in this work was provided. The dataset
included 1,268 cis- and 10,334 trans-eQTLs based on the
association between 461,466 SNPs and the expression level
of 11,808 genes from 192 animals. Since the eQTLs have a
known effect on gene expression, the eQTLs that target the
hub genes (MM ≥ 0.8) in the selected modules were evaluated.
A Fisher’s exact test was applied to assess the module under/over-
representation (FDR = 0.05).

RESULTS

We applied a network-based approach to identify relevant
genes and pathways associated with meat quality and mineral
concentration in Nelore cattle (Figure 1). Based on the
transcriptomic profiles of skeletal muscle samples of 194 steers,
we constructed a signed weighted gene co-expression network
with WGCNA (Langfelder and Horvath, 2008). From co-
expressed modules and pathway analysis, we thereby identified
several hub genes significantly associated with meat quality traits
and mineral concentration.

Descriptive Statistics and Correlation
Estimates
We analyzed gene expression levels as measured with RNA-seq
for association with three meat quality traits (intramuscular fat,
meat pH, and tenderness) and the concentration of 13 minerals
(Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn) available
for a varying number of samples (ranging from 57 to 194,
Supplementary Table S1). The genetic variance and heritability
for the traits evaluated here, obtained from this population,
ranged from low to moderate as previously published (Tizioto
et al., 2013, 2015). A summary of descriptive statistics for each
trait is in Supplementary Table S1 and Figure 2.

We performed clustering analysis to identify similarities
between traits (Figure 3 – top). We identified four clusters

as follows: cluster 1 (WBSF7 and Cr), cluster 2 (Co, Cu,
Mn, and IMF), cluster 3 (Fe, Ca, S, Zn, Na, P, Mg, and
K), and cluster 4 (pH and Se). The pair-wise correlation
within all traits is provided in Supplementary Figure S1.
Significant and strong correlation ranged from 0.45 to 0.99
among minerals in the cluster 3 (p ≤ 0.05). We identified
positive correlation among IMF with some minerals (Ca = 0.25,
Cu = 0.23, Mn = 0.24, K = 0.17, Na = 0.3, S = 0.18, and
Zn = 0.23) (p ≤ 0.05). Meat pH was positively correlated
with Se (r = 0.29), whereas negatively associated with Fe
(−0.17), Mg (−0.22), P (−0.25), K (−0.21), Na (−0.26),
S (−0.17), and Zn (−0.22) (Supplementary Figure S1).
No significant correlation was observed between tenderness
(WBSF7), IMF, and meat pH.

Data Processing and Co-expression
Network Construction
On average, a total of 13 million of 100 bp paired-end reads
per sample were generated. Around 96.71% of unique reads
were mapped to the reference B. taurus genome (ARS-UCD1.2).
Taking into account that low expressed genes are less reliable and
indistinguishable from sampling noise (Tarazona et al., 2015), we
filtered out the genes with less than one cpm in more than 90% of
the samples. In addition, four samples were removed because they
had a mapping rate lower than 70% or showed high variability on
the housekeeping genes expression (see methods). Thus, we used
11,996 genes and 194 samples for the co-expression analysis.

Considering the WGCNA assumptions, the weighted network
starts from the level of thousands of genes, identifies modules of
co-expressed genes, summarizes the module expression profile as
the first principal component (ME), and relates the MEs with
the trait of interest (Langfelder and Horvath, 2008). The MM
value quantifies the degree of co-expression of a gene with other
genes within a module, thereby enabling the identification of
intramodular hub genes.

From clustering 11,996 genes with WGCNA, we obtained
23 modules labeled by number (Figure 3). The module
size ranged from 69 genes (M9) to 2,008 genes (M14)
(Figure 3 – bottom). The proportion of variance explained
by the eigengenes ranged from 0.18 (M20) to 0.53 (M5)
(Supplementary Table S2).

Trait Association and Pathway
Enrichment Analysis
We performed an association analysis to identify the relationship
between network and traits. This analysis measures the strength
of the effect and the direction of the association between the
module (eigengenes) and the trait. Thus, if the association is
positive, it means the trait increases with increasing “eigengene
expression” or vice-versa. We selected seven modules (M1,
M5, M6, M7, M8, M9, and M17), associated with at least
two traits (p ≤ 0.05) (Figure 3 – bottom) once we also want
to point out shared pathways among traits. We found the
highest number of significant associated modules between M5
(ten associations; negative with IMF, and the concentration
of Mn, Fe, Ca, S, Zn, Na, P, Mg, and K), followed by M8
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FIGURE 1 | Workflow. Green boxes represent the main analysis steps that were involved in data processing and co-expression analysis. Tools applied in each step
are shown in white boxes. Inputs and outputs are shown in blue and dashed red boxes, respectively. ∗A varying number of samples was analyzed for each trait
(Supplementary Table S1). ∗∗Data from an eQTL analysis carried out for the same population used in this study (Cesar et al., 2018).

(nine associations; positive with Cr, negative with IMF, and the
minerals of cluster 3, except Zn). The average expression profile
of M17 module showed association with three traits (positive
with WBSF7, Co, and Mn) along with M7 (negative with Na
and IMF, and positive with Cr concentration). For the modules
M1, M6, and M9, we found an association with two traits. We
identified a positive association among M6 and M9 with Cr
concentration while a negative association was observed between
M9 with IMF, and M6 with Fe concentration. M1 was positively
associated with the concentration of Cr and Co. The modules
with none or only one trait association were not included for
further analysis.

The module membership values for all the genes for
selected modules are given in Supplementary Table S3. We
carried out a pathway over-representation analysis on ClueGo
version 2.5.1 for the seven selected modules (Table 1 and
Supplementary Table S4) to identify meaningful metabolic
pathways involved with meat quality traits and mineral
concentration. We detected several pathways (p-Value ≤ 0.05,

group p-value corrected with Bonferroni step down) mainly
related to energy and protein metabolism, such as AMPK and
mTOR signaling pathways.

Hub Gene Selection, Pathway Analysis,
and Integration With eQTLs
Highly connected genes are likely to play an important role
both in the network’s topology and biological pathways. In
this way, we combined a pathway-based gene analysis for
each selected module (Supplementary Table S4) and gene
connectivity measure (MM ≥ 0.8) (Supplementary Table S3)
selecting 82 hub genes (Table 1, see methods). Further,
taking advantage of an eQTL study carried out in the same
population (Cesar et al., 2018), we screened whether the
genes in the modules were underlying eQTLs, and applied a
Fisher’s exact test to assess the module over-representation.
We identified 323 genes targeted by 760 unique eQTLs
(Table 1 and Supplementary Table S5) into the seven modules.
In addition, we identified 24 out of 323 genes with a
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FIGURE 2 | Box plot of mineral concentration (macro and micro) and meat quality traits. IMF% – Percentage of intramuscular fat content; WBSF7 – Warner-Bratzler
Shear Force after 7 days of meat aging; The data are in log10 scale.

MM ≥ 0.8, and six of them are part of the hub gene
list (Table 1). However, based on the Fisher’s exact test
(FDR = 0.05) no significant over-/under-representation was
detectable in these modules.

To gain further insights into their functions as well as to
integrate the pathways among the modules, we carried out a
KEGG pathway analysis. Considering a kappa score = 0.4 and
p-Value ≤ 0.05 (Figure 4 and Supplementary Table S6),
we clustered the identified pathways into eight groups.
The pathways related to energy metabolism were clustered
together and included AMPK, peroxisome proliferator-activated
receptors (PPAR), insulin, glucagon, and adipocytokine signaling
pathways. We also identified ubiquitin-mediated proteolysis
and biosynthesis of fatty acids pathways over-represented
in this network.

DISCUSSION

In this study, we analyzed genome-wide co-expression in skeletal
muscle for association with mineral concentration and meat
quality traits. Skeletal muscle metabolism is an integrated system
dependent on the efficient coordination of gene expression,
which are tightly regulated (Smith et al., 2013). We found
several co-expression modules associated with two or more
minerals, meat tenderness, and IMF, which indicates that
common pathways influence these traits. From pathway analysis
of module hub genes, we further found an over-representation
for energy and protein metabolism (AMPK and mTOR). These
pathways have been reported as the main drivers regulating

energy balance in muscle (Smith et al., 2013). AMPK and mTOR
are metabolically linked, nutritional and hormonal responsive,
with an intricated relationship with insulin, thyroid hormone
(TH), and TGF-beta signaling pathways (Xu et al., 2012), which
were reported here as well. In addition, these pathways have
been associated with muscle development, fat deposition, and
beef quality traits (Du et al., 2009). Pathways related with
muscle structure such as extracellular matrix, and focal adhesion,
identified here, have also been identified in cattle co-expression
networks (Reverter et al., 2006). The above-mentioned pathways
are not the only ones acting on muscle metabolism. However,
they showed an interaction with mineral concentration and meat
quality in our study.

Phenotype Correlation and
Co-expression Network Analysis
In agreement with previous reports, we found several minerals
positively correlated with IMF, but negatively correlated with
meat pH. For instance, Cu-supplemented Angus were found with
reduced back fat and reduced serum cholesterol level (Engle et al.,
2000). Pigs supplemented with Mn showed an increased marbling
and decreased pH consistent with the correlation identified here
(Constantino et al., 2014). Furthermore, Se supplementation
improved pork meat quality traits by increasing muscle pH
(Calvo et al., 2017). In addition, these studies reported a positive
effect against lipid oxidation. On the other hand, reduced levels
of IMF were associated with low Zn concentration in lambs
(Pannier et al., 2014).

Co-expression analysis resulted in 23 modules from which
we considered seven modules for further analysis based on their
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FIGURE 3 | Hierarchical clustering of phenotypic correlation between traits (top) and module-trait association analysis (bottom). Modules are labeled by number on
the y-axis with the number of contained genes in parenthesis. Each column represents a trait as indicated on the corresponding dendrogram branch. For
significantly associated modules (p ≤ 0.05), the coefficient from the linear model is given within the cell.

association with at least two traits. The genes in modules like M5,
M7, M8, and M9 were associated with IMF and several minerals
suggesting a certain extent of co-regulation. It’s well known that
minerals are essential in a wide range of biological processes.
Here, we provide evidences that mineral content and meat quality
traits are interrelated, as well as interplay with specific genes and
pathways (as discussed below).

Variation in eQTL loci can explain a substantial fraction
of variation observed on the gene expression level (Wang
and Michoel, 2016). It has been observed that variation in

eQTL loci is associated with concerted expression changes
of many genes in co-expression clusters, thereby also impact
the phenotype. Screening the detected co-expression modules,
we found 323 genes affected by at least one eQTL. Despite
132 eQTLs targeting more than one module, most of the
eQTLs were module-specific. However, no significant over-
/under-representation (Fisher’s exact test) was detectable in
these modules, suggesting that other regulatory mechanisms are
involved. Despite that, the expression level of six hub genes
was found affected by trans-eQTLs. These genes are involved
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TABLE 1 | Module characterization.

Modulea eQTLsb TGEc Hub genesd Enriched pathwayse

M1 (78) 13 8 (4) (10) RSAD2, LOC100139670, MX1, IFIH1, OAS1Y,
DDX58, EIF2AK2, IRF7, LOC512486, IFI16

• NOD-like receptor signaling
pathway

M5 (88) 45 15 (3) (9) PTPRC, CTSS, DOCK2, IL10RA, FERMT3, ITGB2,
LCP2, CORO1A, PTPRJ

• Phagosome
• Cell adhesion molecules

(CAMs)

M6 (190) 89 20 (6) (20) GNAI1, PLIN1, FABP4, PPP1R1B, PCK2, ADIPOQ,
PDE3B, TKT, MGST1, LIPE, ELOVL6, MRAS, ACACA,
GNG2, HACD2, FASN, FBP1, ELOVL5, PCK1, G6PD

• Adipocytokine signaling
pathway
• AMPK signaling pathway

M7 (704) 276 76 (2) (11) CAV1, COL4A2, GNAI2, SEPT9, TNFRSF1A,
YWHAB, COL4A1, TMSB4X, SPTAN1, MSN, PARVA

• Ras signaling pathway
• Focal adhesion

M8 (1,200) 414 129 (5) (10) COL1A2, DCN, FN1, COL1A1, FGFR1, COL3A1,
CD44, ITGB5, DSE, CTSK

• Glycosaminoglycan
degradation
Steroid biosynthesis

M9 (69) 16 9 (2) (1) JUND • TGF-beta signaling pathway
• Osteoclast differentiation

M17 (975) 126 66 (2) (21) ASH1L, BIRC6, MED13, HERC1, MED13L,
KMT2A, HUWE1, KMT2C, ATM, HERC2, KMT2D,
MED1, GNAQ, SMC1A, TPR, NSD1, UBR5,
ARHGAP5, KAT6A, PRDM2, ITCH

• Apoptosis
• mTOR signaling pathway

Total – 3304 979f 323 (24) 82

The table shows hub genes and eQTL information for each module found to be significantly associated with two or more traits in Figure 3. aSelected modules with the
number of contained genes in parenthesis. beQTLs – Number of eQTLs associated with genes in a module (Based on Cesar et al., 2018); cTGE – Number of module genes
associated with eQTLs. In the parenthesis are the number of genes with a MM ≥ 0.8; dSelected hub genes based on pathway analysis and MM; Hub genes associated
with eQTLs are in bold; ePathways from module over-representation analysis taking all genes into the module (Supplementary Table S4) Group p-Value ≤ 0.05; f760
unique eQTLs identified.

with lipid metabolism [fatty acid synthase (FASN), and ELOVL
fatty acid elongase 5 (ELOVL5), phosphodiesterase 3B (PDE3B)],
immune system [lymphocyte cytosolic protein 2 (LCP2), and
interleukin 10 receptor subunit alpha (IL10RA)], and actin
remodeling (dedicator of cytokinesis 2 – DOCK2).

Pathway Analysis
Over-representation pathway analysis in the selected
modules (Table 1 and Supplementary Table S4) yielded
glycosaminoglycan biosynthesis and degradation, lysosome,
and steroid biosynthesis in the M8 module. Phagosome, cell
adhesion molecular pathways, and NOD-like receptor signaling
pathway were found enriched in M1 and M5. For the M17,
enriched pathways included protein synthesis pathways such
as mTOR, PI3K-Akt, TH, and AMPK signaling. We also found
protein degradation pathways enriched in the M17 module
such as ubiquitin-mediated proteolysis. TGF-beta signaling
and osteoclast differentiation were enriched in the M9 module.
Energy metabolism pathways were found enriched in M6,
including glycolysis, fatty acid biosynthesis, AMPK, and insulin
signaling. Ras, PI3K-Akt signaling pathways, and protein
processing were found enriched in M7.

We also carried out cross-module enrichment analysis
considering all hub genes, which indicated that the AMPK
signaling pathway plays an important role for muscle mineral
metabolism and meat quality traits. The genes of the AMPK
pathway were also associated with IMF, Cr, and Fe. Furthermore,
the AMPK pathway was also found enriched in genes of M17
(associated with WBSF7, Co, and Mg) and M6 (associated with
Cr and Fe concentration).

Energy and Lipid Metabolism
AMP-activated protein kinase signaling is a major regulator
of the cellular energy status, protein metabolism, and muscle
metabolism (Je et al., 2006; Du et al., 2009; Mihaylova and
Shaw, 2011). We found carbohydrate and fatty acid metabolism
connected by the AMPK pathway (Figure 4). Hub gene ACACA
was thereby involved in pyruvate metabolism, glucagon and
insulin signaling pathways. Co-expressed in the M6 module,
ACACA and FASN encode rate-limiting enzymes for long-chain
fatty acid synthesis (Mihaylova and Shaw, 2011; Ropka-molik
et al., 2017). ACACA catalyzes malonyl-CoA from acetyl-CoA,
which is a substrate for the FASN enzyme in de novo fatty acid
synthesis (Menendez and Lupu, 2007; Du et al., 2009). These
genes, as well as fatty acid binding protein 4, adipocyte (FABP4),
are regulated by the thyroid hormone responsive gene (THRSP)
(Graugnard et al., 2009; Loor, 2010; Oh et al., 2014).

The co-expression of these genes, as well as the negative
association between Fe concentration and lipid metabolism, were
reported in our previous RNA-Seq work where FASN, THRSP,
and FABP4 were shown to be downregulated in animals with low
Fe concentration in muscle (Diniz et al., 2016). Hay et al. (2016)
reported a major role of Fe for lipid oxidative metabolism based
on the downregulation of peroxisome proliferator-activating
receptor gamma coactivator 1α (PPARG1A) measured by qRT-
PCR. TH is also essential for energy metabolism regulation,
and Fe deficiency was found to impair TH synthesis and its
regulatory function (Cunningham et al., 1998). Adipogenic genes
are responsive to PPARG and TH (Graugnard et al., 2009). Thus,
reduced adipogenesis has been associated with Fe deficiency
(Cunningham et al., 1998; Diniz et al., 2016; Hay et al., 2016).
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FIGURE 4 | Network clusters based on over-represented KEGG pathways of hub genes associated with mineral concentration and meat quality traits. Functionally
related groups partially overlap and are arbitrarily colored. The node size represents the pathway enrichment significance.

In addition to factors that increase the intracellular cyclic
AMP level (Omar et al., 2009), Cr increases AMPK activity and
positively affects the insulin sensitivity in skeletal muscle cells
(Hoffman et al., 2015). As part of the insulin pathway, we found
phosphoenolpyruvate carboxykinase 1 and 2 (PCK1, PCK2),
fructose-bisphosphatase 1 (FBP1), and phosphodiesterase 3B
(PDE3B), major regulators of glycolysis and gluconeogenesis
(Pilkis and Granner, 1992). The PDE3B enzyme is stimulated
by insulin and cAMP (Degerman et al., 2011) and affects the
activation of AMPK (Omar et al., 2009). AMPK activation
inhibits fatty acid synthesis and gluconeogenesis via repression
of ACACA and PCK, respectively (Hardie, 2011). Unlike Fe,
the concentration of Cr showed a positive correlation with

M6. These minerals may have an antagonistic relationship
(Staniek and Wójciak, 2018). However, the correlation
between Fe and Cr concentration was not significant in
this study most likely due to the limited sample size for
Cr concentration.

Supplementing goats with Cr decreased the expression level
of ACACA, FASN, and FABP4 (Sadeghi et al., 2015) as measured
by RT-PCR. Furthermore, increased Longissimus muscle area
and reduced fat thickness was associated with a downregulation
of ACACA expression in Cr-supplemented goats (Najafpanah
et al., 2014). It seems to follow that Cr supplementation
can improve meat quality by altering the direction of energy
accumulation from fat deposition toward muscle growth in goats
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(Najafpanah et al., 2014; Sadeghi et al., 2015). Cr-supplemented
Angus-cross steers were also found with increased Longissimus
muscle area and decreased IMF without affecting growth
performance (Kneeskern et al., 2016). Similar results were
reported for Cr-supplemented pigs which showed lower backfat
thickness and fat percentage (Pamei et al., 2014).

Muscle Development, Structure, and Proteolysis
As part of the TGF-beta signaling pathway, we identified the
transforming growth factor beta 3 (TGFB3), which is involved
in muscle proliferation, differentiation, and growth (Nishimura,
2015). However, muscle hypertrophy results from a balance of
protein turnover in which AMPK signaling negatively affects the
protein synthesis (Du et al., 2009). AMPK signaling also acts on
cytoskeletal dynamics (Mihaylova and Shaw, 2011). As pointed
out in Figure 4, common genes act on focal adhesion and ECM-
receptor interaction. For these pathways, we found members
of the collagen gene family (COL1A1, COL1A2, COL3A1,
COL4A1, and COL4A2), glycoproteins and proteoglycans such
as fibronectin 1 (FBN1) and decorin (DCN), respectively. These
molecules are structural components of the ECM and are thus
critical for muscle development (McCormick, 2009; Nishimura,
2015). These genes were also found associated with meat quality
traits such as tenderness and IMF (Ponsuksili et al., 2013; Cesar
et al., 2015; Nishimura, 2015). Except for COL4A1 and COL4A2,
all collagen genes reported above and which we found co-
expressed in M8 were associated with the concentration of Ca,
Cr, Fe, K, Mg, Na, P, S, and IMF. Tajima et al. (1981) reported that
hypocalcemic fibroblast cells showed an increased synthesis of
collagen. Fe concentration has also been associated with collagen
metabolism due to the iron-dependent enzymes involved in
collagen synthesis (Cammack et al., 1990).

We found ubiquitin-mediated proteolysis enriched across
modules as well as for genes in the M17 (Supplementary
Table S3), which was associated with WBSF7, Co, and Mn.
Proteolytic enzymes are important for protein turnover and
postmortem meat aging (Koohmaraie et al., 2002; Gonçalves
et al., 2018). Baculoviral IAP repeat containing 6 (BIRC6) is a
caspase inhibitor and apoptotic suppressor protein (Verhagen
et al., 2001). BIRC6 is part of the ubiquitin-mediated proteolysis
pathway and was positively associated with M17. By impairing
proteolysis, the up-regulation of BIRC6 likely increases shear
force (Liu et al., 2016). Genes from the E3 ubiquitin-protein
ligase family (HERC1, HERC2, HUWE1, ITCH, and UBR5) were
also identified in agreement with a recent report that found
ubiquitination and apoptosis to be potential regulators of meat
tenderness in Nelore cattle (Gonçalves et al., 2018).

CONCLUSION

We demonstrated transcriptional relationships among mineral
concentration and meat quality traits in the skeletal muscle
of Brazilian Nelore cattle. We identified 82 hub genes across
seven co-expression modules which seem to be critical for
this interplay. The AMPK and mTOR signaling pathways
were hereby found to link mineral and muscle metabolism

in Nelore cattle. Future studies investigating different levels
of mineral supplementation, the mineral interaction, and their
effect in the gene expression and meat quality traits could
help us to elucidate the regulatory mechanism by which the
genes/pathways are affected.

DATA AVAILABILITY

All relevant data are within the paper and its Supporting
Information files. All sequencing data is available in the
European Nucleotide Archive (ENA) repository (EMBL-EBI),
under accession PRJEB13188, PRJEB10898, and PRJEB19421
(https://www.ebi.ac.uk/ena/submit/sra/). All additional datasets
generated and analyzed during this study may be available upon
request from the corresponding author on reasonable request.

AUTHOR CONTRIBUTIONS

WD, PT, LR, LC, and HK conceived the idea of this research. WD,
GM, LG, FB, and AC, JA, PdO, PT carried out the bioinformatics
and data analysis. WD, GM, PB, FB, HK, JA, LC, LR collaborated
with the interpretation of results, discussion and review the
manuscript. WD, PB, and GM drafted the manuscript. All
authors have read and approved the final manuscript and agreed
to be accountable for the content of the work.

FUNDING

This study was conducted with funding from EMBRAPA
(Macroprograma 1, 01/2005), FAPESP (grant# 2012/23638-8),
and by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) – Finance Code 001. LR and LC
were granted CNPq fellowships. WD was granted by São Paulo
Research Foundation (FAPESP) grant# 2015/09158-1 and grant#
2017/20761-7 scholarships. Federal University of São Carlos
(PROAP/PNPD) granted funding for publishing.

ACKNOWLEDGMENTS

We are thankful to Bruno G. N. Andrade for the server
management and support; Dr. Ana Rita Araújo Nogueira and
Dr. Caio F. Gromboni for the mineral data; and the Technical
University of Denmark (DTU Compute) for accepting the first
author as a visiting scholar.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
00210/full#supplementary-material

FIGURE S1 | Correlation matrix of mineral concentration and meat quality traits in
Nelore cattle. Each cell displays the correlation value when significant (p ≤ 0.05).
The matrix is color-coded by correlation according to the color legend.

Frontiers in Genetics | www.frontiersin.org 10 March 2019 | Volume 10 | Article 210

https://www.ebi.ac.uk/ena/submit/sra/
https://www.frontiersin.org/articles/10.3389/fgene.2019.00210/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00210/full#supplementary-material
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00210 March 12, 2019 Time: 10:0 # 11

Diniz et al. Co-expression Network of Meat Composition

TABLE S1 | Summary statistics of meat quality traits and mineral concentration
in Nelore cattle.

TABLE S2 | The proportion of variance explained by the module eigengene (MEs).

TABLE S3 | Gene list and module membership for each selected module.
Spreadsheet tabs are divided by module.

TABLE S4 | Summary of pathway analysis from ClueGo for genes clustered into
the selected modules. Spreadsheet tabs are divided by module.

TABLE S5 | Genes targeted by eQTLs for each selected module. Genes with
MM ≥ 0.8 are highlighted in bold. Spreadsheet tabs are divided by module.

TABLE S6 | Summary of pathway analysis from ClueGo for hub genes.
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