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Abstract
Aims: Indicators	that	can	provide	information	during	the	early	stages	of	restoration	
are	very	useful	for	predicting	restoration	outcomes.	We	posed	the	following	ques-
tions:	Can	savanna	restoration	outcomes	be	affected	by	the	initial	functional-	group	
composition?	Are	there	functional	groups	that,	when	established	early,	can	prevent	
colonization	by	 invasive	grasses,	trigger	a	successful	restoration	trajectory,	and	be	
used	as	early	indicators	of	restoration	success?
Location:  Brazilian	 savanna	 (cerrado)	 in	 Central	 Brazil	 (14°07′2.54″	 S,	
47°38′30.36″	W).
Methods: We	established	110	plots	spanning	a	naturally	occurring	range	of	species	
composition	 in	 savanna	 areas	 that	 had	been	 restored	 through	direct	 seeding.	We	
looked	for	different	initial	compositions	of	the	following	functional	groups:	perennial	
grasses,	annual	grasses,	short-	lived	shrubs,	and	invasive	grasses.	We	measured	veg-
etation	cover	over	two	years	and	evaluated	the	effects	of	the	initial	functional	com-
position	on	the	successional	trajectory	of	the	plots.
Results: The	initial	dominant	functional	group	determined	the	assembly	trajectory.	
Short-	lived	and	fast-	growing	species	were	replaced	by	perennial	species,	indicating	a	
fast	species	turnover.	Invasive	grass	cover	remained	stable	over	time,	demonstrating	
that	once	they	establish	and	dominate	an	area,	an	alternative	stable	state	is	achieved.
Conclusions: Our	 results	demonstrate	 the	 importance	of	 introducing	a	mixture	of	
functional	groups	when	restoring	savannas	in	severely	disturbed	areas.	Fast-	growing	
and	short-	lived	species	are	important	for	quickly	covering	the	ground,	creating	the	
conditions	 for	 the	 establishment	 of	 perennial	 grasses	 that	 naturally	 dominate	 the	
herbaceous	layer	of	savannas.	Trees	are	also	characteristic	of	the	savanna	structure	
and	must	be	introduced.	Our	results	indicate	that	invasive	grasses	must	be	eliminated	
and/or	constantly	controlled	before	native	species	are	introduced.
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1  | INTRODUCTION

Understanding	the	assembly	triggers	and	trajectories	of	ecosystems	
under	 restoration	 is	 essential	 to	 improving	 restoration	 methods	
(Suding	 &	 Hobbs,	 2009).	 Achieving	 restoration	 goals	 may	 require	
implementing	different	management	steps	to	steer	ecosystems	into	
desired	assembly	trajectories.	This	may	involve	restoring	the	phys-
ical	and	chemical	conditions	of	the	soil,	controlling	invasive	species	
and	introducing	different	functional	groups	to	recreate	successional	
stages,	 thus	 reconstructing	 community	 structure	 and	 biodiversity	
(Clewell	&	Aronson,	2007).	There	is	a	growing	consensus	that	com-
munity	assembly	 is	not	deterministic	and	may	follow	different	tra-
jectories	determined	by	historic	events	and	biotic,	abiotic	and	seed	
dispersal	 filters	 (Fukami,	2015;	Young,	Zefferman,	Vaughn,	&	Fick,	
2014).	Therefore,	understanding	community	assembly	pathways	al-
lows	us	to	assess	what	determines	success	or	failure	and	to	develop	
adaptive	management	practices.

There	 is	 still	 limited	 knowledge	 on	 savanna	 trajectories	 after	
disturbances.	Most	 savanna	 succession	 studies	 focus	 on	 determi-
nants	 of	 coexistence	 between	 trees	 and	 grasses.	 Soil	 conditions,	
rainfall	seasonality	(Lehmann,	Archibald,	Hoffmann,	&	Bond,	2011)	
and	frequency	and	intensity	of	disturbances,	especially	fire	(Bond	&	
Keeley,	2005;	Hoffmann	et	al.,	2012)	and	grazing	(Jacobs,	Kingston,	
&	 Jacobs,	 1999),	 are	 important	 structuring	 factors	 in	 savannas.	
Savanna	 species	 evolved	with	 these	 disturbances	 and	 often	 have	
adaptations	 to	 protect	 regenerative	 tissues,	 such	 as	 large	 below-
ground	organs	and	thick	barks	(Lawes,	Adie,	Russell-	Smith,	Murphy,	
&	Midgley,	2011;	Simon	et	al.,	2009)	 that	enable	surviving	and	re-
sprouting	 after	 disturbance	 (Souchie	 et	al.,	 2017).	However,	major	
anthropogenic	disturbances,	such	as	intensive	farming,	pastures	and	
mining,	decrease	plant	resprouting	ability	(Ferreira,	Walter,	&	Vieira,	
2015).	Most	savanna	successional	models	do	not	take	into	account	
situations	 in	 which	 the	 bud	 and	 seed	 banks	 have	 been	 depleted	
(Veldman	et	al.,	2015).	In	addition,	the	autecology	of	tropical	savanna	
species	and	the	vegetation	dynamics	of	its	herbaceous	layer	are	still	
poorly	understood,	and	assembly	and	succession	models	need	to	be	
expanded	to	include	disturbances	that	eliminate	resprouting	ability	
(Cava,	Pilon,	Ribeiro,	&	Durigan,	2017).

Savanna	 restoration	 faces	 several	 challenges.	 First,	 natural	
regeneration	 tends	 to	 be	 slow,	 since	 most	 species	 are	 adapted	
to	persist,	 rather	 than	disperse	 (Bond	&	Parr,	2010).	As	a	 result,	
restoring	 severely	 disturbed	 savanna	 sites	 requires	 active	 res-
toration.	 Direct	 seeding,	 hay	 transfer	 and	 topsoil	 transfer	 are	
considered	effective	methods	 for	 grassland	 restoration	 (Ferreira	
et	al.,	2015;	Hedberg	&	Kotowski,	2010;	Pilon,	Buisson,	&	Durigan,	
2017).	 There	 are	 few	 studies	 on	 savanna	 restoration,	 but	 direct	
seeding	is	the	most	commonly	used	technique	(Palma	&	Laurance,	
2015)	and	has	been	successfully	used	to	establish	native	species	
in	Brazilian	savannas	(Pellizzaro	et	al.,	2017;	Silva	&	Vieira,	2017).	
The	advantages	of	this	method	 include	 low	cost	and	easy	 imple-
mentation	 (Grossnickle	&	 Ivetić,	2017;	Palma	&	Laurance,	2015).	
Seeds	 may	 be	 introduced	 at	 high	 densities	 (Campos-	Filho,	 Da	

Costa,	De	Sousa,	&	Junqueira,	2013),	a	requirement	for	adequately	
covering	the	ground	with	grasses	and	herbs	that	is	cost-	prohibitive	
with	seedling	planting	(Grossnickle	&	Ivetić,	2017).	Moreover,	di-
rect	seeding	may	impose	a	lighter	anthropogenic	fingerprint,	since	
the	resulting	community	is	naturally	selected	from	the	large	den-
sity	of	individuals	initially	sown.

Invasive	 grass	 species	 are	 another	major	 hurdle	 for	 the	 resto-
ration	of	grassy	biomes	around	the	world.	Both	in	Neotropical	and	
in	Australian	savannas,	African	grasses	were	introduced	for	pasture	
enhancement	and	 intentionally	dispersed	to	a	wide	range	of	areas	
(Foxcroft,	 Richardson,	 Rejmánek,	 &	 Pyšek,	 2010;	 Parsons,	 1972).	
These	species	evolved	with	fire	and	intense	herbivory	by	large	mam-
mals,	becoming	well	adapted	to	grazing,	whereas	native	species	of	
Neotropical	 and	 Australian	 savannas	 are	 less	 tolerant	 of	 defolia-
tion	 (Baruch,	 1996).	 Fast	 biomass	 accumulation	 increases	 fire	 fre-
quency	and	intensity,	creating	grass-	fire	cycles	that	favor	invasions	
(D’Antonio	&	Vitousek,	1992).	These	adaptations	are	related	to	func-
tional	 traits;	African	grasses	have	high	growth	rates,	which	enable	
them	 to	 establish	 quickly	 and	 successfully	 compete	 for	 resources	
(Baruch,	Hernandez,	&	Montilla,	1989).	Invasive	species	have	higher	
phenotypic	plasticity	when	there	is	no	resource	limitation	(Davidson,	
Jennions,	&	Nicotra,	2011),	increasing	their	adaptability	to	different	
conditions.	 These	 traits	 allow	 invasive	 grasses	 to	 displace	 native	
grasses,	 leading	 to	 alternative	 stable	 states	 dominated	 by	 the	 in-
vasive	grasses	 (Almeida-	Neto	et	al.,	 2010;	Firn,	House,	&	Buckley,	
2010;	Pivello,	Shida,	&	Meirelles,	1999;	Veldman	et	al.,	2015).

The	competition	between	native	and	invasive	species	at	the	be-
ginning	of	community	assembly	can	have	both	short	and	long-	term	
effects	 on	 restoration	 (Vaughn	 &	 Young,	 2015;	 Werner,	 Vaughn,	
Stuble,	Wolf,	&	Young,	2016)	and	it	 is	 influenced	by	the	functional	
traits	 of	 the	 introduced	 species	 (Almeida-	Neto	 et	al.,	 2010;	 Fort,	
Cruz,	 &	 Jouany,	 2014;	 Funk,	 Cleland,	 Suding,	 &	 Zavaleta,	 2008;	
Kunstler	 et	al.,	 2016;	 Pywell	 et	al.,	 2003).	 Thus,	 initial	 functional-	
group	 composition	 may	 influence	 the	 success	 or	 failure	 of	 res-
toration	 efforts.	 Monitoring	 restoration	 trajectories	 arising	 from	
different	initial	functional-	group	compositions	identifies	groups	that	
are	 able	 to	 promote	 successful	 restoration	 (González,	 Rochefort,	
Boudreau,	Hugron,	&	Poulin,	2013;	Suding,	2011;	Wortley,	Hero,	&	
Howes,	2013),	and	 finding	 indicators	of	 restoration	success	at	 the	
early	 stages	 of	 regeneration	 is	 useful	 to	 predict	 restoration	 out-
comes	(González	et	al.,	2013).

We	 tracked	 savanna	 community	 assembly	 in	1	m2	 plots,	 a	 size	
that	 corresponds	 to	 the	 area	within	which	plants	 interact,	 as	 part	
of	a	large-	scale	savanna	restoration	project	in	abandoned	pastures	
in	 central	 Brazil.	 Invasive	 grasses	 recolonized	 the	 areas	 being	 re-
stored,	germinating	from	the	seed	bank	and	creating	patches	with	
different	proportions	of	native	 species	 and	 invasive	grasses.	Over	
a	period	of	two	years,	we	monitored	areas	that	were	dominated	ini-
tially	 by	 different	 functional	 groups	 (native	 annual	 grasses,	 native	
perennial	grasses,	native	short-	lived	and	fast-	growing	shrubs,	native	
fast-	growing	 trees,	 and	 invasive	 grasses)	 to	 answer	 the	 following	
questions:	(1)	Are	the	final	(after	two	years)	species	composition	and	
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final	proportions	of	native	and	exotic	species	determined	by	(a)	initial	
composition,	(b)	initial	proportion	of	native	species,	or	(c)	initial	dom-
inant	functional	group?;	and	(2)	Do	restoration	sites	exhibit	species	
turnover,	indicating	a	successional	trajectory?

2  | METHODS

2.1 | Study	site

The	study	was	conducted	in	Chapada	dos	Veadeiros	National	Park,	
central	Brazil	 (14°07′2.54″	 S	 47°38′30.36″	W),	 between	800	 and	
1,650	m	above	sea	level.	Annual	precipitation	ranges	from	1,500	to	
1,750	mm,	concentrated	between	October	and	April	(Aw	climate	in	
Köppen’s	classification	(ICMBio,	2009)).	The	study	area	is	located	on	
a	flat	terrain	with	a	prevalence	of	Plinthosols.

Based	 on	 the	 surrounding	 vegetation	 and	 soil	 conditions,	 the	
original	 vegetation	 cover	 of	 the	 study	 site	 was	 open	 savanna,	 a	
vegetation	type	comprised	of	an	herbaceous	layer	with	5%–20%	of	
tree	and	shrub	cover	 (Ribeiro	&	Walter,	2008).	The	area	was	con-
verted	into	pasture	before	the	1980s	and	left	abandoned	for	at	least	
20	years,	with	no	cattle	grazing	or	management.	The	area	was	dom-
inated	by	invasive	grasses	when	a	restoration	program	was	initiated	
in 2012.

In	each	of	the	2012,	2013,	and	2014	sowing	campaigns	a	new	
adjacent	 area	 was	 selected	 for	 direct	 seeding	 of	 native	 grasses,	

shrubs	and	trees	(Figure	1;	see	the	species	list	inAppendix	S1).	Each	
sowing	campaign	was	part	of	a	large-	scale	experiment	(≥3	ha)	within	
the	context	of	an	adaptive	management	model	(A.	B.	Sampaio,	I.	B.	
Schmidt,	D.	L.	M.	Vieira,	K.	D.	Holl,	K.	F.	Pellizzaro,	M.	Alves,	A.	G.	
Coutinho,	&	A.	O.	O.	Cordeiro,	 in	 preparation),	meaning	 that	 the	
number	and	type	of	soil	preparation	interventions	and	seed	density	
and	 composition	 varied	 between	 years.	 In	 all	 sowing	 campaigns,	
the	soil	was	prepared	by	repeatedly	harrowing,	decompacting	the	
soil,	uprooting	invasive	grasses	and	killing	invasive	grass	seedlings	
that	had	germinated	from	the	soil	seed	bank.	In	2014,	a	controlled	
burn	was	conducted	before	soil	harrowing	to	reduce	the	biomass	
of	 invasive	grasses,	facilitating	harrowing	and	removal	of	 invasive	
grass	seeds	above	the	soil	surface.	Because	harrowing	and	fire	do	
not	eliminate	the	seed	bank,	invasive	grasses	have	been	able	to	re-
establish	in	variable	numbers.

Changes	in	seed	density,	species	composition,	micro-	scale	soil	
variation,	 and	 intensity	 and	 type	 of	 soil	 interventions	 between	
sowing	 campaigns	 created	 different	 conditions	 that	 led	 to	 the	
dominance	 of	 different	 functional	 groups.	 In	 2015	 there	 were	
patches	dominated	by	 invasive	grasses,	others	dominated	by	na-
tive	grasses,	and	others	dominated	by	shrubs	and	trees.	We	also	
observed	patches	with	 intermediate	proportions	of	these	groups	
(Figure	2).	Our	goal	was	to	understand	the	trajectories	of	species	
and	functional	groups	over	two	years	(2015–2017),	 in	the	period	
following	the	early	establishment	of	the	plants	in	these	patches.	It	

F IGURE  1 Savanna	restoration	sites	
in	Chapada	dos	Veadeiros	National	Park,	
central	Brazil.	Points	indicate	each	of	the	
110 1- m2	permanent	sampling	plots.	The	
map	on	the	top	right	shows	the	location	of	
the	restoration	area	in	Brazil	[Color	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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is	important	to	note	that	quantifying	the	effect	of	environmental	
and	management	variables	 in	creating	different	patches	was	not	
the	goal	of	our	study.

2.2 | Experimental	design	and	data	collection

In	 January	2015,	 90	1	×	1	m	plots	were	 established	 in	 restoration	
areas	that	had	been	seeded	from	2012	to	2014.	We	visually	searched	
for	the	most	pronounced	gradient	of	functional-	group	composition,	
placing	plots	 in	areas	with	different	proportions	of	native	grasses,	
native	shrubs,	native	trees	and	invasive	grasses	(Figure	2).	The	plots	
were	 not	manipulated;	 as	 a	 result,	 plots	 could	 also	 have	 different	
biomasses	and	ages	 (between	one	and	three	years	old).	 In	April	of	
the	same	year,	we	established	21	additional	plots	where	all	invasive	
grasses	were	removed	(excavated)	to	increase	the	number	of	plots	
dominated	by	native	species,	for	a	grand	total	of	110	plots.	Native	
species	were	not	damaged.	Plots	were	not	manipulated	again	until	
the	end	of	the	study.

We	measured	vegetation	cover	at	the	species	level,	with	the	ex-
ception	of	Aristida	spp. and Stylosanthes	spp.,	which	were	measured	at	
the	genus	level.	Vegetation	cover	was	repeatedly	sampled	in	January	
and	April	(mid-		and	late-	rainy	season)	of	2015	and	2017.	We	used	the	
point-	intercept	method	 (Coulloudon	 et	al.,	 1999;	 Jonasson,	 1988),	
which	 generates	 an	 accurate	 three-	dimensional	 representation	 of	

the	space	occupied	by	each	species	in	each	plot	(vertical	occupation	
and	horizontal	occupation),	providing	a	good	estimate	of	plant	bio-
mass	(Jonasson,	1988).	In	each	permanent	plot,	we	used	a	1	m2 iron 
frame	subdivided	into	100	square	cells	of	100	cm2.	The	frame	was	
held	horizontally	1.20	m	above	the	ground.	We	inserted	a	2-	m	long	
and	1-	cm	wide	stick	through	each	cell	and	recorded	which	species	
hit	 the	stick	and	how	many	contacts	each	species	made.	We	used	
“number	of	hits”	as	the	unit	of	cover.	Because	cells	did	not	have	a	
limit	on	the	number	of	hits,	the	total	could	easily	exceed	100	hits	in	
a	single	plot	(Figure	2).

2.3 | Statistical	analysis

We	used	exploratory	plots	to:	(a)	evaluate	total	vegetation	cover	in	
2017	and	shifts	in	the	proportions	of	native	and	invasive	grass	spe-
cies	between	2015	and	2017;	(b)	assess	competitive	success	in	each	
plot	based	on	shifts	from	the	initial	proportion;	and	(c)	identify	the	
best	and	worst	performing	 species	 for	each	year	 in	 terms	of	 total	
vegetation	cover	and	shift	in	proportion	between	2015	and	2017.

We	 grouped	 plots	 according	 to	 functional-	group	 dominance.	
First,	 species	were	 classified	 into	 functional	 groups	 based	 on	 ori-
gin	 (native	or	 invasive),	 life	 form,	 life	 cycle	and	growth	 rate	 (see	a	
list	 of	 the	 species	 and	 the	 corresponding	 functional	 group	 inAp-
pendix	S2).	Plots	were	grouped	based	on	dominance	by	functional	

F IGURE  2 Examples	of	dominance	and	coexistence	of	different	functional	groups	in	study	plots	in	savanna	restoration	sites	in	
Chapada	dos	Veadeiros	National	Park,	central	Brazil.	(a)	Plot	with	no	dominance	(coexistence	of	native	shrubs	and	grasses);	(b)	plot	with	
low	vegetation	cover;	(c)	plot	with	dominance	of	the	invasive	grass	Urochloa decumbens;	(d)	Plot	with	dominance	of	the	native	annual	grass	
Andropogon fastigiatus;	(e)	and	(f)	steps	for	data	collection:	a	stick	is	placed	inside	each	grid	cell;	the	observer	counts	the	number	of	contacts	
by	each	species.	More	than	one	hit	may	be	recorded	per	cell,	meaning	that	total	vegetation	cover	may	exceed	100	for	a	single	plot [Color	
figure	can	be	viewed	at	wileyonlinelibrary.com]

(a) (c) (e)

(b) (d) (f)
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group	or	 invasive	species.	We	used	the	Berger-	–Parker	dominance	
index	 (Berger	 &	 Parker,	 1970),	 a	 simple	 measure	 of	 the	 propor-
tional	importance	of	the	most	abundant	species	or	functional	group	
(d = Cmax/Ctot,	 where	 Cmax	=	cover	 of	 the	 dominant	 species	 and	
Ctot	=	total	 plot	 cover).	 Plots	 with	 d	≥	0.5	 were	 considered	 “domi-
nated”	and	plots	with	d	<	0.5	were	classified	as	“not	dominated”.	In	
addition,	plots	with	vegetation	cover	below	50	hits	were	considered	
“empty”,	and	plots	with	50–200	hits	were	classified	as	“low	vegeta-
tion	cover”	(Table	1).	All	functional	groups	were	dominated	by	one	
or	 two	of	 the	most	 important	 species	 (Table	1).	For	each	plot,	we	
determined	the	initial	functional-	group	dominance	and	shifts	in	the	
dominance/cover	 category	between	2015	and	2017.	We	used	 the	
Sankey	diagram	 to	 show	shifts	 in	 functional-	group	dominance	be-
tween	2015	and	2017.

We	used	non-	metric	multidimensional	scaling	to	analyze	tempo-
ral	variation	in	species	composition.	Rare	species	(occurrence	<	5%)	
were	excluded	from	the	analysis	because	they	are	less	important	for	
the	dynamics	 studied,	 although	 they	 can	 influence	 the	 final	 result	
of	assembly	(Poos	&	Jackson,	2012).	This	ordination	was	performed	
using	the	VEGAN	package	 (Oksanen	et	al.,	2018),	 in	R	software	 (R	
Core	Team,	2017).

3  | RESULTS

In	 2015	 native	 species	 cover	was	 86%	 higher	 than	 invasive	 grass	
cover,	 but	 later	 invasive	 grasses	 doubled	 their	 cover,	 leading	 to	
similar	cover	values	in	2017	(2015:	invasive	grasses	=	1.32	touches/
cell,	 on	 average;	 native	 species	=	2.47	touches/cell;	 2017:	 invasive	
grasses	=	2.75	touches/cell;	 native	 species	=	2.91	touches/cell).	

Invasive	grass	cover	 increased	 in	72	out	of	110	plots,	while	native	
cover increased in 38.

The	 proportional	 increase	 of	 native	 species	 cover	 (restoration	
success)	 or	 invasive	 grass	 cover	 (restoration	 failure)	 was	 not	 cor-
related	with	the	initial	proportions	of	native	or	invasive	grass	species	
(Figure	 3).	 Only	 plots	 dominated	 by	 invasive	 grasses	 (above	 80%)	
remained	stable.	Plots	with	more	than	20%	of	natives	had	both	pos-
itive	and	negative	variation	in	the	percent	cover	of	native	versus	in-
vasive	species	(Figure	3).

There	 was	 considerable	 species	 turnover	 over	 two	years.	 The	
short-	lived	shrubs	Stylosanthes	spp.	and	Lepidaploa aurea	and	the	an-
nual	grass	Andropogon fastigiatus	had	a	high	cover	 in	2015	that	was	
strongly	 reduced	by	2017	 (Figure	4a).	 In	 contrast,	 the	 cover	of	 the	
invasive	 grasses	 Urochloa decumbens and Andropogon gayanus,	 the	
native	perennial	 grasses	Schizachyrium sanguineum and Trachypogon 
spicatus	and	the	fast-	growing	native	tree	Tachigali vulgaris increased 
over	the	same	period	(Figure	4a).	The	native	grass	Schizachyrium san-
guineum	and	the	invasive	grasses	Urochloa decumbens and Andropogon 
gayanus	were	the	dominant	species	in	2015	and	2017	(Figure	4a).	The	
NMDS	 revealed	 a	 compositional	 shift	 from	 short	 life-	cycle	 species	
(short-	lived	shrubs	and	the	annual	grass	Andropogon fastigiatus)	to	pe-
rennial	species,	both	native	and	invasive	(Figure	4b).	Plots	with	native	
perennial	grasses	also	tended	to	shift	toward	invasive	grasses.

TABLE  1  	Functional	groups	in	2015	and	percentage	cover	of	
the	two	most	dominant	species	in	each	group	in	savanna	
restoration	sites	in	Chapada	dos	Veadeiros	National	Park,	central	
Brazil

Functional group Dominant species
Percentage 
cover (%)

Perennial	grasses S. sanguineum 43.7

Aristida	spp. 16.6

Short-	lived	shrubs Stylosanthes	spp. 50.3

Lepidaploa aurea 26.2

Annual	grasses Andropogon fastigiatus 71.7

Stylosanthes	spp. 10.4

Invasive	grasses Urochloa decumbens 33.8

Andropogon gayanus 33.5

No	dominance Andropogon gayanus 17.0

Andropogon fastigiatus 12.8

Low	vegetation	
cover

Urochloa decumbens 39.4

Stylosanthes	spp. 12.2

Empty Andropogon gayanus 21.0

Lepidaploa aurea 18.0

F IGURE  3 Dispersion	plot	of	the	native	percent	cover	in	
2015	(y-	axis)	and	native	percent	cover	in	2017	(x-	axis)	in	savanna	
restoration	sites	in	Chapada	dos	Veadeiros	National	Park,	central	
Brazil.	The	proportion	of	invasive	grasses	equals	100	minus	the	
proportion	of	native	species.	Each	point	corresponds	to	one	
of	the	110	1-	m2	plots.	Point	size	is	proportional	to	total	cover	
in	2015	(larger	size	=	higher	total	plant	cover).	The	dashed	line	
separates	plots	where	native	percent	cover	increased	(above	the	
line)	or	decreased	(below	the	line).	The	color	corresponds	to	the	
intensity	of	variation;	green	means	a	shift	from	invasive	grass	
to	native	species	dominance	and	red	means	a	shift	from	native	
species	to	invasive	grass	dominance	[Color	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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The	plots	became	more	heterogeneous	in	2017,	when	33	plots	
had	no	dominance	 compared	 to	17	plots	 in	2015	 (Figure	5).	 Plots	
dominated	by	invasive	species	 increased	from	36	to	57	out	of	110	
plots.	 Forty-	nine	 percent	 of	 the	 plots	 dominated	 by	 invasive	 spe-
cies	in	2017	had	also	been	dominated	by	invasives	in	2015,	19%	had	
had	 low	coverage	 in	2015	and	32%	had	been	dominated	by	other	
functional	groups	or	no	dominance	 (Figure	5).	However,	six	out	of	
the	36	plots	dominated	by	 invasive	grasses	became	no	dominance	
plots.	Perennial	grasses	were	replaced	by	no	dominance	and	invasive	

grass	plots,	but	also	maintained	and	reached	dominance	in	plots	of	
all	 groups,	 resulting	 in	 a	 decrease	 from	21	 in	 2015	 to	 15	 in	 2017	
(Figure	5).	Short-	lived	shrubs	and	annual	grasses	lost	dominance	pri-
marily	to	invasive	species,	perennial	grasses,	or	to	the	no	dominance	
group	(Figure	5).	Most	low-	coverage	plots	shifted	to	invasive	grass	
dominance	(Figure	5).

4  | DISCUSSION

Attempts	 to	 reassemble	 grassy	 ecosystems	 through	 active	 resto-
ration	 are	 recent	 and	 rare.	 Some	 examples	 are	 cerrado	 savannas	
in	Brazil	 (Pellizzaro	et	al.,	2017;Pilon	et	al.,	2017;	Silva,	Oliveira,	da	
Rocha,	&	Vieira,	2015),	 semi-	natural	grasslands	 in	Europe	 (Baasch,	
Engst,	Schmiede,	May,	&	Tischew,	2016;	Hedberg	&	Kotowski,	2010),	
grasslands	 in	 USA	 (Holl	 et	al.,	 2014;	 Martin,	 Moloney,	 &	 Wilsey,	
2005),	 African	 savannas	 (Kinyua,	McGeoch,	 Georgiadis,	 &	 Young,	
2010)	and	Australian	savannas	(O’Dwyer	&	Attiwill,	2000).	There	is	
evidence	 that	 it	 is	 possible	 to	 reintroduce	many	 native	 species	 of	
trees	and	some	shrubs	and	herbs	 in	the	Brazilian	savanna	through	
direct	seeding	(Pellizzaro	et	al.,	2017;	Silva	&	Vieira,	2017).	However,	
the	present	study	shows	that	there	are	major	challenges	to	estab-
lishing	an	initial	community	resistant	to	re-	establishment	of	invasive	
grasses.	Our	results	showed	that	competition	was	asymmetric,	with	
invasive	 species	 gaining	more	 space	 than	 native	 species.	 Invasive	
grasses	were	able	 to	maintain	dominance	 in	plots	where	 their	 ini-
tial	 percent	 cover	 was	 above	 80%	 and	 increase	 percent	 cover	 in	
other	plots,	completely	outcompeting	native	species	in	some	plots.	
On	the	other	hand,	more	than	80%	of	cover	of	native	species	was	
insufficient	to	prevent	invasive	grasses	from	spreading.	Here,	as	in	
other	grassland	ecosystems	around	the	world,	asymmetric	competi-
tion	has	been	observed	between	invasive	grasses	and	native	species	
(Bakker	&	Wilson,	2001;	Schwinning,	Meckel,	Reichmann,	Polley,	&	
Fay,	2017).

Invasive	 grasses	 can	 outcompete	 native	 species	 through	 re-
source	 preemption	 or	 non-	resource-	mediated	 effects,	 such	 as	 al-
lelopathy	(Barbosa,	Pivello,	&	Meirelles,	2008;	Kato-	Noguchi	et	al.,	
2014).	Urochloa decumbens and Andropogon gayanus	were	the	most	
aggressive	 invasive	species	 in	our	study	plots.	Urochloa decumbens 
was	introduced	in	Brazil	as	livestock	forage	(Lorenzi,	1991;	Parsons,	
1972)	 and	 became	 a	 strong	 invader	 in	 Brazilian	 savannas	 (Pivello	
et	al.,	1999).	Urochloa decumbens	has	allelopathic	properties	capable	
of	 displacing	Melinis minutiflora,	 another	 strongly	 invasive	 grass	 in	
the	Americas	(D’Antonio,	Yelenik,	&	Mack,	2017;	Pivello	et	al.,	1999).	
In	fertilized	areas,	Urochloa decumbens	has	high	productivity	when	
P	and	K	are	provided,	resulting	in	high	leaf	biomass	(Rao,	Kerridge,	
&	Macedo,	1996).	However,	 it	 is	also	well	adapted	to	the	acid	and	
nutrient-	poor	cerrado	soils,	which	are	low	in	P	and	Ca	but	have	high	
levels	of	Al	(Rao	et	al.,	1996).	Native	tree	species	of	Australian	(Sun	
&	Dickson,	 1996)	 and	Brazilian	 savannas	 (Pereira,	 Laura,	&	Souza,	
2013)	germinate	and	grow	better	 in	 the	absence	of	Urochloa	 spp.,	
suggesting	that	these	invasive	grasses	strongly	compete	for	nutrients	
and	water	 belowground.	Andropogon gayanus	was	 also	 introduced	

F IGURE  4 Vegetation	dynamics	at	the	species	level	in	savanna	
restoration	sites	in	Chapada	dos	Veadeiros	National	Park,	central	
Brazil.	(a)	Top	10	species	based	on	the	mean	number	of	touches	per	
plot	cell.	For	2017	numbers	above	bars	show	the	change	in	ranking	
position	relative	to	2015.	(b)	NMDS	showing	compositional	shifts	
of	plant	communities.	Colors	indicate	the	proportions	of	annual	and	
short-	lived	natives	(blue),	other	native	species	(green)	and	invasive	
grasses	(red).	“Other	native	species”	includes	perennial	grasses,	
fast-	growing	trees,	and	average/slow-	growing	trees	and	shrubs.	
Only	the	scores	of	the	top	10	species	are	shown,	to	facilitate	the	
visualization	of	the	temporal	dynamics	of	the	most	relevant	species	
[Color	figure	can	be	viewed	at	wileyonlinelibrary.com]
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intentionally	to	be	used	as	forage	(Boddey	et	al.,	2004)	and	became	
an	 invasive	grass	with	a	high	dispersal	ability;	a	single	tussock	can	
produce	about	12,000	caryopses	 in	a	year	 (Bowden,	1964).	These	
traits	 give	 these	 species	 competitive	 advantage,	 allowing	 them	 to	
invade	and	be	successful	in	plots	where	they	were	absent	before.

Our	 results	 demonstrated	 a	 successional	 trajectory	 in	 the	 re-
stored	 area,	with	 rapid	 species	 turnover.	 As	 far	 as	we	 know,	 sec-
ondary	 succession	 has	 not	 been	 described	 in	 severely	 disturbed	
savannas	where	 seed	 and	 bud	 banks	 had	 been	 extinguished.	 This	
study	used	a	limited	pool	of	species,	but	it	is	pertinent	to	understand	
community	 succession,	 which	 is	 useful	 for	 designing	 restoration	
methods	for	savannas.	Two	short-	lived	shrubs,	Lepidaploa aurea and 
Stylosanthes	spp.,	and	one	annual	native	grass,	Andropogon fastigia-
tus,	rapidly	covered	the	ground	at	the	early	restoration	stages,	but	
they	died	two	to	three	years	after	sowing,	leaving	empty	spaces	for	
colonization	 or	 expansion	 of	 perennial	 species.	 These	 short-	lived	
species	are	commonly	found	colonizing	and	establishing	in	bare	soil	
sites,	 such	 as	 roadsides	 and	mining	 areas	 (A.	G.	Coutinho	&	D.	 L.	
M.	Vieira,	pers.	obs.)	and	are	 rarely	 found	 in	mature	savanna	sites	
(Silva,	Amaral,	Bijos,	&	Munhoz,	2018).	Native	and	invasive	perennial	
grasses	were	able	to	occupy	the	available	space.	In	a	few	more	years,	
the	native	tree	species	will	grow	and	their	canopy	cover	should	in-
crease	and	achieve	5%–20%	cover,	which	is	typical	of	open	savannas	
(Ribeiro	&	Walter,	2008).

The	herbaceous	layer	of	tropical	savannas	is	usually	dominated	
by	 perennial	 grasses,	 and	 other	 life	 forms	 are	 less	 predominant	
(Sarmiento,	 1992).	 However,	 in	 our	 study,	 annual	 and	 short-	lived	
plants	were	 important	to	rapidly	cover	the	ground,	preventing	soil	
erosion	and	modifying	microclimate	and	soil	structure	while	peren-
nial	grasses	and	trees	slowly	grow.	The	presence	of	these	functional	
groups	at	the	beginning	of	the	study	did	not	prevent	the	establish-
ment	of	invasive	or	perennial	native	grasses,	which	achieved	higher	
cover	in	plots	with	initial	presence	of	annual	and	short-	lived	species.	

Stylosanthes	spp.	subshrubs	are	used	as	forage	 in	planted	pastures	
(Miles	&	Lascano,	1997;	Phengsavanh	&	Ledin,	2003)	 and	may	 in-
crease	soil	fertility,	which	may	have	contributed	to	their	inefficiency	
in	excluding	invasive	grasses.	In	another	experiment	in	the	same	res-
toration	 area,	 Stylosanthes capitata and Stylosanthes macrocephala 
did	not	exclude	invasive	grasses,	even	when	sown	in	high	densities	
(Alves,	2016).	Stylosanthes	spp.	did	successfully	prevent	the	estab-
lishment	of	invasive	grasses	during	the	restoration	of	a	gravel	mine	
in	a	Brazilian	savanna	(Starr,	Corrêa,	Filgueiras,	Hay,	&	dos	Santos,	
2013),	but	 in	this	case,	 the	soil	had	been	eliminated	by	the	mining	
activity,	which	created	harsh	conditions	for	the	establishment	of	in-
vasive	grasses.	The	dense	seed	bank	of	invasive	grasses	in	our	study	
areas	may	have	hindered	the	preventive	effects	of	Andropogon fas-
tigiatus and Lepidaploa aurea. Andropogon fastigiatus is considered 
a	 “pasture	 invader”,	 sometimes	 even	 displacing	 invasive	 grasses	
(Lorenzi,	1991).	Lepidaploa aurea	has	allelopathic	effects	on	Urochloa 
decumbens	 (Lopes,	 Caldas	 Oliveira,	 Salles,	 Sampaio,	 &	 Schmidt,	
2018).

Schizachyrium sanguineum and Tachigali vulgaris	 were	 the	most	
successful	 native	 species	 in	 our	 experiment.	 Tachigali vulgaris is a 
fast-	growing	tree,	and	this	ability	allowed	this	species	to	overcome	
the	grass	cover.	All	other	21	seeded	trees	had	good	establishment,	
but	a	very	 slow	growth	 rate	 (Pellizzaro	et	al.,	2017;	Silva	&	Vieira,	
2017).	 Not	 only	 did	 Schizachyrium sanguineum	 occupy	 the	 spaces	
left	 by	 the	 short	 life-	cycle	 species,	 but	 it	was	 also	 able	 to	 invade	
plots	 dominated	by	 invasive	 grasses.	 It	 is	 likely	 that	Schizachyrium 
sanguineum	is	more	functionally	similar	to	invasive	grasses	than	the	
other	species,	which	would	allow	this	species	to	compete	with	them	
(Funk	et	al.,	2008).

Invasive	grasses	may	present	a	difficult	challenge	 if	not	com-
pletely	 eliminated	 prior	 to	 sowing	 and/or	 constantly	 controlled.	
The	combination	of	fire	and	plowing	may	be	an	effective	method	to	
remove	them	(Durigan,	Guerin,	&	Neves	da	Costa,	2013),	but	this	

F IGURE  5 Sankey	diagram	showing	
shifts	in	functional-	group	dominance	
between	2015	and	2017	in	savanna	
restoration	sites	in	Chapada	dos	
Veadeiros	National	Park,	central	Brazil.	
The	node	width	represents	the	number	
of	plots [Color	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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treatment	may	need	to	be	applied	several	times	and/or	for	years.	
One	 alternative	 for	 depleting	 the	 seed	 bank	 of	 invasive	 species	
is	 to	 stimulate	germination	 (Carmona,	1992),	which	can	be	done	
through	 successive	 plowing	 operations	 in	 the	 same	 area.	 More	
drastically,	 topsoil	 removal	 can	 completely	 eliminate	 the	 seed	
bank	 (Kiehl,	Kirmer,	Donath,	Rasran,	&	Hölzel,	2010).	Herbicides	
are	an	effective	method	that	can	be	applied	at	a	large	scale	(Ansley	
&	Castellano,	2006;	Bakker	et	al.,	2003;	Durigan	et	al.,	2013),	but	
may	 not	 be	 permitted	 in	 protected	 areas.	 Our	 study	 highlights	
that,	 in	 non-	resilient	 savanna	 restoration,	 community	 assembly	
can	follow	a	successional	pathway	when	short-	lived	and	perennial	
species	 are	 sown.	Although	old-	growth	 savannas	and	grasslands	
are	characterized	by	slow	growth	of	woody	plants	and	an	apparent	
slow	succession	of	plant	species,	our	results	showed	that,	during	
the	 initial	 restorations	 stages,	 species	 turnover	 can	happen	 rap-
idly.	This	should	be	taken	into	consideration	when	developing	res-
toration	strategies	in	these	environments.	From	the	first	stages	of	
restoration,	 it	 is	 important	 to	 introduce	species	 that	will	assume	
different	 roles	 in	early	successional	stages.	Fast-	growing	species	
prevent	 soil	 erosion	 and	modify	microhabitat	 conditions,	 peren-
nial	 grasses	 re-	establish	 the	grass-	layer,	 and	 trees	 and	perennial	
shrubs	 contribute	 for	 savanna	 structure	 later	 in	 the	 restoration	
trajectory.
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