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A B S T R A C T

The food sector is one of the most critical areas of the economy, and consumers are seeking safer, more readily
available, more affordable, and better quality food. Therefore, organic agriculture has become a possible ap-
proach for optimizing the characteristics of processed foods. Vegetables have essential uses as green manure, but
the greatest difficulty encountered when using these species is related to the time required for their residues to
decompose. Computational intelligence and data mining techniques are used widely in agricultural studies and
for process improvement purposes. Association rules are used as data mining techniques to identify patterns in
large databases, where the patterns identified are analyzed and transformed into a graph to facilitate further
analyses. In this study, we employed the patterns identified by association rule networks (ARNs) to determine
directly the key parameters related to the half-life decomposition times of legumes used as green manure in
northeast Brazil. We validated this method by comparing the results obtained by the ARNs and a decision tree.
The proposed approach obtained promising results, thereby demonstrating its capacity to describe a set of ob-
jective items and facilitate the development of more integrated hypotheses. Thus, it was possible to optimize the
discovery of the key parameters related to green fertilizers in order to identify the best species according to its
culture requirements and to enhance productivity.

1. Introduction

Environmental degradation has been exacerbated by the need for
rapid food production due to the inappropriate occupation of arable
areas and the pursuit of economic interests to enhance profitability in
the agricultural sector. Thus, environmental degradation has led to
changes in the physical, chemical, and biological attributes of the soil,
with consequent decreases in the potential productivity (Calegari,
2014).

The food sector is one of the most critical areas of the economy,
where it encompasses agriculture, the food industry, and food retailers;
hence, it affects virtually all members of society. Due to the need to
provide consumers with safe, readily available, affordable, and high
quality food, the food industry must be efficient with organized control
processes in order to ensure the safety and quality of its products. In
particular, organic farming has the potential to enhance the control of
production in plantations (Lehmann et al., 2012).

Organic agriculture aims to substitute the inputs used in conven-
tional agriculture. Thus, sustainable production is possible in ecologi-
cally-based agriculture, where the natural functions of ecosystems are

promoted (Ambrosano et al., 2014). The use of vegetable species as
manure can address the problem of ensuring the ecological output
while maintaining the productivity. These vegetable species are known
as green fertilizers and they are capable of improving the production
environment because chemical additives are not allowed in ecologi-
cally-based agriculture (Martins and Barros, 2015).

Members of the family Leguminosae have important applications as
green manure, but the main problem related to the use of these species
is the time required for their residues to decompose, which directly
affects the productivity of crops. Thus, the choice of species is related to
the desired degradation time, which can make the selection process
very complicated (Garcia, 2002).

Computational intelligence and data mining techniques have been
employed widely in agriculture to assist with the resolution of complex
problems such as disease detection (Phadikar et al., 2013) or even for
identifying the locations of plantations to achieve higher productivity
(Lucas and Chhajed, 2004).

At present, many companies and organizations manipulate and store
large amounts of data in the course of their daily activities.
Understanding these data, i.e., identifying the implicit information in
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these data, is increasingly important for supporting decision making
processes (Zaki and Meira, 2013).

Association rules are used as data mining techniques to identify
specific patterns in the data found in large databases, where the in-
terpretation of these patterns can allow the extraction of specific
knowledge about the problem under consideration (Le and Vo, 2016;
Kuo et al., 2014).

The mining of association rules can be divided into the following
three main steps (Aggarwal et al., 2002, 1994; Nguyen and Nguyen,
2015):

• Preprocessing: The data set is prepared for data extraction where
the removal of non-interesting items may occur.

• Extraction of patterns: Measurements are calculated, before con-
structing frequent item sets and obtaining the association rules.

• Post-processing: The rules of interest are identified to decrease the
number of rules that need to be explored.

Definition 1. Let = …I i i i{ , , , }n1 2 be a set of objects called items that can
assume a binary value of 0 or 1 (false or true), which represent the
presence or absence of a particular object, respectively. Let T be a set of
transactions, where each transaction D corresponds to a set of items
such as D I . It is also considered that a set of elements A is contained
in a transaction D if all items in the set have a “true” value in the
transaction. An expression of the form A Bcan represent an
association rule R, with =A I B I A B, . It is also possible to
treat quantitative or qualitative variables in order to create ranges of
values for subsequent use as binary values. Ais called the antecedent or
left-hand side (LHS) of the rule and B is the consequent or right-hand
side (RHS).

For each rule (LHS RHS) extracted from a set of T transactions
(propositional model after data transformation), a support value (sup) is
calculated (Eq. (1)) to verify the strength of the association between the
LHS and RHS (probability of transaction occurrence LHS RHS), and a
confidence value (conf) (Eq. (2)) to measure the strength of the logical
implication of the rule (conditional probability of RHS given LHS)
(Agrawal et al., 1994). n T( ) is the number of transactions.

=sup LHS RHS P LHS RHS( ) ( ) (1)

=conf LHS RHS P RHS LHS( ) ( | ) (2)

The support can be described as the probability that any transaction
satisfies both the LHS and RHS, whereas the confidence is the prob-
ability that a transaction satisfies the RHS because it satisfies the LHS.

Given the size of current databases, the number of rules discovered
can be extremely high, and thus their interpretation almost becomes a
new mining problem. Therefore, it is essential to understand the asso-
ciation rules and to develop better methods for interpreting the net-
works to facilitate the visualization of the rules (Pandey et al., 2009).

The use of networks facilitates the knowledge identification process
and the use of decision support systems, and thus this technique can be
applied to agricultural research. In the present study, we conducted
pattern extraction based on association rule networks (ARNs) to de-
termine the parameters related directly to the half-life decomposition
time for legume plants used as green manure in northeast Brazil.

We compared the results obtained with those produced by a deci-
sion tree algorithm by using the relationships in the data set in order to
validate the method. This comparison was conducted to verify the re-
sults and to determine the method that could describe the data set most
appropriately according to the objective items.

The remainder of this paper is organized as follows. Related re-
search is described in Section 2. In Section 3, we present the association
rule mining process and the method employed for constructing ARNs.
In Section 4, we explain the methods used for generating the data as
well as the mining steps and the construction of the ARN. The results
are presented and discussed in Section 5. We give our conclusions in
Section 6.

2. Related research

The application of machine learning in agriculture is currently in-
creasing among the academic community and industry professionals,
which has led to the development of several different approaches based
on various machine learning frameworks (Drury et al., 2017).

The generation of agricultural data related to productivity has in-
creased in recent years. In order to evaluate the impact of various
parameters, Hira and Deshpande (2015) constructed a multi-
dimensional model of data by employing multivariate analysis, statis-
tical analysis, and association rule mining techniques to extract
knowledge. They presented an approach based on a case study to
analyze agricultural productivity using several related parameters.

Drury et al. (2017) discussed the use of Bayesian networks in agri-
cultural research. Bayesian networks can help with the extraction of
knowledge because of their capacity to deal with incomplete informa-
tion. Agricultural studies can aggregate new details using a network
structure. The construction of Bayesian networks begins with a set of
variables that describe the problem domain. Drury et al. (2017) survey
the use of Bayesian networks but no previous studies were focused on
objective items.

Recently, recommendation systems have become very popular in
several areas, including agriculture. Kumar and Balakrishnan (2019)
developed a recommendation system that uses the Apriori algorithm to
forecast the consumption of agricultural items (vegetables/fruits),
where data preprocessing was conducted by reducing the dimension-
ality to make the data more refined. The association rules were used to
facilitate the analysis of the consumption of agricultural items. The use
of association rules automated the process for generating hypotheses
regarding farm product waste.

Phadikar et al. (2013) used a classifier rule-based approach in their
study. The rules were fundamental for the results obtained but asso-
ciations are not made in their study of rice disease parameters. Several
characteristics of plants were used in the direct analysis of plantations
and they used parameters extracted from diseased objects (plants) in a
tree structure decision system. The trees were used to configure the
classifier and generate the rules, but the best characteristics were not
analyzed to optimize the classification.

Complex agricultural ecosystems need to be understood better to
address the increasing challenges related to agricultural production.
The search for organic resources to enhance productivity has been
based on advances in agricultural science. Data analysis can allow
farmers and companies to enhance value by improving their pro-
ductivity. Kamilaris et al. (2017) reviewed previous studies in agrarian
research based on big data analysis to solve various problems, where
they considered 34 studies. The conclusions of these studies were
consistent and demonstrated the great potential of applying big data
analysis in the development of “smarter” agriculture.

Data related to agriculture have high complexity. Batarseh and Yang
(2018) analyzed the production life cycle for agricultural systems using
association rules, which assisted the testing process in the system
building phase by adapting to the types of data used in agriculture.

Nourani and Molajou (2017) employed two data mining techniques
(decision tree and association rules) to formulate a hybrid approach for
identifying the associations between climatic situations in different
regions. The two main steps in their proposed model comprised the
classification and selection of data, and the extraction of hidden in-
formation. Decision tree techniques were used to classify and select the
most useful data groups, before association rules were employed to
extract predictive information to generate the candidate hypotheses.
The results confirmed the reliable performance of the hybrid data
mining method. Decision trees and association rule techniques have
been used as complementary techniques, but they can be used to extract
knowledge.

In all of the previous studies mentioned above, machine learning
solutions were developed to facilitate decision making in agricultural
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production, which is directly related to the current demand for en-
hanced productivity and sustainability. The use of network structures
can facilitate the knowledge extraction process by allowing results to be
visualized and the optimization of the descriptive process.

3. ARN

Data mining techniques, particularly mining with association rules,
may help to identify the parameters related to agroecological produc-
tion (de Barros et al., 2013). The identification of association rules is a
data mining technique that aims to identify specific data patterns in
large databases, which can be interpreted to obtain specific knowledge
regarding the problem under consideration (Le and Vo, 2016).

An association rule quantitatively characterizes how the presence of
a set of items in the records of a database indicate the presence of some
other distinct set of elements in the same records (Agrawal and Srikant,
1994). Thus, the aim of association rules is to identify trends that can be
used to understand and explore patterns of behavior in data. For ex-
ample, if we consider supermarket sales data, we may find that 80% of
the customers who buy product Q also buy product W, and thus 80%
corresponds to the reliability of this rule (Domingues and Rezende,
2005).

ARNs have a structure that allows the synthesis, pruning, and ana-
lysis of a set of association rules to construct candidate hypotheses.
From the perspective of knowledge discovery, an ARN allows context-
oriented analysis to enhance our understanding of the relationships and
the usefulness of the information obtained with association rule mining
algorithms. From a mathematical viewpoint, ARNs are instances of
directed hypergraphs (Pandey et al., 2009).

The central idea of ARN is that the association rules discovered by a
mining algorithm can be synthesized, pruned, and integrated into the
context of specific research objectives. In particular, if we consider a
variable of interest, a network can be produced with the variables that
are most strongly related to the aim, before obtaining a structure that
can be tested using statistical methods. In practice, association rule
mining involves hundreds of variables and the pruning strategy for the
ARNs can be used to remove local inconsistencies between variables,
such as cycles. ARNs have the following characteristics.

• Pruning in context: ARNs are used to prune rules in the context of a
specific goal.

• Network structure: ARNs provide a method for determining the re-
lationships between relevant variables and the goal by constructing
a network. This technique can assist with analyzing the effects of
direct and indirect changes in the mining of association rules.

• Generation and evaluation of hypotheses: ARN can provide a bridge
between the outputs generated by association rule mining and their
assessment.

According to Chawla (2010), ARNs are represented as a backward-
directed hypergraph (B-graph), which can transform the ARN according
to the selected target item in a data set after pruning. The following four
steps are performed to create an ARN.

(1) Step A: Given a database D, minimum support, and minimum
confidence, we must extract all of the association rules using a
standard algorithm, such as Apriori (Agrawal and Srikant, 1994),
Aptitori-Tid (Agrawal and Shafer, 1996), or FP-Growth (Grahne and
Zhu, 2005), and a data structure to implement the algorithm (Yan
et al., 2007).

(2) Step B: Choose a regular item g, which is represented as the target
node in the rule set, and construct a B-graph that flows recursively
to g.

(3) Step C: Perform pruning for the generated B-graph by removing
hypercycles and reverse hyper-edges. The resulting B-graph ob-
tained is called an ARN.

(4) Step D: Find shorter paths between the target node and the other
higher-level nodes (a variant of the distance between ends) in the
ARN. The set of these paths represents the exploratory network for
the target node.

Fig. 1 shows an example of an ARN where item “A” is selected as the
target. All of the rules with “A” as a result are then selected, i.e., only
the rules (B A) and (D A) in this case. Thus, the items are modeled
at ARN level 1. “B” and “D” are then the targets, and the algorithm runs
recursively until no more items are left as goals at the highest levels. In
this case, the rules with “B” as their goal are modeled, before the rules
with “D” and then “E,” “C,” and “F.” In this example, no rules have “F”
as a result. The highlighted hyper-edge “e2” is one of those eliminated in
the pruning process because although it has the “C” item as a con-
sequence, the “B” item is already inserted into the ARN in the level
below, thereby making the use of this rule impossible.

ARNs are tools that provide a context for understanding the re-
lationships between rules while they are obtained. According to Pandey
et al. (2009), ARNs have the following benefits.

• Organizing rules in a context: The main use of an ARN is for orga-
nizing a potentially large set of association rules so that an objective
line of reasoning can be explored using the most relevant rules in the
collection. This explanation can extend beyond the immediate rules,
which have the objective item as a consequent, thereby allowing
these rules to be organized in a context and then employing the set
of association rules to generate statistically viable hypotheses.

• Local pruning: ARNs provide a method for pruning rules by asso-
ciating redundant rules with hypercycles and reverse hyper-edges.
Pruning occurs in the context of an objective node. Thus, a rule that
is redundant for a particular target node may become relevant to
another target, so this approach is more flexible than pruning based
on statistical measures of interest.

If we consider the ARN presented in Fig. 1, when the target node is
“A”, the hyper-edge “e2” is a redundant rule that can be eliminated.
However, when the target node is “D” (Fig. 2), the same hyper-edge is
relevant. Thus, rule pruning is dependent on the context of the target
node, which is called local pruning.

This approach facilitates the exploration of computationally effi-
cient research techniques for large databases in conjunction with tra-
ditional statistical methods. ARN provides a method for synthesizing
association rules in a structured manner.

ARNs can also be used to systematically select attributes (Chawla,
2010) by adapting the processes to obtain association rules for the
target parameter. A hypergraph grouping algorithm (Han et al., 1997)
is applied to the ARN to extract the relevant characteristics (within the
target domain). The first level nodes have immediate effects on the
target node, whereas the top-level nodes have indirect effects.

Studying the parameters for various crops can allow us to optimize

Fig. 1. Example of an ARN with a reverse hyper-edge (e2). Adapted from
Pandey et al. (2009).
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the selection of new cultivars, especially for plants that can be used as
green manure in ecologically-based agriculture. Methods based on
pattern mining (association rules) are frequently employed to obtain
this information, mainly by using graphical elements such as ARNs.

In the present study, we collected data for vegetable species used as
green manure and we analyzed their related parameters by using ARNs
to identify the actual conditions that might directly interfere with the
productivity of these plants in ecologically-based farming.

4. Materials and methods

We performed the entire data mining process comprising the pre-
paration and pre-processing of the data set, before analyzing the ex-
tracted association rules and constructing the ARNs to obtain insights
into vegetable species used as green manure (Fig. 3).

4.1. Agricultural experiment – data set generation

We conducted the study during the second semester of 2015 at the
Embrapa Meio-Norte/Unidade de Execução de Pesquisa de Parnaíba
(UEP) Parnaíba, Brazil ( ° °S W3 05 ;41 46 and 46.8 m altitude). The cli-
mate in this region belongs to the C1dA’a’ type (Thornthwaite and
Mather, 1955), which is characterized as dry, megathermal subhumid,
with a small water surplus and a potential evapotranspiration con-
centration of 29.7% in the quarter comprising October, November, and
December, and a mean relative air humidity of 77.5%, mean pre-
cipitation of 1107 mm, and average temperature of °27.6 C (Bastos
et al., 2012).

The soil in the experimental area was a medium-textured Yellow
Latosol in the caatinga littoral phase (Melo et al., 2004). Soil samples
were collected at different points in the experimental area to obtain
highly uniform samples of the substrate. A composite sample was ob-
tained using the collected samples, which was analyzed at the Embrapa
Meio-Norte water and soil laboratory, UEP Parnaíba to determine the
chemical characteristics of the soil.

Rainfall data for the experimental period were recorded at the

INMET (National Institute of Meteorology) climatological station lo-
cated at the Embrapa Meio-Norte Experimental Field in Parnaíba, Piauí
(Fig. 4).

The experiment was conducted in an experimental area that re-
ceived no chemical fertilization in the previous five years. The soil was
prepared by plowing and surface harvesting, with subsequent leveling
followed by manual leveling.

The experimental design was completely randomized with seven
treatments and four replicates. The plots measuring ×2.0 m 2.0 m
contained five rows of plants with spacings of 0.50 m. We used a high
seed density and the plant population was subsequently thinned at
20 days after sowing (DAS) (Table 1). Weeds were controlled manually.
The irrigation system was a conventional sprinkler with a two-day ir-
rigation shift and an average duration of 1 h.

The annual tropical climate species used in the treatments were: T1,
Feijão guandu-anão (Cajanus cajan) cultivar IAPAR 43; T2, Crotalaria
mucronata; T3, Crotalaria juncea; T4, Feijão de porco (Canavalia en-
siformis L.); T5, Crotalaria breviflora; T6, Feijão guandu (Cajanus cajan)
cultivar Caqui/Fava larga; and the perennial tropical climate species
T7, Tefrósia (Tephrosia candida).

At 100 days after the start of the test, we performed the final cuts for
all of the treatments at 0.05 m above the surface of the soil using
pruning shears. The central lines were treated as the plot and we dis-
carded the borders, thereby leaving a total area of 0.5 m2 (1.00 m line
with 0.5 m between the rows). The roots of the plants were also har-
vested manually with a hoe at a depth of 0.20 m to obtain the fresh and
dry biomasses for the species tested. We determined the plant height at
flowering (AP), new shoot mass (MFPA), dry shoot mass (MSPA), new

Fig. 2. ARN with target node “D.” The hyper-edge “e2” is part of the ARN. This
proves the adaptive nature of local pruning. Adapted from Pandey et al. (2009).

Fig. 3. Steps followed in this study.

Fig. 4. Average precipitation levels in Parnaíba/PI (2015).

Table 1
Spacing and sowing density of plants used as green manure.

Common Name Depth (cm) Spacing (cm) Seeds/m (linear)

Crotalária breviflora 2–3 0.50 30–35
Crotalária juncea 2–3 0.50 22–27

Crotalária mucronata 2–3 0.50 40–45
Feijão de porco 2–5 0.50 4–5

Feijão Guandu Fava Larga 2–3 0.50 20–25
Feijão Guandu Anão IAPAR 43 2–3 0.50 20–25

Tefrósia 2–3 1.00 5
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root mass (MFR), and root dry mass (MSR). Germination (G) and
flowering (F) were evaluated as well as pod formation (VF). Flowering
by 50% of the plants was treated as full flowering.

All of the botanical materials, including the stems and roots, were
weighed to obtain the fresh biomass values (MFPA and MFR) using
precision scales. These materials were then placed in paper bags and
dried in a forced ventilation oven at °65 C for 48 h until constant weight
to determine the dry biomass values (MSPA and MSR).

In addition to the measures mentioned above, we determined the
diameters of the stems (DC) and calculated the mean values for emer-
gence (E), flowering (F), AP, and pod ripening (V). A table was pre-
pared containing all of the values to pre-process the data.

4.2. Data preprocessing

The data collected in the planting stage were categorized according
to the values obtained. We distributed all of the parameters among the
six classes according to Table 2. The classes were established using the
statistical categorization method described by Barbetta et al. (2010)
where we calculated the interval (I) of the values for each variable (Eq.
(3)), and determined Max and Min as the maximum and minimum
values, respectively.

=I Max Min
6 (3)

In the interval set, the first class ranged from Min to +Min I and the
last class ended at Max.

Using the data distributed into the six categories, we obtained array
containing the parameters and classes, where each row represented a
class and each column was an attribute. The data set was processed so
each value was defined in the format of: “attribute = value.” For ex-
ample, in the case of the “MFPA” attribute, the value was changed to
“MFPA = 1” when the value was within the limits of class “1” in the
MFPA attribute and “MFPA = 2” for values in the second class, etc.,
where we executed the same procedure for all of the attributes and
classes.

After obtaining all of the parameters, we calculated the half-life
decomposition time for each plant sample at intervals of 30, 60, 90, and
120 days. The decomposition of the residues followed the simple ex-
ponential model described by Rezende et al. (1999) (Eq. (4)), where X
represents the amount of dry matter after a period of time t X, 0 is the
initial dry matter quantity, k is the decomposition constant, and t is the
time in days.

=X X e. k t
0

. (4)

By rearranging the terms in Eq. (4), it is possible to calculate the
decomposition constant or value k (Eq. (5)).

=k
ln

t

X
X0

(5)

The half-life decomposition time (t1
2
) can be used to evaluate the

time required in days for half of the material to decompose. According
to Rezende et al. (1999), it is possible to calculate the half-life de-
composition time by using the decomposition constant k (Eq. (6)) as
follows:

=t ln
k
(2)

1
2 (6)

The six classes of the decomposition half-life times obtained in each
closed interval were categorized. The period of 120 days was selected to
ensure the consistency of the analysis because this was the longest time
interval and it allowed better measurements to be obtained in large
plantations.

4.3. Extraction of association rules

The Apriori-TID algorithm was used to extract the association rules.
The data set comprised six classes related to the half-life decomposition
time, 11 attributes, and 28 instances for the legume plants.

A minimum support value was selected as 0.3 in order to obtain a
relevance of 30% for the values of each parameter. Minimum support
values less than 0.3 generated an unusually high number of rules,
whereas values above 0.3 produced far less rules than the number of
parameters. The minimum confidence was set at 0.50 to consider an
LHS influence of 50%, and we distinguished between plants from the
same genus (Crotalária). In addition, the size of the rule was corrected
in two elements, where we considered one item in the LHS and one item
in the RHS. We obtained 154 association rules using these settings.

4.4. ARN construction

According to the method described by Pandey et al. (2009), we
constructed an ARN with the “Half-life” attribute for six classes as the
objective item. This target item was selected according to the decom-
position criterion in order to determine the characteristics related to a
longer half-life for the residues used as green manure, with the aims of
obtaining greater protection for the soil and better resources for
planting by promoting greater decomposition. We plotted the ARN with
“Half-life = 6.0” as the target.

4.5. Decision tree

The decision tree method is generally employed for classification
and regression tasks in data mining. The decision tree method con-
tinually decomposes a data set into smaller subsets according to re-
source priority until it reaches an appropriate level of disassembly
(Nourani and Molajou, 2017).

The final graphical result is a tree with decision nodes and leaf
nodes. A decision node comprises non-class attributes and the sub-
branches represent all possible values for the attribute. A leaf node
represents a specific class considered in a study.

In this study, we only analyzed the final graphical result regardless
of the accuracy indexes for the classification of the data set. It was
possible that several different configurations could improve the classi-
fication accuracy but all methods generated the same final graphic re-
sult, and thus we selected the default settings for the search process.

We generated the decision trees using the J48 algorithm available
from Weka1 with the default configuration.

5. Results and discussion

According to the method described above, we calculated the half-life
times (t1

2
) by choosing intervals of 30, 60, 90, and 120 DAS. These inter-

vals were selected to standardize the decomposition behavior of the plants.
The half-life times obtained at intervals of 30, 60, 90, and 120 DAS

are shown in Table 3.
The parameter t1

2
= 6.0 or “[Half-Life] = 6.0” (Fig. 5) was selected

as the ARN target, which represented the parameter with the most
extended half-life, thereby resulting in a longer decomposition time for
the green manure.

After verifying the nodes with a level of 1 (one), i.e., directly con-
nected to the target, we identified seven appropriate conditions related
a longer decomposition time. Thus, in order to visualize this informa-
tion, these rules (edges) were highlighted so the observation of the
patterns was optimized. The complete network can be accessed online. 2

1 http://www.cs.waikato.ac.nz/ml/weka/.
2 http://sites.labic.icmc.usp.br/dariobcalcada/tese/dariobcalcada_files/

greenmanure/.
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Knowledge exploration was performed strictly with level one nodes
(L = 1) because they were the variables that directly affected the target
situation, i.e., rules formed by predecessors that are more likely to in-
terfere with the outcome in terms of the half-life in the long term.

After analyzing the ARN, we first determined the nodes without
predecessors, i.e., “[G] = 1.0” and “[FV] = 1.0.” Thus, we inferred that
plants with faster times for germination and pod formation tended to
decompose more slowly, thereby suggesting that these are important
characteristics for the evaluation of new compounds. Ferreira et al.
(2008) stated that plants with early germination also tend to decom-
pose more slowly, which supports the results that we obtained by
knowledge extraction with the ARN technique.

For the MFR parameter, we found that the “[MFR] = 2.0” node
indicated a low rate for this index in plants with a longer half-life time.
The “[MSR] = 6.0” node was connected to high values for all other
mass items (MFR, MSR, and MSPA), which suggests that more suitable
species should have high dry masses in terms of their root and aerial
compositions. Thus, we hypothesize that plants with higher dry mass
production have greater potential for use as green manure because they
have a longer half-life decomposition time.

The nodes comprising “[MSPA] = 2.0” and “[F] = 1.0” were

influenced by lower half-life times, i.e., “[Half-Life] = 3.0” and “[Half-
Life] = 1.0,” respectively, which indicates that they merit further
study. The decomposition rate was also related to category 4.0 (four)
for the AP parameter.

We compared the ARN results with the decision tree results. The
decision tree generated by the J48 algorithm is presented in Fig. 6. The
J48 algorithm obtained a tree with 16 leaves.

After comparing the ARN output with the graphical results obtained
by the decision tree (Fig. 6), we observed differences in the explana-
tions of the objective items. For the “[HalfLife] = 6.0” objective, only
the direct possibility of the parameter [F] referring to the flowering of
plants was observed in the tree, and the values “[F] = 1.0” were ob-
tained when “[MSPA] = 1.0” and “[F] = 1.0, 2.0, 4.0, or 5.0” when
“[MSPA] = 2.0.” The J48 algorithm completely ignored the other
parametric conditions for obtaining higher half-lives.

Seven hypotheses with different parameters were formulated based
on the ARN visualization. By contrast, only two suggestions were pos-
sible when we viewed the decision tree. A specialist evaluated the hy-
potheses obtained based on the ARN and confirmed by experimental
evidence (Teodoro et al., 2018). The recommendations made based on
the decision tree visualization were not confirmed by the expert.

Table 2
Distribution of parameters analyzed in the six classes.

Variable Class = 1 Class = 2 Class = 3 Class = 4 Class = 5 Class = 6

MFPA (t/ha) 9.60–22.47 22.47–35.34 35.34–48.20 48.20–61.07 61.07–73.93 73.93–86.80
MSPA (t/ha) 5.00–9.27 9.27–13.53 13.53–17.8 17.80–22.07 22.07–26.33 26.33–30.60
MFR (t/ha) 0.40–1.53 1.53–2.67 2.67–3.80 3.80–4.93 4.93–6.07 6.07–7.20
MSR (t/ha) 0.24–0.63 0.63–1.03 1.03–1.42 1.42–1.81 1.81–2.21 2.21–2.60

E (DAS) 2.00–2.50 2.50–3.00 3.00–3.50 3.50–4.00 4.00–4.50 4.50–5.00
F (DAS) 57.00–75.33 75.33–93.67 93.67–112.00 112.00–130.33 130.33–148.67 148.67–167.00
AP (m) 0.65–0.87 0.87–1.08 1.08–1.30 1.30–1.51 1.51–1.72 1.72–1.94
V (DAS) 73.00–91.00 91.00–109.00 109.00–127.00 127.00–145.00 145.00–163.00 163.00–181.00
DC (cm) 0.10–0.22 0.22–0.33 0.33–0.45 0.45–0.57 0.57–0.68 0.68–0.80
R/plant 1.00–4.50 4.50–8.00 8.00–11.50 11.50–15.00 15.00–18.50 18.50–22.00

Table 3
Categorization of the half-life times for samples collected at 30, 60, 90, and 120 DAS.

Class t1
2
30 (days) t1

2
60 (days) t1

2
90 (days) t1

2
120 (days)

1 94.44–877.37 40.57–404.13 71.70–1017.70 88.98–264.16
2 877.37–1660.30 404.13–767.70 1017.70–1963.69 264.16–439.35
3 1660.30–2443.22 767.70–1131.26 1963.69–2909.68 439.35–614.53
4 2443.22–3226.14 1131.26–1494.82 2909.68–3855.67 614.53–789.71
5 3226.14–4009.07 1494.82–1858.38 3855.67–4801.66 789.71–964.89
6 4009.07–4792.00 1858.38–2221.94 4801.66–5747.65 964.89–1140,08

Fig. 5. ARN with the target “Half-Life = 6.0” and level one node (L = 1).
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Therefore, the application of ARN allowed the consideration of more
parameters to optimize the extraction of knowledge based on more
relevant hypotheses.

6. Conclusion

In this study, we showed that ARNs could be used to optimize the
discovery of knowledge related directly to green fertilizer by generating
hypotheses connected directly to the decomposition characteristics of
plants.

The results obtained using the association rule mining technique
with ARNs were confirmed by similar conclusions reported in experi-
mental agricultural studies (Teodoro et al., 2018), thereby supporting
the credibility of the association rule mining technique. The ARN also
allowed us to generate new hypotheses that might be confirmed by
further experiments. The ARN facilitated the simple graphical analysis
of the content of the data considered.

We also compared the ARN results with the decision tree generated
by the J48 algorithm, which is a decision tree algorithm that is avail-
able in Weka. The decision tree only classified the elements; hence, it
did not perform well at describing the relationships. The ARN obtained
excellent results by describing the data using the extracted association
rules, and thus we could select the rules that were most likely to be
responsible for the occurrence of the target item.

The hypotheses generated in this study can be investigated in future
agricultural experiments to assess the patterns identified based on the
results of this research.

In future research, we will conduct association rule mining for other
species that can be used as green manure and compare them with the
productivity of crops that are commonly used, as well as applying dif-
ferent techniques for probabilistic analysis to investigate the effects of
the parameters on the desired objective item.
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