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Abstract

Paullinia cupana is associated with a diverse community of pathogenic and endophytic

microorganisms. We isolated and identified endophytic fungal communities from the roots

and seeds of P. cupana genotypes susceptible and tolerant to anthracnose that grow in two

sites of the Brazilian Amazonia forest. We assessed the antibacterial, antitumor and geno-

toxic activity in vitro of compounds isolated from the strains Trichoderma asperellum

(1BDA) and Diaporthe phaseolorum (8S). In concert, we identified eight fungal species not

previously reported as endophytes; some fungal species capable of inhibiting pathogen

growth; and the production of antibiotics and compounds with bacteriostatic activity against

Pseudomonas aeruginosa in both susceptible and multiresistant host strains. The plant

genotype, geographic location and specially the organ influenced the composition of P.

cupana endophytic fungal community. Together, our findings identify important functional

roles of endophytic species found within the microbiome of P. cupana. This hypothesis

requires experimental validation to propose management of this microbiome with the objec-

tive of promoting plant growth and protection.

Introduction

Paullinia cupana var. sorbilis (Mart.)Ducke is a Brazilian Amazonia plant species. Commonly

known as guaraná, it is used as central nervous system stimulant due to its high concentration

of caffeine [1]. The first P. cupana crops were grown by indigenous tribes, but the beverage
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industry has prompted the development of commercial-scale crops. Nowadays, guaraná seeds

not only represent a global trend in the market of soft and energy drinks [2], but are also

promising raw materials for the development of drugs and supplements with different proper-

ties, such as anti-fatigue [3,4], antioxidant [5–7], antimicrobial [8–10], antiproliferative [11],

anxiolytic [12] and cardioprotective [13,14]. However, plant diseases like anthracnose and

oversprouting, caused by Colletotrichum guaranicola F. C. Albuq and Fusarium decemcellulare
Brick, respectively, have seriously damaged P. cupana crops and limited their expansion and

productivity [15–18]. There are promising alternatives for disease control–such as cultivation

of resistant P. cupana genotypes [19,20]–or the biological control of phytopathogens by endo-

phytic microrganisms [21,22].

Endophytes are microorganisms that inhabit the inner tissue of their hosts, at least during a

phase of the endophyte’s life cycle, and perform various ecological relationships without show-

ing visible symptoms of infection in the host [23–25]. Endophytes are intensively studied for

bioprospecting purposes, but their interaction with the host and associated ecological factors

in tropical regions remain poorly investigated [26–28]. Some studies have reported the endo-

phytic fungal diversity of P. cupana leaves [18,29,30] and endophytic bacterial diversity of P.

cupana leaves, seeds and roots [31,32]. However, many aspects of the P. cupana endophytic

fungal community have not yet been assessed, such as: (i) whether abiotic factors, such as

weather, geographic distance, plant tissue, ultraviolet radiation and culture system influence

its endophytic fungal community’s structure and composition, as observed in other host plants

[33–38]; (ii) whether different P. cupana genotypes host different endophytic fungal communi-

ties, as occurs in other crops [39,40]; and (iii) the bioprospecting potential and functional traits

of P. cupana endophytes [30,32,41].

Several functional traits such as synthesis of hydrolytic enzymes and indole acetic acid are

related to the protection against phytopathogens, plant growth promotion and resistance to

environmental stress, which are relevant for their multiple applications in agriculture [42–44].

The same is true for natural products synthesized by endophytes, which have important appli-

cations in human health [45–50]. There is a strong demand for new and more effective antibi-

otics and anticancer drugs, which can be synthesized by endophytes [51–54].

Considering that different factors can influence the structure of endophytic communities,

the present study aims to identify cultivable endophytic fungal species in P. cupana roots and

seeds and to examine how the plant organ, genotype and geographic location influence the

endophytic fungal community structure and production of functional traits for plant growth

promotion and induction of tolerance to pathogens. In addition, we have isolated and identi-

fied the major special metabolites from two endophytic fungal species (Trichoderma asperellum
and Diaporthe phaseolorum) and examined their antibacterial, antitumor and genotoxic activ-

ity in vitro.

Materials and methods

Isolation and molecular identification of endophytic fungi from P. cupana
roots and seeds

This study was carried out with genotypes obtained by vegetative propagation (clonal cultivar)

to ensure the analysis of the same genetic material in plants grown in two different places. The

seeds and roots of five adult healthy plants of P. cupana from each clonal cultivars CMU 871

(tolerant to anthracnose and oversprouting) and CMU 300 (tolerant to anthracnose and sus-

ceptible to oversprouting) [16,55] were collected in November 2014 in the Embrapa (Brazilian

Agricultural Research Company) experimental farms located in the cities of Manaus (2˚ 53’

29.14’’S and 59˚ 58’ 39.90’’W, 99 m high) and Maués (3˚ 22’ 54’’ S and 57˚ 42’ 55’’ W, 18 m
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high), State of Amazonas, Brazil. The plant material was collected at the end of the dry season,

when the accumulated rainfall and average temperature were respectively 196.0 mm and

28.46˚C in Manaus, and 272.3 mm and 28.17˚C in Maués [56,57].

The plant material was stored and transported under refrigeration until processing.

Roots and seeds were washed in tap water and neutral detergent. Surface disinfection was

performed in a laminar flow hood by soaking in 70% ethanol for 30 s and 2.5% NaClO for 8

min (roots) or 20 min (seeds), and rinsing five times with sterile distilled water [58]. The

efficacy of surface disinfection was verified by inoculating the last rinse water on tryptone

soy agar (TSA) plates. Disinfected seeds and roots were inoculated on potato dextrose agar

(PDA) and TSA culture medium (Kasvi, Curitiba, PR, Brazil) supplemented with strepto-

mycin, chloramphenicol and tetracycline (200 mg/L), and incubated for 15 days. The fungal

strains were grouped morphologically [59], and the grouping was confirmed by analyzing

microscopic traits in microculture slides [60] and comparing the obtained results with taxo-

nomic keys [61,62]. The isolates were stored under refrigeration in PDA medium and in

tubes with sterilized rice. DNA of one strain from each morphological group was extracted

using the Genomic DNA Isolation Kit (Norgen Biotek Corporation, Thorold, ON, Canada),

according to the manufacturer’s protocol. The internal transcribed spacer regions (ITS)

were amplified using the ITS1 and ITS4 primers [63,64]. The polymerase chain reaction

products were purified using ExoSAP-IT (USB Corp., Cleveland, OH, USA) and sequenced

by the Sanger method, using the Big Dye Terminator kit (Applied Biosystems, Foster City

CA, USA). The obtained sequences were analyzed with BioEdit Sequence Alignment Editor

(version 7.2.5) and compared with sequences deposited in the NCBI GenBank database

(National Center for Biotechnology Information).

Community structure analysis

The endophytic colonization rate [65] and the relative frequency of fungal species [28] were

evaluated. The species diversity, richness and dominance were estimated using the non-

parametric Shannon-Weaver index [66], Chao 1 index [67] and Simpson index [68], respec-

tively. The degree of similarity among different communities was determined using the Jac-

card index [69], while the UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

cluster analysis grouped the endophytes into distinct clusters. To examine whether a given

endophytic community plays predominant roles, we analyzed their ecological roles. The spe-

cies were classified into the categories phytopathogen, saprophyte, mycotroph, entomopatho-

gen and coprophilous, according to the criteria established by literature reports and the

Agricultural Research Service of the United States Department of Agriculture (USDA-ARS)

database [70].

Non-metric multidimensional scaling (NMDS) based on Jaccard’s coefficient was used to

visually detect the preference of the species in relation to each host plant geographic location,

genotype and organ. The distinctiveness of fungal assemblages was tested with one-way analy-

sis of similarity (ANOSIM) considering the incorporation of 999 permutations. The indicator

value method (IndVal) [71] was used to identify the most characteristic species of each com-

munity, and the ones more prevalent in a single community. Permutation test was performed

to confirm whether the indicator value was statistically significant (p< 0.05).

A network was built to analyze the existence of interspecific interactions. Correlation

between species were considered positive when the Spearman correlation coefficient (ρ)

was> 0.6, and statistically significant when p< 0.05. The rate of connectivity between nodes

was determined by analyzing betweenness centrality, while the Louvain algorithm was used to

detect modularity [72].
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Root associations, endophytic potential and functional traits

P. cupana roots were washed, clarified with KOH (10%, v/v), and stained with trypan blue in

lactoglycerol (0.05%, v/v) for visualization of fungal-root associations [73]. Fifteen root frag-

ments from each individual were analyzed in the Nikon Eclipse E200 microscope coupled with

a camera (Bel Photonics), in order to identify the presence of dark septate endophytic fungi

(DSE) and endomycorrhizal structures, such as arbuscles and vesicles. The identity of the

structures was confirmed by comparison with literature reports [74].

Endophytic fungi with dark mycelium and septate hyphae isolated from P. cupana were

selected to examine their infection capacity and identify typical structures of dark septate

endophytes. P. cupana seeds were not used due to the difficulty in promoting their germina-

tion [75], and alternatively, seeds of the Sorghum cultivar BRS 373 were used (Sorghum sp.).

Sorghum sp seeds were disinfected [76] and incubated in minimum mineral medium (MM)

[77] at room temperature (approximately 27˚C) under natural light. After 5 days, the rootlets

of seedlings were inoculated with mycelium fragments. Non-inoculated seedlings were used as

controls. The roots were cleared, stained, and analyzed after 15 days of interaction [73].

Stained roots were preserved in polyvinyl lactoglycerol and observed under light microscope

[78].

The production of cellulase [79], esterase [80], amylase, phosphatase and protease [81] was

analyzed in vitro in all the isolated endophytic fungal species, using essentially qualitative tests.

The siderophore production was determined in cromoazurol S medium [82]. Discs of endo-

phytic mycelium (⌀1 mm) were used as inoculum and the formation of halos was determined

after 24 h incubation. The production of indoleacetic acid (IAA) was determined by a colori-

metric method, using BD broth supplemented with tryptophan (0.73 μmol/ml) as the negative

control [83]. The IAA concentration was determined using a standard curve prepared with

commercial IAA.

Antibacterial activity

A lineage of each endophytic fungal species was grown in PDA medium for the production of

ethyl acetate (EtOAc) extracts, as reported by Rosa [84]. The qualitative antibacterial activity of

the endophytes’ EtOAc extracts (20 mg/mL) was assessed as reported by Ichikawa [85], against

the following strains: susceptible Escherichia coli (ATCC 25922), Pseudomonas aeruginosa
(ATCC 9027) and Staphylococcus aureus (ATCC 6538), and multiresistant E. coli (1A), P. aeru-
ginosa (2A) and S. aureus (3A). The extracts that suppressed bacterial growth the most strongly

were selected for determination of the minimal inhibitory concentration (MIC)–the lowest

sample concentration at which bacteria do not grow [86]–using serial dilutions ranging from

5,000 μg/mL to 39 μg/mL. Tetracycline (0.05 mg/mL) and LB broth were used as the positive

and negative controls, respectively. The minimum concentration of death (MCD) was deter-

mined using Mueller-Hinton agar medium [87].

Purification and structural elucidation of special metabolites

The species Trichoderma asperellum (1BDA) and Diaporthe phaseolorum (8S) were selected for

the chemical analysis because they exhibited significant functional traits. Crude EtOAc extracts

from D. phaseolorum (8S) (235 mg) and T. asperellum (1BDA) (240 mg) were prepared as

reported by Rosa [84] and further purified through reversed-phase column chromatography

using C-18 resin (230–400 mesh, Merck) as stationary phase and CH3OH:H2O (3:7, 7:3 and

10:0 v/v) as eluent.

High-performance liquid chromatography (HPLC) was performed in the Varian ProStar

215 chromatograph and data were acquired using the software Galaxie Chromatography Data
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System (Varian). The CH3OH fraction from T. asperellum (1BDA) was subjected to semi-pre-

parative HPLC (Phenomenex column, 10.0 × 250 mm, 5 μm, C18, equipped with a precolumn)

under elution with CH3OH/H2O/HCO2H (7:2,9:0.1) in isocratic condition to afford

1-hydroxy-8-methoxyanthraquinone (sample 17A, 1.5 mg) as a light-yellow solid.

The CH3OH:H2O fractions from D. phaseolorum (8S) were submitted to column chroma-

tography employing silica gel 60 (40–63 mesh, Merck). The fraction CH3OH:H2O (7:3) was

eluted with EtOAc:CH3OH (1:1 v/v), hexane and CH3OH to provide the di-(2-ethylhexyl)

phthalate (DEHP, sample 070, 2.1 mg) as a dark yellow solid. The fraction CH3OH:H2O (3:7)

was sequentially eluted with hexane:EtOAc (6:4) and CHCl3 to furnish 3-hydroxypropionic

acid (3HPA, sample 3A, 2.7 mg) as a colorless solid.

Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Ascend 500

spectrometer operating at 500 MHz for 1H nuclei and 125 MHz for 13C nuclei. Chemical shifts

were quoted in parts per million (ppm), referenced to the appropriate residual solvent peak.

Two-dimensional spectroscopy (COSY, HSQC and HMBC) were used for structural determi-

nation. Gas chromatography coupled to mass spectrometry (GC-MS) were performed on a

Shimadzu GC17A chromatograph coupled to a GCMSQP5050A detector. After structural

determination, the purified samples were tested for antibacterial activity using the method

reported in the previous section. MIC was determined with serial dilutions ranging from

30 μg/mL to 0.2 μg/mL.

Antitumor activity

The elucidated purified molecules (DEHP and 3HPA) were tested for antitumor activity. The

Chinese hamster ovary cells (CHO) and Mus musculus skin melanoma B16F10 cell lines were

kindly provided by Dr. Edgar Julian Paredes Gamero from Federal University of São Paulo

(UNIFESP, São Paulo, SP, Brazil) and cultured in the Laboratory of Cell Culture and Molecu-

lar Biology at the Federal University of Grande Dourados (Dourados, MS, Brazil). CHO and

B16F10 cells were cultured in DMEM + F10 and RPMI-1640 medium, respectively, containing

10% fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin, in a humidi-

fied incubator at 37˚C and under 5% CO2.

The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay pro-

vides a sensitive measurement of the cell metabolic status, in particular the mitochondrial

function, which reflects early cellular redox changes [88]. CHO and B16F10 cells (6x103 and

1x103cells/well, respectively) were grown in 96-well tissue culture plates and treated with the

isolated compounds (3.12, 6.25, 12.5, 25, 50 and 100 μg/mL) for 24, 48 and 72 h. The cells were

washed with 0.1 mL of 0.1 M phosphate buffered saline (PBS), pH 7.4, at 37˚C, and further

incubated with 100 μL of MTT solution (1 mg/mL in culture medium) for 3 h, at 37˚C. The

assay medium was removed and the dark-blue formazan crystals formed in intact cells were

dissolved in DMSO. The absorbance was recorded at 630 nm in a microplate reader. Three

independent experiments were performed in triplicate. Doxorubicin was used as positive con-

trol; it inhibits CHO and B16F10 cell growth by 50% (IC50) at the concentration of 1 and

0.1 μg/mL, respectively. The results were expressed as the percentage of MTT reduction rela-

tive to the control group (untreated cells).

Genotoxicity

The alkaline comet assay [89] was used to assess the genotoxicity of compound 3A isolated from

D. phaseolorum (8S) EtOAc extract. This is a sensitive method capable of detecting DNA strand

breaks, alkali-labile sites and DNA-DNA/DNA-protein cross-linking [90]. A prerequisite to per-

form this assay is cell viability>70% because cytotoxic concentrations of a given sample may
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cause DNA damage that does not reflect the genotoxic effect. Thus, first we used the MTT assay

to address whether compound 3A was cytotoxic towards V79 cells. Briefly, after a 24-h treatment

with this sample (12.5, 25.0, 50.0 or 100.0 μg/mL) at 36.5˚C, the assay medium was removed and

the cells were incubated with 100 μL of MTT (0.5 mg/mL) for 2 h at 36.5˚C. The assay medium

was replaced by 100 μL of DMSO and, after five minutes, the samples were transferred to another

plate to record their absorbance at 540 nm, using a microplate reader (Multiskan EX, Thermo

Electron Corporation). Untreated cells and 10.0 μM doxorubicin (Sigma-Aldrich, St. Louis, MO,

USA) represented the negative and positive controls, respectively. The results were expressed as

the percentage of MTT reduction relative to the negative control group (100% survival).

The comet assay was performed using the method reported by Speit [91], with minor modi-

fications. The V79 cells were treated with sample 3A (25.0, 50.0, or 100.0 μg/mL) for 3 h, at

36.5˚C, protected from light to prevent additional DNA damage. Cells treated with medium

and 200 μM H2O2 were used as the negative and positive controls, respectively. Aliquots of

20 μL of cell suspension were mixed with 100 μL of low-melting point agarose (0.5% in PBS)

and layered onto a microscope slide previously thin-layered with 1.5% normal-melting point

agarose. The slides were immersed in freshly prepared lysing solution (100 mM EDTA, 10

mM Tris, 2.5 M NaCl, 1% Triton X-100, and 10% DMSO pH 10 –all from Sigma-Aldrich,

St. Louis, MO, USA) for at least 24 h, at 4˚C. Then, the slides were immersed in alkaline buffer

(0.2 M EDTA, 10 M NaOH, pH>13, both from Sigma-Aldrich, St. Louis, MO, USA) for 25

min, at 4˚C, and submitted to electrophoresis at 0.92 V/cm and 300 mA, for further 25 min.

Next, the slides were immersed in neutralization buffer (0.4 M Tris-HCl, pH 7.5, Sigma-

Aldrich, St. Louis, MO, USA) for 15 min, and fixed in 100% ethanol for 5 min.

The slides were air-dried, stained with 0.3X Sybr Gold Nucleic Acid Gel Stain (Invitrogen,

Carlsbad, CA), and analysed in an Ecliple Ci fluorescence microscope (Nikon, Japan) equipped

with a 20X objective. Images of at least 100 nucleoids were obtained using the Lucia Comet

Assay software (version 7.30, Laboratory Imaging, Czech Republic). The % DNA in the comet

tail was considered as the parameter of genotoxicity. Three independent experiments were

assayed in triplicate. Once the negative control of one experiment was excluded due to techni-

cal problems, we carried out an additional experiment without replicates. The data from each

experiment are presented as the mean of median of 100 or 200 nucleoids.

Statistical analysis

The Past software [92] was used to determine diversity and equitability indexes and perform

cluster analysis. The package vegan in the R software version 3.3.2 [93] was used to carry out

the analyses of variance, similarity, permutation and correlation. Indicator species test was per-

formed using package labdsv (http://ecology.msu.montana.edu/labdsv/R) within the R envi-

ronment. Network was constructed and visualized using the software Gephi version 0.9.1 [94].

Venn diagrams were generated with DrawVenn web tool (http://bioinformatics.psb.ugent.be/

webtools/Venn/). Data from the antitumor activity assay were analyzed by the Dunnett’s mul-

tiple comparison test, using the GraphPad Prism software (GraphPad Software, Inc., San

Diego, CA). Data from the comet assay (both cytotoxicity and genotoxicity) presented normal

distribution and were statisticaly compared using one-way ANOVA and Bonferroni’s post-

hoc test, at a significance level of 5%, with the aid of the GraphPad Prism software.

Results and discussion

Diversity of endophytic fungi in P. cupana roots and seeds

We isolated and identified 256 strains and 34 species of endophytic fungi from P. cupana roots

and seeds. The phylum Ascomycota, the class Sordariomycetes, and the order Diaporthales
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had the highest relative frequency (Table 1). The aforementioned taxa often colonize tropical

plant communities [28,95].

The genus Xylogone and the species Xylogone ganodermophthora had the highest total rela-

tive frequency in root endophytic communities (Table 1). The genus Xylogone was described

only once as endophyte of Taxus chinensis [96], and X. ganodermophthora was described as

mycopathogen [97] and as an antifungal species against watermelon pathogens [98]. Here we

report for the first time that the species X. ganodermophtora is an endophyte of P. cupana. Pho-
mopsis asparagi, the species with the second highest total relative frequency (Table 2), was

reported as endophyte [99] and phytopathogen in asparagus crops [100].

Diaporthe phaseolorum and P. asparagi were the species with the highest relative frequency

in seed endophytic communities (Table 2). Only the former was present in all the endophytic

communities of P. cupana seeds (Table 2). The genus Phomopsis and the species D. phaseo-
lorum are predominantly endophytic in many tropical species [101–104].

Only the genera Diaporthe, Fusarium, Glomerella and Phomopsis were identified in endo-

phytic communities of both the roots and seeds of P. cupana (Table 2). The genera Diaporthe,
Pestalotiopsis and Phomopsis were previously identified in endophytic communities of phyllo-

spheres [29]. Thus, we hypothesize that endophytic fungi that colonize P. cupana have organ-

specificity, as reported for other tropical and temperate host plants [105–107].

Most of the endophytic species occurred at a total relative frequency lower than 10%. The

species Arxiella dolichandrae, Mariannaea camptospora, Mycena robusta, Paraphaeosphaeria
arecacearum, Parapleurotheciopsis inaequiseptata, Peyronellaea pinodella and Pochonia boni-
nensis occur in tropical regions [108–114], while X. ganodermophthora occurs only in temper-

ate regions [115]. Nevertheless, their occurrence in endophytic communities has not been

reported yet, indicating that P. cupana is a repository of fungal species in the Brazilian Amazo-

nia forest. As Peyronellaea pinodella [116] and Arxiella dolichandrae [117] have already been

reported as phytopathogens in other hosts, we believe that they are endophytes or latent patho-

gens in P. cupana because the plant-endophyte relationship can vary from mutualism to para-

sitism [42,118]; however, this hypothesis requires experimental validation.

Regarding the ecological role of the isolated species (S1 Table), all the endophytic fungal

communities isolated from P. cupana had at least one species that is reported as endophyte,

phytopathogen, saprophyte, mycoparasite, entomopathogen or coprophile. Some fungal spe-

cies have been reported as both endophytic and phytopathogenic. It is known that endophytic

communities present latent phytopathogens [119] and several phytopathogens can behave as

endophytes depending on the local biotic and abiotic conditions [120,121]. In addition, the

genetic diversity of some endophytic fungi may enable them to act as phytopathogens or

Table 1. Endophytic fungal taxa isolated with the highest relative frequency (%) from Paullinia cupana, stratified according to the plant organ, genotype and geo-

graphic location.

Taxa Organ Genotype Location

Roots Seeds Susceptible Tolerant Manaus Maués

Phylum Ascomycota (99.5) Ascomycota (93.7) Ascomycota (98.4) Ascomycota (99.1) Ascomycota (99.2) Ascomycota (98.3)

Class Sordariomycetes (59.6) Sordariomycetes

(87.5)

Sordariomycetes (67.4) Sordariomycetes (56.9) Sordariomycetes (62.9) Sordariomycetes (60.4)

Order Diaporthales (25.1) Diaporthales (53.1) Diaporthales (27.2) Diaporthales (30) Diaporthales (26.7) Diaporthales (29.8)

Family Diaporthaceae (20.6) Diaporthaceae (53.1) Diaporthaceae (21.2) Diaporthaceae (28.4) Diaporthaceae (20.4) Diaporthaceae (29.8)

Genus Xylogone (34.9) Diaporthe (40.6) Xylogone (25.7) Diaporthe (14.6) Xylogone (29.1) Xylogone (30)

Species Xylogone
ganodermophthora

(34.9)

Diaporthe
phaseolorum (34.3)

Xylogone
ganodermophthora

(25.7)

Xylogone
ganodermophthora

(35.7)

Xylogone
ganodermophthora

(29.13)

Xylogone
ganodermophthora (33)

https://doi.org/10.1371/journal.pone.0195874.t001
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saprophytes [122], and some phytopathogens may not be able to develop the disease due to

host defense mechanisms [123,124].

Several species reported as saprophytes, coprophiles and entomopathogens were isolated

from P. cupana (S1 Table). Coprophilous fungi are transmitted to plant tissues by herbivores

[125], while saprophytic fungi mainly derive from soil and rhizosphere [126,127]. Entomo-

pathogenic fungi may have an endophytic phase of life [128] and some endophytic fungal gen-

era have entomopathogenic species [129]. Endophytes with entomopathogenic potential are

frequently tested for their ability to inhibit agricultural pests [127,130,131]. These reports indi-

cate that P. cupana may host endophytic fungal species with potential for pest control; this

hypothesis requires further experimental validation.

Table 2. Relative frequency (%) of endophytic fungal species isolated from different microbial communities in Paullinia cupana.

Species–Strain Manaus Maués Total Frequency GenBank Accession number

Susceptible Tolerant Susceptible Tolerant

Root Seed Root Seed Root Seed Seed Root

Xylogone ganodermophthora– 64BDA 22.2 0 46.9 0 38.5 0 35 0 30.8 KU512708

Phomopsis asparagi– 34TSA 9.5 20 4.1 0 15.4 20 20 0 12.5 KU512684

Fusarium oxysporum– 20S 11.1 0 10.2 0 9.6 10 8.3 0 9 KU512674

Periconia macrospinosa– 66BDA 7.9 0 2 0 5.8 0 10 0 5.9 KU512687

Diaporthe phaseolorum– 8S 0 20 0 66.7 0 10 0 25 4.3 KU512679

Mariannaea camptospora– 123BDA 7.9 0 2 0 3.8 0 1.7 0 3.5 KU512698

Diaporthe hongkongensis– 11BDA 1.6 0 4.1 0 3.8 0 6.7 0 3.5 KU512691

Trichoderma harzianum– 43BDA 4.8 0 0 0 3.8 0 3.3 0 2.7 KU512711

Humicola fuscoatra– 124BDA 7.9 0 0 0 3.8 0 0 0 2.7 KU512712

Mycoleptodiscus terrestris - 64TSA 7.9 0 2 0 0 0 1.7 0 2.7 KU512714

Diaporthemelonis - 29TSA 1.6 0 2 0 1.9 0 3.3 0 2 KU512682

Sydowiella fenestrans - 104BDA 6.3 0 2 0 0 0 0 0 2 KU512692

Melanconiella elegans - 113BDA 6.3 0 2 0 0 0 0 0 2 KU512673

Phomopsis lagerstroemiae - 43TSA 0 0 0 0 0 0 6.7 0 1.6 KU512690

Glomerella acutata - 18TSA 0 20 4.1 0 1.9 0 0 0 1.6 KU512686

Gibberella zeae - 3S 0 0 0 8.3 0 0 0 50 1.2 KU512707

Paraphaeosphaeria arecacearum - 45TSA 0 0 2 0 3.8 0 0 0 1.2 KU512678

Nigrograna mackinnonii - 101BDA 0 0 4.1 0 0 0 1.7 0 1.2 KU512680

Pestalotiopsis microspora– 14S 0 0 0 16.7 0 0 0 25 1,2 KU512681

Arxiella dolichandrae - 90BDA 1.6 0 4.1 0 0 0 0 0 1.2 KU512704

Trichoderma asperellum - 1BDA 0 0 0 0 3.8 0 0 0 0.8 KU512700

Fusariumpolyphialidicum - 5S 0 20 0 8.3 0 0 0 0 0.8 KU512705

Diaporthe terebinthifolii - 24S 0 20 0 0 0 10 0 0 0.8 KU512670

Fusarium solani - 41BDA 1.6 0 2 0 0 0 0 0 0.8 KU512702

Peyronellaea pinodella - 28S 0 0 0 0 0 20 0 0 0.8 KU512671

Fomitopsis meliae - 32S 0 0 0 0 0 20 0 0 0.8 KU512693

Parapleurotheciopsis inaequiseptata - 62TSA 0 0 2 0 0 0 0 0 0.4 KU512695

Colletotrichum gloeosporioides - 6TSA 0 0 2 0 0 0 0 0 0.4 KU512696

Mycena robusta - 95BDA 0 0 2 0 0 0 0 0 0.4 KU512710

Pochonia boninensis - 49BDA 0 0 0 0 0 0 1.7 0 0.4 KU512701

Paecilomyces parvisporus- 9BDA 0 0 0 0 1.9 0 0 0 0.4 KU512703

Nectria rigidiuscula - 29S 0 0 0 0 0 10 0 0 0.4 KU512689

Penicillium janthinellum - 17BDA 1.6 0 0 0 0 0 0 0 0.4 KU512715

Talaromyces pinophilus - 12TSA 0 0 0 0 1.9 0 0 0 0.4 MF167569

https://doi.org/10.1371/journal.pone.0195874.t002
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Mycoparasitic species may be abundant in endophytic communities [132–134], such as Col-
letotrichum gloeosporioides [135], Fusarium oxysporum [136], Humicola fuscoatra [137], Talar-
omyces pinophilus [138], Trichoderma asperellum [139], Trichoderma harzianum [140], and

Xylogone ganodermophthora [115]. Several species of mycoparasitic fungi behave as endo-

phytes, such as C. gloeosporioides [141], H. fuscoatra [142], T. asperellum [143], and T. harzia-
num [144].

Analysis of the indicator value revealed that few species preferred a specific community.

Regarding the geographic location, P. asparagi significantly preferred Maués (IndVal = 0.314,

P = 0.01). Regarding the P. cupana organs, X. ganodermophthora significantly preferred root

communities (IndVal = 0.475, P = 0.001), while D. phaseolorum significantly preferred seed

communities (IndVal = 0.15, P = 0.001). H. fuscoatra was significantly associated with the root

endophytic communities of the susceptible P. cupana genotype grown in Manaus (IndVal = 0.2,

P = 0.012). No species was significantly associated with a specific genotype (susceptible or

tolerant).

The P. cupana genotype influenced the endophytic fungal community diversity (Table 3).

Considering the communities from seeds collected in both geographic locations (Manaus and

Maués), those isolated from the susceptible genotype exhibited higher richness, Shannon

index and evenness when compared with those isolated from the tolerant genotype. Regarding

the root endophytic communities from Manaus, those isolated from the susceptible P. cupana
genotype had higher Shannon index, evenness and colonization rate than those isolated from

the tolerant genotype. The endophytic communities isolated from the roots and seeds of the

susceptible P. cupana genotype have higher richness and Shannon index than those isolated

from the same organs of the tolerant genotype. The richness of microbial communities in the

tolerant genotype was greater than that of the susceptible genotype only in the root endophytic

community of plants grown in Manaus. The root endophytic communities isolated from the

susceptible genotype grown in Maués had higher richness, Shannon index and dominance but

lower evenness and colonization rate than the root endophytic communities from the tolerant

genotype grown in the same location.

The root endophytic communities of the tolerant and susceptible genotypes grown in

Manaus shared 11 species (Fig 1A), while those grown in Maués shared 6 species (Fig 1B).

Communities isolated from the same organ shared a higher number of species in the suscepti-

ble (Fig 1C) and tolerant (Fig 1D) genotypes. Only the species F. oxysporum, G. acutata and P.

asparagi occurred in both organs, explaining why communities of different organs shared few

species. The root endophytic communities of plants grown in Manaus had the largest number

of unique species (Fig 1C and 1D).

As reported in tobacco, tomato and potato cultivars [39,40,145], we found that different

endophytic communities colonized the susceptible and tolerant genotypes of P. cupana, and

Table 3. Alpha diversity and colonization rate (%) of endophytic fungal communities isolated from P. cupana.

Diversity index Manaus Maués

Susceptible Tolerant Susceptible Tolerant

Root Seed Root Seed Root Seed Root Seed

Total species 15 5 18 4 13 7 12 3

Total strains 63 5 49 12 51 10 60 4

Shannon index 2.43 1.6 2.11 0.98 2.04 1.88 1.98 1.04

Chao index 25 15 27.1 4.5 13.4 8.5 14 3.5

Simpson index 0.89 0.8 0.75 0.51 0.79 0.84 0.8 0.62

Colonization rate 24.6 1.9 19.1 4.6 19.9 3.9 23.4 1.5

https://doi.org/10.1371/journal.pone.0195874.t003
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that the susceptible genotypes exhibited higher species diversity–the last finding may be related

to their vulnerability to microbial infections, which colonize tissues faster [146,147]. Moreover,

roots can produce exudates that promote colonization of certain groups of microorganisms

[148,149]. Exudates produced by different genotypes can influence the microbial community

in rhizosphere and consequently affect the composition and richness of endophytic communi-

ties [150]. Additional studies are required to determine whether susceptible and tolerant P.

cupana genotypes differ with respect to the composition of exudates.

The geographic location where P. cupana was grown also influenced the endophytic fungal

community’s diversity (Table 3). Compared with the same genotype grown in Maués, the

endophytic fungal communities isolated: (i) from seeds of the tolerant genotype grown in

Manaus had higher colonization rate, dominance and richness; (ii) from seeds of the suscepti-

ble genotype grown in Manaus had lower colonization rate, evenness, richness and Shannon

index; (iii) from roots of the tolerant genotype grown in Manaus had higher dominance, rich-

ness and Shannon index; (iv) from roots of the susceptible genotype grown in Manaus had

higher colonization rate, evenness, richness and Shannon index.

The observed and estimated species richness (Chao index) in the endophytic fungal com-

munities identified in Maués were similar to each other; in Manaus, the estimated richness

was higher than that observed for most endophytic communities (Table 3). Therefore, the geo-

graphic location influences the endophytic fungal diversity in P. cupana. Manaus exhibited the

highest species richness, more specifically in seeds of the tolerant genotype and roots of the

susceptible genotype.

The level of particulate matter in the air of urban areas is high due to several anthropic

activities, such as industrial and vehicular emissions, biomass burning and soil resuspension

Fig 1. Venn diagrams representing the distribution of endophytic fungal species in the communities studied. (A)

Susceptible and tolerant genotypes from Manaus, (B) Susceptible and tolerant genotypes from Maués, (C) Roots and

seeds from susceptible genotypes, (D) Roots and seeds from tolerant genotypes. Mu = Manaus; Me = Maués;

Su = Susceptible genotype (CMU 300); To = Tolerant genotype (CMU 871); Se = seed; Ro = Root.

https://doi.org/10.1371/journal.pone.0195874.g001
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[151,152]. Particulate matter suspended in the air carries a high diversity of fungi and bacteria

[153–156] that can colonize the surface and integrate the epiphytic community of plants on

which the particles deposit [157]. Several studies have reported epiphytic species as endophytes

[28,158,159], indicating that a variety of species can colonize the inner plant tissues. Consider-

ing that Maués is located in a rural area within the Amazonia forest relatively distant from

urban centers, and that Manaus is a large urban center, we hypothesized that the P. cupana
samples grown in Manaus received more particulate matter from the air and thereby a greater

amount of inoculum, which may explain their greater richness of endophytic fungal species.

Urban and rural areas may present distinct endophytic communities even among hosts

belonging to the same species [160–162].

Other factors such as temperature, rainfall and soil composition can influence the diversity

of endophytic species [163–165]. These parameters differed between Manaus and Maués,

which may have impacted on the endophytic diversity of each community. According to Kop-

pen climate classification, Manaus climate is ranked as Am (monsoon), with average annual

temperature of 26.7˚C, average annual rainfall of 2.420 mm and soil characterized as yellow

latosol. On the other hand, Maués climate is ranked as Af (humid equatorial), with average

annual temperature of 25.5˚C, mean annual rainfall of 2.101 mm and soil characterized as

eutrophic gleysoil [166,167].

The plant organ is an important determining factor of the endophytic community’s compo-

sition in P. cupana, because the roots were colonized by communities with higher richness and

diversity (S1 Fig). The isolation of seeds from the external environment for a long period [168]

and the presence of antifungal compounds in seeds [9] may also lower endophytic species rich-

ness in this plant organ. P. cupana seeds are surrounded by a thick epicarp and partially sur-

rounded by a thin membrane (the pith) [75], while the roots are in constant contact with the

ground and can be infected by a great diversity of edaphic microorganisms.

Although the NMDS plot did not show separation between the endophytic fungal commu-

nities of distinct P. cupana genotypes and geographic locations, the communities of seeds and

roots were clearly different and clustered as distinct groups (ANOSIM R2 = 0.27, P = 0.001,

stress = 0.064) (S2 Fig). The root endophytic communities had a narrower distribution because

they shared greater similarity in composition and abundance, indicating that the plant organ

influences the community’s composition in P. cupana.

The Jaccard index of similarity (Fig 2) showed that (i) the communities from seeds and

roots shared the lowest levels of similarity; (ii) the clonal type was crucial to distinguish the

communities within each plant organ; and (iii) the location determined the highest rates of

similarity between communities. The degree of similarity between endophytic communities

may decrease as the geographical distance between same host species increases

[28,34,35,165,169].

Regarding the network analysis, the 34 nodes were connected by 107 edges, with average

degree of 6.29 and clustering coefficient of 0.617 (S3 Fig). Ten species presented intermediate

values of betweenness centrality, most of them were isolated from P. cupana roots and occured

in both clonal types grown in both locations. X. ganodermophtora and P. asparagi were also

identified in both clonal types from both locations and exhibited the highest betweenness cen-

trality. X. ganodermophtora had the highest centrality degree, with 23 edges, binding to almost

all species isolated from roots and acting as a local hub, while P. asparagi had the second high-

est centrality degree, with 20 edges mainly composed of species isolated from seeds. The net-

work had two modules: the largest and the smallest ones were composed of endophytic fungal

species isolated from P. cupana roots and seeds, respectively (S4 Fig). P. asparagi constituted

an important node because it connected the seed and the root species modules. The formation

of distinct modules for each organ, as well as the presence of different indicator species in each
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organ, stressed that different communities colonize the roots and seeds. Therefore, X. ganoder-
mophtora and P. asparagi represented the central species of the endophytic fungal community

of P. cupana and exerted the strongest influence on its structure, stability and dynamics.

In vitro endophytic ability

The presence of microsclerotia in the roots of all samples analyzed confirmed that P. cupana
was associated with DSE (Fig 3). Associations with DSE fungi can become pathogenic,

although most of them benefit the host by increasing nutrients absorption and promoting

plant growth [170–172].

P. cupana roots contained typical structures of mycorrhizal fungi. Arbuscules with the

arum type morphology were detected in the roots of the susceptible genotype grown in

Manaus; coil hyphae and brown septate hyphae were exclusively detected in tolerant host

plants; and vesicles were observed only in the clonal cultivar grown in Maués. The literature

reports the association between P. cupana and mycorrhizal fungi [173,174]. Colonization and

sporulation are seasonal events strongly influenced by increased rainfall [173], favored by

increased soil acidity and manganese concentration, and inhibited by high iron content [174].

The strains C. gloeosporioides (6TSA), P. asparagi (22TSA) P. pinodella (28S), and Sydowiella
fenestrans (104BDA) were selected for the evaluation of endophytic capacity because they pre-

sented dark mycelium and septate hyphae. P. asparagi is frequently reported as phytopatho-

genic against asparagus crops [100], causing discoloration of the stem or trunk, oval lesions

and brown spots on the roots [175,176]. Although the endophyte P. asparagi (22TSA) pro-

duced microsclerotia (Fig 4A), it also caused the same pathogenic symptoms reported for

asparagus, probably due to the long cultivation period used in this study.

Fig 2. Analysis of the similarity degree between endophytic communities isolated from the seeds and roots of two

P. cupana genotypes grown in Manaus and Maués. Mu = Manaus; Me = Maués; Su = Susceptible phenotype (CMU

300); To = Tolerant phenotype (CMU 871); Se = Seeds; Ro = Roots.

https://doi.org/10.1371/journal.pone.0195874.g002
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Sorghum roots colonized by P. pinodella (28S) contained microsclerotia (Fig 4B), but they

did not show apparent symptoms of disease. Among the endophytic fungal species isolated

from seeds, only P. pinodella (28S) exhibited dark mycelium and septate hyphae, the other fun-

gal species colonized the seedling radicle without either developing dark septate structures or

causing disease symptoms. There are no literature reports that the fungal species evaluated

produce DSE structures; however, there are DSE species belonging to the genus Diaporthales
[177], Phomopsis [178] and Pleosporales [179,180].

DSE are distributed in a wide variety of environments, such as sub-Antarctic regions, tem-

perate and tropical forests, semi-arid regions, among others [181,182]. The currently available

Fig 3. Structure of mycorrhizal fungi and dark septate endophytic fungi detected within P. cupana roots (40x). Arbuscle (AR), Coenocytic hyphae (HA), Coil

hyphae (HC), Microsclerotium (M), Septate brown hyphae (HS), Vesicle (V).

https://doi.org/10.1371/journal.pone.0195874.g003

Fig 4. Microsclerotium in sorghum roots (40x). (A) Phomopsis asparagi (22TSA) and (B) Peyronellaea pinodella
(28S).

https://doi.org/10.1371/journal.pone.0195874.g004
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information on DSE mainly comes from studies carried out in arctic and temperate regions

[183]. Several tropical plant families associate with DSE [181], but there are few reports on the

association between DSE and species of the family Sapindaceae [184,185] and other species in

the Amazonia region [186,187].

Analysis of functional traits

The EtOAc extract of the 27 endophytic fungal species isolated from P. cupana inhibited bacte-

rial growth in the qualitative test (Table 4), and the EtOAc extract of 37 fungal strains sup-

pressed the growth of at least one bacterial strain. Only D. phaseolorum (8S) inhibited the

growth of P. aeruginosa susceptible and multiresistant strains. The antibacterial activity of sev-

eral endophytic fungal species that we isolated was previously reported in the literature, such

as C. gloeosporioides [188], D.melonis [189], D. phaseolorum [103], F.meliae [190], F. oxy-
sporum [191], F. polyphialidicum [192], F. solani [193], G. acutata [194], G. zeae [195], H. fus-
coatra [196], M. camptospora [197], P. janthinellum [198], P. microspora [199], T. asperellum
[29] and T. harzianum [200]. To the best of our knowledge, this is the first report on the anti-

bacterial activity of A. dolichandrae, D. hongkongensis, D. terebinthifolii, M. terrestris, M.

robusta, N.mackinnonii, P. asparagi, P. arecacearum, P. boninensis, P. inaequiseptata, P. parvis-
porus and X. ganodermophthora. Only the antifungal activity of X. ganodermophthora was

reported previously [201].

The EtOAc extracts of D.melonis (29TSA), D. phaseolorum (8S), D. terebinthifolii (24S),

and T. harzianum (43BDA)–which suppressed the growth of the greatest number of bacterial

strains in the qualitative test–were selected for determination of the minimal inhibitory con-

centration (Table 4). Analysis of the minimum concentration of death evidenced some micro-

bial growth after treatment with all the extracts’ concentrations tested, indicating that they

exerted bacteriostatic activity and that their minimum concentration of death was higher than

5.000 μg/mL (Table 4). The antimicrobial activity of D.melonis [189], D. phaseolorum [103]

and T. harzianum [202–204] has already been reported.

We identified 8 amylase-, 13 cellulase-, and 15 protease-producing endophytic fungal spe-

cies in P. cupana (Table 4). Here we report for the first time the production of (i) amylase by

D.melonis, M. robusta andM. terrestris; (ii) cellulase by A. dolichandrae, F. polyphialidicum, P.

parvisporus, P. microspora, P. asparagi and X. ganodermophthora ; (iii) and protease by A. doli-
chandrae, D. hongkongensis, D.melonis, D. phaseolorum, F. polyphialidicum, H. fuscoatra, M.

terrestris, P. asparagi, P. boninensis, P. inaequiseptata, P.microspora and X. ganodermophthora .

Some of the species that we identified are known for the production of (i) amylase, such as F.

oxysporum, F.meliae, F. solani, G. zeae, P. janthinellum and T. harzianum [205–209]; (ii) prote-

ase, such as F.meliae, F. oxysporum, F. solani, G. acutata, G. zeae,M. camptospora and P.

janthinellum, T. harzianum [205,210–214]; and (iii) cellulase, such as D. phaseolorum, F.

meliae, F. oxysporum, F. solani, G. acutata, G. zeae,H. fuscoatra, M. terrestris and T. harzianum
[205,215–222].

We did not identify esterase-, phosphatase-, and siderophore-producing endophytic fungal

species in P. cupana under the conditions assessed. Thirteen endophytic fungal species did not

display any enzyme activity; however, enzyme release by some of them were already reported,

such as the synthesis of (i) amylase and cellulase by C. gloeosporioides and P.macrospinosa
[205,223]; (ii) amylase and protease by M. camptospora [214,224]; and (iii) amylase, cellulase

and protease by T. asperellum [225–227]. The species D. terebinthifolii, M. elegans, N. rigidius-
cula,N.mackinnonii, P. arecacearum, P. macrospinosa, P. pinodella, P. lagerstroemiae and S.

fenestrans–which did not present enzymatic activity in our work–, are not reported in the liter-

ature with any enzymatic activity.
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Only the species F. oxysporum, M. terrestris and T. harzianum, which were isolated from

tolerant and susceptible genotypes of P. cupana, exhibited amylolytic, cellulolytic and proteo-

lytic activity. Although protease-, cellulase-, and amylase-producing endophytic fungal species

Table 4. Analysis of functional traits in endophytic fungi isolated from Paullinia cupana.

Species–Strain Antibacterial activity (MIC in μg/mL)a Enzymatic activityb

E.C (M) E.C (S) S.A (M) S.A (S) Amylase Cellulase Protease IAAc

Phomopsis asparagi - 22S - - - + - + + +

Diaporthe phaseolorum - 8S 39.06 > 5.000 1.250 1.250 - - + +

Mycoleptodiscus terrestris - 65TSA + + - + - - - -

Pestalotiopsis microspore - 14S - - - + + + + +

Glomerella acutata - 18TSA + + - + - - - -

Colletotrichum gloeosporioides - 6TSA - + - - - - - -

Gibberella zeae - 3S - - - + - - + +

Nigrograna mackinnonii - 101BDA - - - + - - - +

Fomitopsis meliae - 32S - - - + - + - -

Phomopsis asparagi - 38TSA - - - + - - - -

Glomerella acutata - 98BDA - - - + - - - -

Xylogone ganodermophthora - 92BDA - - - + - - - -

Parapleurotheciopsis inaequiseptata - 62TSA - - - + - - + -

Diaporthe melonis - 29TSA 312.5 39.06 > 5.000 5.000 + - + +

Paraphaeosphaeria arecacearum - 45TSA - - - + - - - -

Mycoleptodiscus terrestris - 30TSA - - - + + + + +

Paecilomyces parvisporus - 9BDA - - - + - + - -

Arxiella dolichandrae - 90BDA - - - + - + + -

Phomopsis asparagi - 34TSA - + - + - - - -

Pochonia boninensis - 49BDA - - - + - - + -

Fusarium solani - 41BDA - - - + + + - +

Mycena robusta - 95BDA - - - + + - - +

Diaporthe hongkongensis - 11BDA - - - + - - + +

Mariannaea camptospora - 14TSA - - - + - - - +

Fusarium oxysporum - 20S - - - + + + + +

Fusarium polyphialidicum - 5S - - - + - + + -

Penicillium janthinellum - 17BDA - - - + + + - -

Trichoderma harzianum - 43BDA 78.13 > 5.000 2.500 5.000 + + + +

Humicola fuscoatra - 124BDA - - - + - - + +

Diaporthe terebinthifolii - 24S 78.13 2.500 > 5.000 625 - - - -

Trichoderma asperellum - 1BDA - - - + - - - +

Glomerella acutata - 15S - - - + - + + +

Mariannaea camptospora - 123BDA - - + + - - - +

Fusarium oxysporum - 13TSA - - - + - - - +

Xylogone ganodermophthora - 1TSA - - + + - - - -

Xylogone ganodermophthora - 130BDA - - + + - - - -

Xylogone ganodermophthora - 11TSA - - - + - + + -

a (+) = Inhibit gowth

(-) = Do not inhibit growth; E.C = Escherichia coli; S.A = Staphylococcus aureus; (M) = Multiresistant strain; (S) = Susceptible strain; (MIC) = Minimal inhibitory

concentration.
b (+) = Produce the enzyme; (-) = Do not produce the enzyme.
c IAA = indole-3-acetic acid.

https://doi.org/10.1371/journal.pone.0195874.t004
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colonized both P. cupana genotypes, the production of enzymes and antifungals in the roots

may not be sufficient to prevent the development of anthracnose–this disease affects the aerial

organs, mostly leaflets, petioles and young stems [18,30,228].

We identified 17 IAA-producing endophytic fungal species in P. cupana (Table 4), among

which F. oxysporum, F. solani, T. harzianum and T. asperellum are known IAA producers in
vitro [229–231]. Although the other endophytic fungal species analyzed did not produce

detectable levels of IAA, several species of Glomerella, Mycena and Pestalotiopsis were previ-

ously reported to synthesise IAA in vitro and promote plant growth [232–234]. Endophytes

can release IAA to promote plant growth in several crops such as rice, sugar cane [235] and

coffee [236], and to favor germination [237]. Together, our findings demonstrate that endo-

phytic fungi isolated from tolerant and susceptible genotypes of P. cupana also synthesize IAA

in vitro, which could benefit the host.

Purification and structural elucidation of special metabolites

The CH3OH-H2O (3:7) fraction from D. phaseolorum (8S) afforded a colorless solid, named

sample 3A. The 1H NMR spectrum showed two signals at 3.07 ppm (2H, t, J = 6.02 Hz) and

4.68 ppm (2H, t, J = 6.05 Hz); the 13C NMR spectrum showed three signals at 30.74, 69.29 and

174.51 ppm; and the 2D NMR spectrum showed two triplets coupled with each other (COSY).

HMQC correlations demonstrated that protons with chemical shifts at 4.68 and 3.07 ppm

were attached to the carbons that gave the signals at 69.29 and 30.74 ppm, respectively, while

the HMBC correlation demonstrated that both proton signals gave long-range correlations to

each other’s carbons as well as to the carbon at 174.51 ppm. The aforementioned spectral data

are similar to those reported in the literature for 3-HPA [103,238] (Table 5). Therefore, sample

3A corresponds to 3-HPA (3-hydroxypropionic acid).

The CH3OH subfraction–obtained from the CH3OH:H2O (7:3) fraction from D. phaseo-
lorum (8S)–afforded a dark yellow solid sample named 070. Analysis of the 13C and 1H NMR

spectra (Table 5) followed by the HSQC correlation map evidenced the correlation of the sig-

nals δH 7.52; 7.70; 4.20; 1.41; 1.28–1.33; 1.25; 0.88; and 0.90 with the signals δC 130.8; 128.8;

68.16; 23.74; 38.7–28.9–22.9; 29.69; 14.05 and 10.96 respectively. The HMBC data analysis evi-

denced the following fundamental correlations: δH 7.70 with δC 130.8 and 167.7, δH 7.52 with

δC 128.8, δH 4.20 with δC 68, δH 1.33–1.28 with δC 22.9 and 23.74. Mass spectrum showed a

molecular ion peak atm/z = 390. Together, the spectral data indicates that sample 070 corre-

sponds to DEHP (di-(2-ethylhexyl) phthalate) [239].

The CH3OH extract fraction obtained from T. asperellum (1BDA) provided a solid light-

yellow sample named 17A after a HPLC purification step. Analyses of 13C and 1H NMR spec-

tra (Table 5) followed by the HSQC correlation map evidenced the correlation of the signals

δH 7.95; 7.86; 7.72; 7.60; 7.33 and 4.06 with the signals δC 118.62; 135.72; 135.49; 118.22;

124.06 and 55.67, respectively. Mass spectrum showed a molecular ion peak atm/z = 254.

Thus, sample 17A corresponds to 1-hydroxy-8-methoxyanthraquinone, corroborating litera-

ture reports [240].

DEHP is used as plasticizer in the plastics industry and is considered as a persistent envi-

ronmental pollutant due to its extensive usage [241]. DEHP was isolated from endophytic

microorganisms [242,243], but not from those belonging to the genus Diaporthe. Hence, this is

the first report on the production of DEHP by species of the genus Diaporthe. As DEHP is

present in laboratory equipment and accessories [244,245] and it is considered a common con-

taminant of analytical equipment [246,247], several authors have questioned whether DEHP is

a natural product or an analytical contaminant [248–250]. We believe that DEHP is a fungal

product because it was exclusively detected in this sample.
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3-HPA is commercially available and used in a range of industrial applications [251]. This

compound can be synthesized through different metabolic pathways, from different precur-

sors, and by both prokaryotes and eukaryotes [252], including endophytes [103,238,253].

There are few literature reports on 1-hydroxy-8-methoxyanthraquinone. It was produced

through chemical synthesis [254] and isolated for the first time as a natural product from the

Table 5. NMR data of isolated compounds from P. cupana endophytic fungi.

1-Hydroxy-8-methoxyanthraquinone 3-Hydroxypropionic acid Di-(2-ethylhexyl) phthalate

Hydrogen Sample 17A1,3 Ayer et al. (1989)4,5 Hydrogen Sample 3A1,2 Schwarz et al.

(2004)1,2
Hydrogen Sample 0701,2 Amade et al.

(1994)4,6

OH - 12.96 (1H, s) H-1 3.07 (2H, t,

J = 6.02 Hz)

2.95 (2H, t,

J = 6.02 Hz)

1 0.90 (6H, t, J = 6.5 Hz) 0.82 (t, J = 5.3 Hz)

H-5 7.95 (1H, d,

J = 7.5)

7.96 (1H, dd, J = 1.3,

7.8 Hz)

H-2 4.68 (2H, t,

J = 6.05 Hz)

4.61 (2H, t,

J = 6.02 Hz)

2–4 1.28–1.33 (8H, m) 1.15–1.30 (m)

H-1 7.86 (1H, t,

J = 7.9)

- Carbon 5 - 1.59 (m)

H-4 7.77 (1H, d,

J = 7.2)

7.77 (1H, dd, J = 1.3,

7.8 Hz)

C-1 174.51 171.7 6 4.20 (2H, qd, J = 5.65,

8.4 Hz)

4.13 (m)

H-6 7.72 (1H, t,

J = 7.7)

7.74 (1H, t, J = 7.8

Hz)

C-3 69.29 69.8 8 1.41 (2H, q, J = 6.9 Hz) 1.31 (dq, J = 4.3

Hz)

H-3 7.60 (1H, d,

J = 8.1)

7.60 (1H, t, J = 7.8

Hz)

C-2 30.74 30.8 9 0.88 (3H, t, J = 6.4 Hz) 0.79 (t, J = 4.3 Hz)

H-7 7.33 (1H, d,

J = 8.5)

7.35 (1H, dd, J = 1.3,

7.8 Hz)

11 7.70 (1H, dd, J = 3.35,

5.80 Hz)

7.60 (dd, J = 6.3;

2.2 Hz)

H-2 - 7.29 (1H, dd, J = 1.3,

7.8 Hz)

12 7.52 (1H, dd, J = 3.35,

5.80 Hz)

7.40 (dd, J = 6.3;

2.2 Hz)

OCH3 4.06 (3H, s) 4.04 (3H, s)

Carbon Carbon

C-9 - 188.7 1 10.95 9.91

C-10 - 183.0 2 22.98 21.94

C-1 - 162.6 3 23.74 22.79

C-8 161.95 161.0 4 28.92 27.92

C-10a 135.95 135.9 5 38.73 37.78

C-3 135.72 135.8 6 68.16 67.02

C-6 135.49 135.8 7 167.76 166.58

C-4a 132.79 132.8 8 29.69 29.39

C-4 124.06 124.7 9 14.05 12.96

C-8a 119.36 120.9 10 132.46 131.51

C-5 - 120.2 11 130.88 129.79

C-2 118.62 118.8 12 128.80 127.75

C-7 118.22 118.2

C-9a - 117.1

OCH3 55.66 56.7

Chemical shifts (δ) expressed in ppm.
1 NMR 1H 500 MHz, CDCl3
2 NMR 13C 125 MHz, CDCl3
3 NMR 13C 125 MHz, CD3OD
4 NMR 1H 400 MHz, CDCl3
5 NMR 13C 400 MHz, CDCl3
6 NMR 13C 100 MHz; CDCl3

(-) = Signal not detected in the respective NMR spectrum.

https://doi.org/10.1371/journal.pone.0195874.t005
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phytopathogenic fungus Leptographium wageneri [240]. To the best of our knowledge, this is

the first report on the isolation of 1-hydroxy-8-methoxyanthraquinone from an endophytic

fungus and from a microorganism belonging to the genus Trichoderma.

Antibacterial, antitumor and genotoxic activity of the isolated compounds

Here we addressed whether the three special metabolites isolated from endophytic fungal spe-

cies that colonize P. cupana display antibacterial, antitumor and genotoxic effecs. First, we

used the minimal inhibitory concentration test to examine their antibacterial activity. 3-HPA

and DEHP, at all the concentrations tested, exerted the strongest antimicrobial activity against

P. aeruginosa susceptible and multiresistant strains (Table 6). The growth of bacterial colonies

in culture medium indicated that 3-HPA and DEHP were bacteriostatic. The antibacterial and

nematicidal activity of 3-HPA was previously reported [103,238], but the mechanisms underly-

ing its bactericidal action remain unclear [252]. DEHP exerts antibiotic activity against resis-

tant and susceptible pathogenic bacterial strains [255–259]. In contrast, 1-hydroxy-

8-methoxyanthraquinone did not suppress the growth of the bacterial strains tested and there

are no literature reports on its antimicrobial activity.

Second, we assessed the antitumor effect of the three special metabolites against CHO and

B16F10 cells in vitro. 3-HPA reduced the viability of both tumor cell lines in a concentration-

dependent manner (S5 Fig). A 72-h treatment with 3-HPA at 100 μg/ml diminished CHO and

B16F10 cell viability to 80% and 40%, respectively. 3-HPA is strongly cytotoxic towards pro-

karyotic cells [252], but there are no reports on its antitumor effect. Our data suggest that

3-HPA is toxic to both tumor and non-tumor cell lines and exerts stronger cytotoxic effect on

the former.

There are several reports on the DEHP citotoxicity against tumour and non-tumor cell

lines [257,258,260] and its risk to animal health by targeting several organs [261–263]. DEHP

was cytotoxic towards CHO and B16F10 cell lines: it decreased their cell viability to 70% and

50%, respectively, after a 72-h treatment at a concentration of 100 μg/ml (S6 Fig). On the other

hand, 1-hydroxy-8-methoxyanthraquinone did not affect the viability of both cell lines investi-

gated and there are no literature reports on its antitumor activity.

Third, we assessed the genotoxicity of 3-HPA in V79 cells. 3-HPA diminished the cell via-

bility by less than 20%, even at concentrations as high as 100 μg/ml (S7 Fig); it excludes the

possible interference of DNA damage caused by cytotoxic concentrations of the test-sample.

3-HPA did not induce DNA damage (genotoxicity), at least under the conditions assessed (S8

Fig). The cytotoxicity of 3-HPA is well-documented and can be mediated by DNA damage

[264,265]. As we did not find information about its genotoxicity in the scientific literature, we

recommend performing additional mutagenic tests to examine whether it is safe. 3-HPA was

cytotoxic towards CHO cells but not towards V79 cells, corroborating literature reports that

these cell lines have different sensibility to cytotoxic compounds, and that CHO cells can be

several folds more sensible than V79 cells to toxic molecules [266].

Table 6. Minimal inhibitory concentration (μg/mL) of the special metabolites isolated from endophytic fungi of P. cupana.

Sample S.A (M) E.C (M) P.A (M) S.A (S) E.C (S) P.A (S)

3-hydroxypropionic acid >30 >30 0.23 >30 >30 0.23

Di-(2-ethylhexyl) phthalate >30 >30 0.23 >30 >30 0.23

Tetracycline > 5.000 > 5.000 > 5.000 > 5.000 > 5.000 > 5.000

E.C = Escherichia coli; P.A = Pseudomonas aeruginosa; S.A = Staphylococcus aureus; (M) = Multiresistant strain; (S) = Susceptible strain.

https://doi.org/10.1371/journal.pone.0195874.t006
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Conclusion

We isolated and identified thirty-four endophytic fungal species in P. cupana: eight in seeds,

twenty-three in roots and three in both organs. Eight species were not previously reported as

endophytic, including X. ganodermophthora , which was the most abundant species in roots.

These findings demonstrate the potential of the Amazonia forest as an environment with high

diversity of endophytic fungi. The plant geographic location, clonal type, and organ are factors

that influence the structure of the endophytic fungal community of P. cupana. The plant organ

is the most important factor that causes differentiation in the community’s composition. We

confirmed that mycorrhizae and DSE colonize susceptible and tolerant genotypes of P. cupana.

P. asparagi (22TSA) and P. pinodella (28S) develop microsclerotia on roots under in vitro con-

ditions. The endophytic fungal community of P. cupana harbors species bearing some plant

growth-promoting traits, including the synthesis of enzymes, phytohormones and biologically

active molecules. We isolated and identified 3-hydroxypropionic acid and di-(2-ethylhexyl)

phthalate from Diaporthe phaseolorum (8S) and 1-hydroxy-8-methoxyanthraquinone from

Trichoderma asperellum (1BDA). This study opens possibilities for further investigations,

because some species have never been explored for the biological control of crop pests like

insects, weeds or parasites, and for the production of chemically active constituents. Hence,

they represent potential sources of new and valuable organic molecules.

Supporting information

S1 Table. Classification of the 34 identified endophytic fungal species in P. cupana seeds

and roots into putative ecological roles.

(DOCX)

S1 Appendix. NMR spectra.

(DOCX)

S1 Fig. Distribution of endophytic fungal species of P. cupana within the communities

studied. Mu = Manaus; Me = Maués; Su = Susceptible phenotype (CMU 300); To = Tolerant

phenotype (CMU 871); Se = Seeds; Ro = Roots.

(TIF)

S2 Fig. NMDS plot of the endophytic fungal community structure in P. cupana using the

Jaccard coefficient. Each point represents a single endophytic community. Permutation tests

resulted a highly significant classification (P = 0.001). The lines separate communities from

seeds and roots.

(TIF)

S3 Fig. Graphical representation of the network of all the culturable endophytic fungal

species isolated from P. cupana roots and seeds. The size of each node is proportional to its

betweeness centrality. Blue, yellow, and red nodes indicate a high, intermediate, and low

degree of betweenness centrality, respectively. Thick lines represent positive (Spearman’s

ρ>0.6) and significant (P<0.05) correlations. Thin lines represent positive non-significant

correlations (P>0.05).

(TIF)

S4 Fig. Modules within the network of culturable endophytic fungal species isolated from

P. cupana roots and seeds. Different colors represent the two modular communities identi-

fied. Green and blue modules represent the species isolated from seeds and roots, respectively

(modularity index = 0.303, P< 0.01).

(TIF)

Functional traits and biological activity of endophytic fungi from Paullinia cupana

PLOS ONE | https://doi.org/10.1371/journal.pone.0195874 April 12, 2018 19 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195874.s006
https://doi.org/10.1371/journal.pone.0195874


S5 Fig. Viability of Chinese hamster ovary (CHO) and Mus musculus skin melanoma

(B16F10) cells treated with 3-hydroxypropionic acid (3-HPA) for 72 h. �(CHO) and #

(B16F10): P< 0.05 vs. control (untreated cells); Dunnett’s multiple comparison test.

(TIF)

S6 Fig. Viability of Chinese hamster ovary (CHO) and Mus musculus skin melanoma

(B16F10) cells treated with di-(2-ethylhexyl)phthalate (DEHP) for 72 h. �(CHO) and #

(B16F10): P< 0.05 vs. control (untreated cells); Dunnett’s multiple comparison test.

(TIF)

S7 Fig. Viability (%) of V79 cells treated with 3-hydroxypropionic acid (3-HPA). Negative

control: untreated cells. Positive control: 10 μM doxorubicin. �P< 0.05 vs. negative control

(Dunnett’s multiple comparison test).

(TIF)

S8 Fig. DNA damage (% DNA tail) in V79 cells treated with 3-hydroxypropionic acid

(3-HPA). Negative control: untreated cells. Positive control: 200 μM hydrogen peroxide. �

P< 0.05 vs. negative control (Dunnett’s multiple comparison test).

(TIF)
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Érica de Melo Reis, Marilene Borges Silva Passos, Edson Lucas dos Santos, Olivia Moreira

Sampaio, Ana Helena Januário, Carmen Lucia Bassi Branco, Gilvan Ferreira da Silva, Mar-
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113. Kövics GJ, Sándor E, Rai MK, Irinyi L. Phoma-like fungi on soybeans. Critical Reviews in Microbiology.

2014; 40: 49–62. https://doi.org/10.3109/1040841X.2012.755948 PMID: 23363325

114. Rajeshkumar KC, Crous PW, Groenewald JZ, Seifert KA. Resolving the phylogenetic placement of

Porobeltraniella and allied genera in the Beltraniaceae. Mycological Progress. 2016; 15: 1119–1136.

https://doi.org/10.1007/s11557-016-1234-4

115. Kang H-J, Sigler L, Lee J, Gibas CFC, Yun S-H, Lee Y-W. Xylogone ganodermophthora sp. nov., an

ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea.

Mycologia. 2010; 102: 1167–84. https://doi.org/10.3852/09-304 PMID: 20943517

116. Marinelli E, Orzali L, Lotti E, Riccioni L. Activity of some essential oils against pathogenic seed borne

fungi on legumes. Asian Journal of Plant Pathology. 2012; 6: 66–74. https://doi.org/10.3923/ajppaj.

2012.66.74

117. Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, et al. Fungal Planet

description sheets: 214–280. Persoonia. 2014; 32: 184–306. https://doi.org/10.3767/

003158514X682395 PMID: 25264390

118. Redman RS, Dunigan DD, Rodriguez RJ. Fungal symbiosis from mutualism to parasitism: who con-

trols the outcome, host or invader? New Phytologist. Blackwell Science Ltd; 2001; 151: 705–716.

https://doi.org/10.1046/j.0028-646x.2001.00210.x

Functional traits and biological activity of endophytic fungi from Paullinia cupana

PLOS ONE | https://doi.org/10.1371/journal.pone.0195874 April 12, 2018 26 / 34

https://doi.org/10.1139/w06-020
https://doi.org/10.1139/w06-020
http://www.ncbi.nlm.nih.gov/pubmed/16917524
https://doi.org/10.17660/ActaHortic.2012.950.34
https://doi.org/10.1007/s13225-011-0126-9
https://doi.org/10.1007/s13199-016-0427-6
https://doi.org/10.1007/s00284-012-0206-4
http://www.ncbi.nlm.nih.gov/pubmed/22886401
https://doi.org/10.1016/j.phytochem.2013.10.004
https://doi.org/10.1016/j.phytochem.2013.10.004
http://www.ncbi.nlm.nih.gov/pubmed/24189345
https://doi.org/10.1017/S0953756201004968
https://doi.org/10.1017/S0953756201004968
https://doi.org/10.1016/S0953-7562(89)80073-5
https://doi.org/10.1111/j.1365-2745.2012.01997.x
https://doi.org/10.1007/BF00122638
https://doi.org/10.1016/j.mycres.2005.09.014
https://doi.org/10.1016/j.mycres.2005.09.014
http://www.ncbi.nlm.nih.gov/pubmed/16378718
https://doi.org/10.1590/S1982-56762009000300004
https://doi.org/10.1590/S1982-56762009000300004
https://doi.org/10.1007/s11557-009-0641-1
https://doi.org/10.1007/s11557-009-0641-1
https://doi.org/10.2174/1386207317666140109114553
https://doi.org/10.3109/1040841X.2012.755948
http://www.ncbi.nlm.nih.gov/pubmed/23363325
https://doi.org/10.1007/s11557-016-1234-4
https://doi.org/10.3852/09-304
http://www.ncbi.nlm.nih.gov/pubmed/20943517
https://doi.org/10.3923/ajppaj.2012.66.74
https://doi.org/10.3923/ajppaj.2012.66.74
https://doi.org/10.3767/003158514X682395
https://doi.org/10.3767/003158514X682395
http://www.ncbi.nlm.nih.gov/pubmed/25264390
https://doi.org/10.1046/j.0028-646x.2001.00210.x
https://doi.org/10.1371/journal.pone.0195874


119. Zabalgogeazcoa I. Fungal endophytes and their interaction with plant pathogens: a review. Spanish

Journal of Agricultural Research. 2008; 6: 138. https://doi.org/10.5424/sjar/200806S1-382

120. Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J, et al. Ecology and genomic insights into

plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology. Annual

Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, California 94303–0139, USA; 2017; 55: 61–

83. https://doi.org/10.1146/annurev-phyto-080516-035641 PMID: 28489497

121. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Natural product reports. 2001;

18: 448–459. https://doi.org/10.1039/b100918o PMID: 11548053
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