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Abstract

At present, single-trait best linear unbiased prediction (BLUP) is the standard method for

genetic selection in soybean. However, when genetic selection is performed based on two

or more genetically correlated traits and these are analyzed individually, selection bias may

arise. Under these conditions, considering the correlation structure between the evaluated

traits may provide more-accurate genetic estimates for the evaluated parameters, even

under environmental influences. The present study was thus developed to examine the effi-

ciency and applicability of multi-trait multi-environment (MTME) models by the residual max-

imum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of

segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 prog-

eny assessed in two environments for the following traits: number of days to maturity (DM),

100-seed weight (SW), and average seed yield per plot (SY). Variance components and

genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian

methods. The variance components estimated and the breeding values and genetic gains

predicted with selection through the Bayesian procedure were similar to those obtained by

REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of

broad-sense heritability per plot (or heritability of total effects of progeny; h2
prog) and mean

accuracy of progeny than their respective single-trait versions. Bayesian analysis provided

the credibility intervals for the estimates of h2
prog. Therefore, MTME led to greater predicted

gains from selection. On this basis, this procedure can be efficiently applied in the genetic

selection of segregating soybean progeny.

Introduction

Soybean [Glycine max (L.) Merrill] is the fourth most widely grown crop in the world. This

species is originally from China and is the major crop in the USA, Brazil, Argentina, and many
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other countries [1]. Soybean is currently grown from low to high latitudes, where it is used as a

source of oil, protein, biodiesel, etc. [2]. In this scenario, because the genotype × environment

(G×E) interaction plays an essential role in genotypic expression, it must be considered in the

evaluation and selection of superior genotypes [3–5].

The selection of segregating soybean progeny is a rather complex process because the traits

of agronomic importance (e.g., maturity, yield, etc.) are of quantitative nature. Furthermore,

because some traits are correlated with each other, selection based on one of them leads to

alterations in others [6,7]. In soybean breeding, most of the available methods for the selection

of progeny or lines are useful in the analysis of a single trait measured either in a single envi-

ronment [8,9] or in various environments with the incorporation of the G×E interaction [10–

12]. However, researchers often face situations in which multiple traits are measured across

multiple environments [13]. Moreover, selection bias may arise when genetic selection is per-

formed based on two or more genetically correlated traits (due to pleiotropism, imbalance in

the gametic phase, and/or the common influence of the environment) and these are analyzed

individually. This is especially true in sequential selection [13–15].

To reduce selection bias, Henderson et al. [16] proposed the multiple-trait BLUP method.

An additional advantage of jointly modeling multiple traits compared to analyzing each trait

separately is that the inference process appropriately accounts for the correlation between the

traits, which helps to increase prediction accuracy, statistical power, and parameter estimation

accuracy [14,16,17]. Despite the improvements provided by the multiple-trait BLUP (Best Lin-

ear Unbiased Prediction) method, to the best of our knowledge, there are few studies combin-

ing multi-trait models under a multi-environment approach.

The multiple-trait BLUP procedure is ideal, as it makes it possible to simultaneously analyze

traits that are correlated with each other and that exhibit covariance heterogeneity across

experimented environments [18,19]. In this way, a covariance structure is applied to each ran-

dom factor in the model; e.g., the progeny effects, the G×E interaction effects, and the residual

effects [20,21]. Even though data collected in plant breeding studies often present a multi-trait

multi-environment structure, as they take into consideration the genetic correlations and the

G × E interaction, more complex models are required, rendering the computation process

more laborious. Some studies have demonstrated the potential of the Bayesian approach for

genetic evaluation in plant breeding considering multi-trait or multi-environment models

[22–25]. In this approach, the parameters are interpreted as random variables, following the

law of probability, which assumes a priori knowledge [25,26].

In view of the above-described situation, the present study proposes to examine the effi-

ciency and applicability of multi-trait multi-environment (MTME) models in the selection of

segregating soybean progeny, using phenotypic data, by the frequentist (FMTME) and Bayes-

ian (BMTME) methodologies. Effective biometric tools were exploited and compared with the

usual tools employed in genetic breeding aiming at increasing the predicted genetic gain. In

this way, study demonstrated it was possible to attain these goals by selecting soybean geno-

types with better genetic potentials (desirable phenotypic traits) in different evaluation

environments.

Material and methods

Experimental data

Three populations (Pop) belonging to the Soybean Breeding Program at the Federal University

of Viçosa (UFV) were obtained from crosses between divergent inbred lines (Pop1:

TMG123RR/M7211RR; Pop2: UFVSCitrinoRR/UFVSTurquezaRR; and Pop3: M7908RR/

M7211RR). These lines were classified into different relative maturity groups according to the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0215315 April 18, 2019 2 / 22

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0215315


soybean crop management classification [27], aiming to exploit genetic variability for the selec-

tion of productive progeny. Seventy-two, 71, and 60 F2 plants of populations 1, 2, and 3,

respectively, were separately bulk-harvested and threshed. One sample was collected from

each F2:3 progeny to compose the 203 F2:4 progeny that were used in this study by the within-

progeny bulk method [28,29].

To evaluate these progeny, two trials were conducted in the 2016/2017 crop year at the

Teaching, Research, and Academic-Extension Units at UFV. One of them took place in

Capinópolis—MG, Brazil (18˚40’48" S latitude, 49˚33’58" W longitude; 530 m altitude)

and the other in Viçosa—MG, Brazil (20º45’45" S latitude, 42º49’27" W longitude; 647 m

altitude).

The experiments were set up as a randomized complete block design with three replicates

per site. Plots consisted of two 3.0-m rows spaced 0.5 m apart, with a plant stand density of 13

seeds per meter, totaling a density of 256,000 plants ha–1. All plant management operations

were undertaken in accordance with the requirements of the crop in the region [30].

Three target agronomic traits were evaluated, namely: number of days to maturity (DM,

days), 100-seed weight (SW, g), and average seed yield per plot (SY, g). The first variable, DM,

corresponds to the number of days before 95% of the pods were mature, as indicated by their

color [31]. To evaluate the SW and SY traits, the grains were dried to 13% moisture. All data

and code to run the main models used in this study are available in S1 Table and S2 Table,

respectively.

Frequentist statistical analyses

The Restricted Maximum Likelihood/Best Linear Unbiased Prediction (REML/BLUP) proce-

dure was adopted for statistical analyses under a frequentist approach (Patterson and Thomp-

son [32] and Henderson [33]). The frequentist single-trait multi-environment (FSTME)

statistical model associated with the evaluation of segregating progeny in a randomized block

design in two environments, with one observation per plot, is given by:

y ¼ Xbþ Zg þWiþ e;

where y is the vector of phenotypes; b is the vector of block effects added to the overall mean

(assumed fixed); g is the vector of progeny effects (assumed random), in which g � Nð0; s2
gÞ;

i is the vector of the G×E interaction effects (random), in which i � Nð0; s2
intÞ; and e is the vec-

tor of residuals (random), in which e � Nð0; s2
eÞ. The capital letters (X, Z and W) represent

the incidence matrices for the effects of b, g, and i, respectively. The b vector encompasses all

replicates of all locations. In this case, this vector comprises the effects of locations and of repli-

cates within locations. The goodness of fit was obtained using Akaike information criteria

(AIC [34]), defined by AIC = −2LogL+2p, in which LogL is the log-likelihood function and p is

the number of estimated parameters, according to Little et al. [35]; and the Likelihood Ratio

Test (LRT), following Wilks [36], using Chi-square Statistics with one degree of freedom,

which is calculated by the following equation: λ = 2[LogeLp+1−LogeLp], in which Lp+1 and Lp
are the maximum likelihood associated with the full and the reduced models, respectively.

In the frequentist multi-trait multi-environment (FMTME) approach, this model was

transformed into g~N(0,∑g�I), i~N(0,∑int�I) and e~N(0,∑e�I), where ∑g is the progeny

covariance matrix; ∑int is the G×E interaction covariance matrix; ∑e is the residual covariance

matrix; I is an identity matrix with order appropriate to the respective random effect; and�

denotes the Kronecker product. ∑g, ∑int, and ∑e are also unstructured covariance structures

(US) [18,19]. The following Y1, Y2, and Y3 are the vectors of observed responses for each trait
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To perform the statistical analyses of the FSTME and FMTME models and obtain the vari-

ance components and breeding values, we applied the ASReml 4.1 package [21] of integrated

R software (Development Core Team—[37]).

Bayesian statistical analyses

The single-trait multi-environment and multi-trait multi-environment models as well as the

covariance matrix structures (US) of the frequentist analyses were used according to the Bayes-

ian approach (BSTME and BMTME, respectively) via Markov Chain Monte Carlo (MCMC)

to estimate the variance components and genetic parameter. To gather further information

about representation of model, matrix, and vectors structures as well as priori probability dis-

tributions, we recommend reading Mrode [18] and Gilmour et al. [21] and recent publications

Junqueira et al. [23], Torres et al. [25] and Mora and Serra [38].

We assumed that the variance-covariance matrices follow an Inverse-Wishart (IW) distri-

bution and independent Inverse-Gamma (IG) distributions, which were used as a priori to

model the variance-covariance matrix [39–41]. The ensuing covariance matrix distribution is

such that all standard-deviation parameters have Half-t distributions and the correlation

parameters have uniform distributions on (-1,1) for a particular choice of the IW shape param-

eter [13]. The advantage of this approach is that it allows us to choose the shape and scale

parameters that achieve high non-arbitrary information of all standard deviations and correla-

tion parameters [40].

The full (considering the genotype and G × E interaction effects) models were compared

with the reduced (disregarding the genotype or G × E interaction effects) models by the devi-

ance information criterion (DIC) proposed by Spiegelhalter et al. [42]: DIC ¼ Dð�yÞ þ 2pD,

where Dð�yÞ is a point estimate of the deviance obtained by replacing the parameters with

their posterior mean estimates in the likelihood function and pD is the effective number of

parameters in the model. Models with lower DIC should be preferred over models with higher

DIC.

The Bayesian models (BSTME and BMTME) were implemented in the “MCMCglmm”

package [43,44] of R software (R Development Core Team—[37]). A total of 1,000,000 samples

were generated, and assuming a burn-in period and sampling interval of 500,000 and 5 itera-

tions, respectively, this resulted in a final total of 100,000 samples. The convergence of MCMC

was checked by the criterion of Geweke [45], which was performed using the “boa” [46] and

“CODA” (Convergence Diagnosis and Output Analysis) [47] R packages.

Genetic and non-genetic components

Broad-sense heritability per plot (or heritability of total effects from progeny) for the frequen-

tist and Bayesian models were computed based on the approximated estimators, as discussed

Genetic selection of segregating soybean progeny
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in Piepho et al. [48], using the following expression:

h2

prog ¼
s2
g

s2
g þ

s2
int
n þ

s2
e

nr

where s2
g : variance of progeny; s2

int: variance of the progeny × environment interaction; s2
e :

error variance; n: number of locations; and r: number of replicates. For the Bayesian models,

the posterior estimates were calculated from the posterior samples of the variance components

obtained by the model.

The accuracy of progeny selection for the frequentist models (FSTME and FMTME) was

estimated based on the following expression [49]:

rĝ g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

g � PEVÞ=s2
g

q
;

where s2
g is the genotypic variance and PEV is the prediction error variance extracted from the

diagonal of the generalized inverse of the coefficient matrix of the mixed-model equations.

For the Bayesian approach (BSTME and BMTME models), the accuracy of progeny

selection was estimated according to Resende et al. [19] from the posterior distribution, given

by:

~r ĝ g ¼ ½1 � sð~gÞ=~g �;

where sð~gÞ is the standard deviation of the predicted breeding value. According to Resende

et al. [19], in Bayesian inference, the variance of the very parameter that is assumed as a ran-

dom variable is computed.

The “boa” [46] and “bayesplot” [50,51] packages of R software were used to calculate and

plot the highest posterior density (HPD) intervals for all parameters, respectively. Estimates of

the coefficient of experimental variation (CVe) and selective accuracy (rĝ g) were used to evalu-

ate the experimental quality of the models [52].

Genetic correlation

To determine the genetic covariance by the frequentists and Bayesian single-trait models

(FSTME and BSTME, respectively), a pairwise analysis of the sum of phenotypic values of the

traits was performed. Thus, the covariances were obtained, as proposed by Resende et al. [53],

using the following expression:

sgðtraiti ;traitjÞ
¼
s2
g ðtraitiþtraitjÞ

� s2
gðtraitiÞ

� s2
gðtraitjÞ

2
;

where s2
g ðtraitiþtraitjÞ

is the variance of the sum of phenotypic values of traits i and j; s2
gðtraitiÞ

is the

genotypic variance of trait i; and s2
gðtraitjÞ

is the genotypic variance of trait j. Genetic covariances

by the multi-trait multi-environment models (FMTME and BMTME models) were obtained

directly by the mixed-model output from each applied methodology.

The genetic correlation coefficients between the DM, SW, and SY traits were obtained, as

suggested by Piepho et al. [54], using the expression below for all models:

rðtraiti ;traitjÞ ¼
sgðtraiti ;traitjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
gðtraitiÞ

s2
gðtraitjÞ

q
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Progeny selection

The Spearman rank correlation coefficient was calculated between the BLUP (breeding value)

of the progeny from the analyses of FSTME, FMTME, BSTME, and BMTME, and its signifi-

cance was verified using nonparametric bootstrap in the R package ‘boot’ [55,56]. The agree-

ment between the selected progeny was also checked by the coincidence index (CI) proposed

by Hamblin and Zimmermann [57], as shown below:

CI ¼
ðA � CÞ
ðM � CÞ

;

where A is the number of coincident progeny in the two methods, M is the number of selected

progeny, and C is the number of progeny coincident due to chance (C = bM, where b is the

selection intensity = 0.15; i.e., 15%).

Selection gain was predicted for each trait (DM, SW, and SY) based on the expression

below:

SG ¼
Pn

i¼1
GVi

n
;

where GVi is the predicted genotypic value of progeny i and n is the number of selected prog-

eny (30).

In order to perform a simultaneous selection and infer about the efficiency of selection gain

for each evaluated trait between the frequentist (FSTME and FMTME) and Bayesian (BSTME

and BMTME) models, we applied the additive genetic index using Selegen REML/BLUP soft-

ware (AGI–[58]). The predicted breeding values of the selected progeny were thus compared

by the frequentist and Bayesian approaches. The weights for each trait were defined based on

the coefficients of genetic variation [59]. For all traits, the progeny were selected to increase

the phenotypic expression, or provide the highest BLUP. After the direction of selection was

defined, the genotypic values for each progeny [weighted by the pre-established weights (CVg)

for each trait] were summed, generating the AGI value. Subsequently, they were organized in

descending order.

Results

Analysis of deviance and model fitting

The significance of progeny (G) and G×E interaction effects of the FSTME model were evalu-

ated. Significant G and G×E interaction effects (P� 0.01) were detected in the LRT for the

DM, SW, and SY traits (Table 1). According to the AIC from the results obtained with the

FSTME model, the model including the G and G×E interaction effects (full model) showed the

best fit (lowest AIC value) for all traits (Table 2). Thus, according to the two methodologies,

Table 1. Deviance and likelihood ratio test (LRT) for number of days to maturity (DM), 100-seed weight (SW) (grams), and average seed yield per plot (SY)

(grams) evaluated in 203 soybean F2:4 progeny for single-trait multi-environment (FSTME) frequentist analysis.

Effect DM SW SY

Deviance LRT Deviance LRT Deviance LRT

Progeny (G) 7048.74 141.17�� 2398.04 94.15�� 5837.97 15.68��

G×E interaction 7010.14 102.57�� 2362.57 58.68�� 5853.38 31.09��

Full model 6907.57 2303.89 5822.29

�� Significant at the 0.01 probability level according to the chi-square test.

https://doi.org/10.1371/journal.pone.0215315.t001
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the full FSTME model was the most suitable to estimate the genetic parameters and predict the

genotypic values. Likewise, the FMTME model was also appropriate, as it showed the lowest

AIC value. In the Bayesian models, all chains achieved convergence by the criterion of Geweke

[45]. Overall, the DIC values were smaller when using the full Model (considering genotype

and G × E interaction effects), being the difference in relation to full Model higher than 2

(Table 2), which according to Spiegelhalter et al. [42] it’s enough to suggest that the use of full

Model can lead to higher accuracy in estimating the parameters (Table 2). Therefore, since this

model component is important the “best” genotypes measured in different environments

couldn’t the same.

Genetic and non-genetic components

The estimates of genotypic variance ðs2
gÞ and G×E interaction variance ðs2

intÞ were higher and

lower, respectively, when obtained via FMTME and BMTME, for all traits. By contrast, the

residual variance (s2
res) and individual phenotypic variance (s2

phen) estimates were similar

regardless of the procedure used for the frequentist models, whereas in the Bayesian models

these estimates were higher for all traits, even for the genotypic component ðs2
gÞ. However, the

s2
res and s2

phen estimates were similar between the BSTME and BMTME models. As a conse-

quence, both the frequentist and Bayesian MTME models led to higher estimates of h2
prog , CVg,

and Acprog compared with the frequentists and Bayesian single-trait models. The exception was

the SW trait, for which no significant differences were observed (Table 3) between single- and

multi-trait multi-environment models. For the other components, both procedures led to

results proportional to the estimates of s2
g and s2

int.

Compared with FSTME, the FMTME model provided increases of the orders of 1.81, 0.22,

and 21.72% in the estimate of s2
g and reductions of 6.63, 0.26, and 17.61% in the estimate of

s2
int for the respective traits DM, SW, and SY. As a result, the h2

prog estimates increased by 1.03,

0.1, and 15.94%; CVg, by 0.88, 0.14 and 10.28%; and Acprog, by 4.38, 0.25, and 42.29% for the

respective traits.

Compared with BSTME, the BMTME model led to 1.56, 0.02, and 31.81% higher estimates

of s2
g and 8.56, 0.4, and 32.57% lower estimates of s2

int for the respective traits DM, SW, and

SY. The reduced ranging of h2
prog (lower and upper difference) with Bayesian MTME credible

intervals (probability of 95%) were 9.66, 0.22, and 42.44% for the DM, SW, and SY traits,

Table 2. Akaike information criteria for the full model and deviance information criteria for the full (considering genotype and G × E interaction effects) and

reduced [disregarding the genotype (−prog) and interaction (−int) effects] models for number of days to maturity (DM), 100-seed weight (SW) (grams), and average

seed yield per plot (SY) (grams) via frequentist and Bayesian single-trait multi-environment (FSTME and BSTME) and multi-trait multi-environment (FMTME

and BMTME) models.

Akaike information criteria (AIC)

Model Trait Full model Reduced model1 (−prog) Reduced model2 (−int)

FMTME DM, SW, SY 14861.22 15184.53 15051.87

FSTME DM 6913.569 7052.743 7014.143

FSTME SW 2309.892 2402.042 2366.568

FSTME SY 5828.291 5841.969 5857.377

Deviance information criteria (DIC)

BMTME DM, SW, SY 20577.3 20694.71 21019.89

BSTME DM 8700.467 8741.243 8938.965

BSTME SW 4157.547 4198.951 4303.262

BSTME SY 7890.409 7900.89 7968.122

https://doi.org/10.1371/journal.pone.0215315.t002
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respectively (Table 4). Thus, the mean increased by 1.08, 0.00, and 24.01%; CVg increased by

0.88, 0.14, and 10.82%; and Acprog increased by 1.04, 0.28, and 21.37% for the respective traits.

The posterior density intervals of heritability genetic parameters (Table 4, and Figs 1–3)

were accessed to assist in the selection of genotypes in the Bayesian models. Thus, the breeding

values and their HPD intervals obtained from the Bayesian STME and MTME models for each

trait can be useful tools in progeny selection. Posterior density intervals of estimates of geno-

typic variance for BSTME and BMTME were showed in S1–S4 Figs.

Genetic correlation

Genetic correlations between the DM, SW, and SY traits obtained by the frequentist and

Bayesian models are given in Table 5. For the DM-SW and SW-SY pairs, low correlations were

detected in every comparison, indicating absence of linear associations. However, a high and

positive correlation was found between DM and SY in both methodologies. Additionally, the

correlation between this pair of traits estimated via FSTME and BSTME exceeded the parame-

ter space. The same was not true when it was estimated via FMTME and BMTME, which

showed similar values within the parameter space and were thus more realistic (not biased).

Table 3. Estimates of variance components and genetic and non-genetic parameters for number of days to maturity (DM), 100-seed weight (SW) (grams), and aver-

age seed yield per plot (SY) (grams) evaluated in 203 soybean F2:4 progeny via frequentist single-trait multi-environment (FSTME) and multi-trait multi-environ-

ment (FMTME) and Bayesian single-trait multi-environment (BSTME) and multi-trait multi-environment (BMTME) models.

Component FSTME FMTME BSTME BMTME

DM SW SY DM SW SY DM SW SY DM SW SY

s2
g 128.625 1.8045 8.6171 130.947 1.8084 10.4882 129.598 1.8158 8.3801 131.616 1.8161 11.0459

s2
int 33.9228 0.6244 10.0727 31.6741 0.6228 8.2995 34.2204 0.6278 10.2834 31.2917 0.6253 6.9344

s2
res 56.5253 1.5008 36.4566 56.5234 1.5006 36.4419 56.7499 1.5081 36.6665 57.1089 1.5152 37.5989

s2
phen 219.073 3.9297 55.1464 219.144 3.9318 55.2297 220.569 3.9518 55.3299 220.017 3.9566 55.5792

h2
prog 0.8298 0.7624 0.4368 0.8383 0.7631 0.5064 Table 4a Table 4 a Table 4 a Table 4 a Table 4 a Table 4a

C2
int 0.1548 0.1589 0.1827 0.1445 0.1584 0.1503 0.1552 0.1588 0.1859 0.1422 0.158 0.1248

CVg 0.0791 0.0729 0.141 0.0798 0.073 0.1555 0.0794 0.0732 0.1390 0.0801 0.0732 0.1596

CVe 0.0524 0.0665 0.2901 0.0524 0.0665 0.2899 0.0525 0.0666 0.2908 0.0527 0.0668 0.2945

Acprog 0.9087 0.8691 0.6557 0.9485 0.8713 0.933 0.9633 0.6337 0.7367 0.9733 0.6355 0.8941

s2
g : genotypic variance; s2

int: genotype × environment interaction variance; s2
res: residual variance; s2

phen: individual phenotypic variance; h2
prog : mean broad-sense

heritability per plot; C2
int: coefficient of determination of the genotype × environment interaction effects; CVg: genotypic coefficient of variation; CVe: residual coefficient

variation; and Acprog: mean accuracy of progeny.
aResults showed in Table 4.

https://doi.org/10.1371/journal.pone.0215315.t003

Table 4. Posterior inferences for mode, mean, median, and higher posterior density (HPD) interval of the broad-sense heritability per plot, considering the pro-

posed Bayesian single-trait multi-environment (BSTME) and multi-trait multi-environment (BMTME) models for number of days to maturity (DM), 100-seed

weight (SW) (grams), and average seed yield per plot (SY) (grams).

BSTME BMTME

Trait h2
prog HPD (95%) h2

prog HPD (95%)

Mode Mean Median Lower Upper Mode Mean Median Lower Upper

DM 0.8354 0.8282 0.8298 0.7798 0.874 0.842 0.8375 0.8388 0.7936 0.8787

SW 0.765 0.76 0.7628 0.6905 0.8247 0.775 0.765 0.7628 0.6908 0.8247

SY 0.44 0.4204 0.4282 0.2406 0.586 0.5361 0.5292 0.531 0.4304 0.6292

https://doi.org/10.1371/journal.pone.0215315.t004
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Progeny selection

The Spearman rank correlations between breeding values via single- and multi-trait multi-

environment models (FSTME and FMTME; BSTME and BMTME) were significant in all

comparisons. This correlation was medium for SY (79.16 and 70.92) in the frequentist and

Bayesian models, respectively, and high for the other comparisons. These results were con-

firmed by the agreement (Table 6).

In the frequentist and Bayesian analyses, the predicted selection gains were equivalent for

all traits. However, the MTME models showed greater gains. For the SW trait, both the fre-

quentist and the Bayesian procedures generated very similar results (Table 6). For DM and SY,

however, there was less agreement between the selected progeny, especially for the SY trait,

which culminated in greater discrepancy between the gains predicted from selection.

For the DM trait, the MTME models led to increased gains predicted from selection: 4.01

and 5.13% for the frequentist and Bayesian methodologies, respectively. Considering the SY

trait, for which the agreement between the selected progeny was lower than 50%, the MTME

Fig 1. Posterior density for the Bayesian single-trait multi-environment (BSTME) (top) and multi-trait multi-environment (BMTME) (bottom) models of the

broad-sense heritability per plot for number of days to maturity (DM). The solid color represents the posterior density of 95% intervals and the solid vertical

line indicates the mean.

https://doi.org/10.1371/journal.pone.0215315.g001
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models showed increases of 20.26% and 28.43% (frequentist and Bayesian models, respec-

tively) in the gain predicted from selection, as compared with their respective single-trait mod-

els (Table 6).

When the AGI was used for the simultaneous selection of the 30 best soybean progeny,

higher index gains were found for the FMTME and BMTME models (Tables 7 and 8) com-

pared with the gain of the overall mean of AGI. The gains predicted from selection were simi-

lar for both models (FMTME and BMTME), for all traits. Moreover, greater gains were

observed for the SY variable (15.03 and 15.71% for FMTME and BMTME, respectively).

Discussion

Analysis of deviance

The LRT for the FSTME model revealed that the progeny and G×E interaction effects are sig-

nificant (P< 0.01) for the DM, SW, and SY traits. Consequently, the respective variance

Fig 2. Posterior density for the Bayesian single-trait multi-environment (BSTME) (top) and multi-trait multi-environment (BMTME) (bottom) models of the

broad-sense heritability per plot for 100-seed weight (SW; grams). The solid color represents the posterior density of 95% intervals and the solid vertical line

indicates the mean.

https://doi.org/10.1371/journal.pone.0215315.g002
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components are significantly different from zero and so are the respective coefficients of deter-

mination (Table 1). The fit of the frequentist models was checked by AIC. This criterion indi-

cated the full model as the most suitable to estimate the variance components and predict the

genotypic values (Table 2). For the Bayesian approach, the full (considering genotype and

G × E interaction effects) and reduced (only genotype or G x E interactions effects) models

were compared through DIC (Deviance Information Criterion), which suggests that models

Fig 3. Posterior density for the Bayesian single-trait multi-environment (BSTME) (top) and multi-trait multi-environment (BMTME) (bottom) models of the

broad-sense heritability per plot for average seed yield per plot (SY; grams). The solid color represents the posterior density of 95% intervals and the solid

vertical line indicates the mean.

https://doi.org/10.1371/journal.pone.0215315.g003

Table 5. Genetic correlations between number of days to maturity (DM), 100-seed weight (SW) (grams), and average seed yield per plot (SY) (grams) evaluated in

203 soybean F2:4 progeny via frequentist single-trait multi-environment (FSTME) and multi-trait multi-environment (FMTME) and Bayesian single-trait multi-

environment (BSTME) and multi-trait multi-environment (BMTME) models.

Correlation FSTME FMTME BSTME BMTME

ρ (DM,SW) –0.1090 –0.1107 –0.1048 –0.1078

ρ (DM,SY) ¶ 0.9718 ¶ 0.9724

ρ (SW,SY) –0.0153 –0.0217 –0.0164 –0.0296

¶: value higher than unity

https://doi.org/10.1371/journal.pone.0215315.t005
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with smaller DIC are better supported by the data. According to Spiegelhalter et al. [42], mod-

els with differences in DIC values lower than 2 need to be considered as equally well. There-

fore, since DIC values obtained were higher than 2, it is possible to indicate the superiority of

full model over the restrict models.

The generalization of AIC is the most common method of assessing the fit of a statistical

model estimated via Bayesian inference (DIC). The effects of Bayesian models can be used as an

inference to the test of hypothesis [19]. In Bayesian statistics, the lowest expected deviance has the

HPD [60], and this was observed in the present study for the MTME model (Tables 2 and 3).

In both criteria (AIC and DIC) for the choice of statistical models, the obtained results

revealed that the MTME models showed the best fit, explaining the genetic variability of the

experiment and selection considering the genetic (progeny) and environmental interaction

effects (Table 2).

Variance components

Variance components are the variances associated with the random effects of a model. Know-

ing them is of great importance in genetics and breeding, since the population and the breed-

ing method to be used depend on information that can be obtained from these components.

The solution of mixed-model equations depends on knowledge of the variance and covariance

matrix, whose structure is known, but its components often are not. At present, the standard

method for the estimation of variance components is REML, developed by Patterson and

Thompson [32].

The BLUP method [33] maximizes the correlation between the predicted and the true geno-

typic value; i.e., it minimizes the prediction error variance (PEV). Additionally, it is not biased,

as we expect the predicted genotypic value to be equal to the true genotypic value [61]. Further,

BLUP allows for the simultaneous use of several sources of information as well as information

originating from experiments carried out in one or various locations and evaluated in one or

various harvests [62].

Although the mixed-model methodology by the frequentist approach has several desirable

characteristics [49], the adoption of Bayesian statistical inference for genetic evaluation in the

breeding of crop species has shown to be advantageous. Bayesian models have been used since

1986 [63] and further exploited in recent years [23–25,64,65] due to the great computational

advancements and new methodological applications and elucidations.

Bayesian analysis is based on the knowledge of the posterior distribution of the parameters

to be estimated. This allows for the construction of exact credibility intervals for the estimates

of random variables, variance components, and fixed effects [66]. Higher values for the interval

with 95% credibility of distribution for the broad-sense heritability parameter found in this

study (Table 4) were also presented in the study of Torres et al. [25] to estimate genetic

Table 6. Predicted selection gain, agreement, and Spearman rank correlation in the selection of the 30 best soybean progeny via frequentist (FSTME and FMTME)

and Bayesian (BSTME and BMTME) models for number of days to maturity (DM), 100-seed weight (SW; grams), and average seed yield per plot (SY; grams) evalu-

ated in 203 soybean F2:4 progeny.

Trait Predicted selection gain Agreement (%)

FSTME FMTME BSTME BMTME FSTME × FMTME BSTME × BMTME

DM 12.70 13.22 12.67 13.32 93.30 (0.9349b) 93.31 (0.9289)

SW 1.92 1.93 1.92 1.92 100.00 (0.9963) 100.00 (0.9965)

SY 3.11 3.74 2.99 3.84 46.40 (0.7916) 46.60 (0.7992)

b Spearman rank correlation

https://doi.org/10.1371/journal.pone.0215315.t006
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parameters for N-uptake efficiency and N-utilization efficiency under contrasting N levels in

the soil via BMTME models. The difference between mean, mode, and median of broad-sense

heritability estimates (Table 4) reflects some lack of symmetry in the posterior distribution

estimates [38]. However, for the SY trait, differences between the BSTME and BMTME are

clear when we analyze the posterior densities, mainly because the posterior MTME resulted in

a more narrow and symmetric distribution, confirming the increase in precision (Fig 3).

When the prior distribution is informative, the credibility interval tends to be narrower than

the confidence intervals. When the mixed-model parameters are assigned non-informative

distributions, Bayesian and frequentist inferences should be equivalent [67].

Table 7. Order, progeny (Prog), breeding value (u+g), and Additive Genetic Index (AGI) of the 30 progeny selected simultaneously via frequentist single-trait

multi-environment (FSTME) and multi-trait multi-environment (FMTME) models for number of days to maturity (DM), 100-seed weight (SW; grams), and aver-

age seed yield per plot (SY; grams) evaluated in 203 soybean F2:4 progeny.

FSTME FMTME

Order Prog Trait AGI Prog Trait AGI

DM SW SY DM SW SY

1 521 156.92 20.66 23.70 31.39 521 158.31 20.54 25.49 29.79

2 267 148.06 20.36 26.51 31.13 550 157.50 20.22 25.15 29.47

3 550 157.05 20.34 22.93 31.02 267 155.95 20.22 25.06 29.33

4 556 152.91 19.98 22.83 30.44 556 153.87 19.90 24.09 28.80

5 235 152.08 19.13 25.31 30.38 235 157.97 19.00 25.25 28.72

6 545 149.86 20.16 23.07 30.36 537 151.56 20.14 23.46 28.67

7 537 151.66 20.20 22.17 30.33 545 151.65 20.08 23.55 28.66

8 554 151.38 20.32 21.83 30.31 562 157.65 19.03 24.86 28.66

9 520 153.18 19.77 22.49 30.24 554 150.68 20.27 23.21 28.65

10 262 154.56 18.17 26.44 30.20 262 162.68 17.99 26.43 28.63

11 56 154.15 19.80 21.79 30.18 520 153.64 19.69 23.96 28.63

12 562 158.58 19.12 21.98 30.14 56 153.21 19.74 23.79 28.60

13 568 157.47 19.60 20.81 30.10 568 154.41 19.55 23.98 28.59

14 272 154.70 19.24 22.65 30.06 567 153.70 19.61 23.72 28.54

15 515 149.72 20.63 20.35 30.04 272 155.49 19.16 24.37 28.49

16 266 147.93 19.03 25.45 30.01 515 146.55 20.62 22.04 28.36

17 567 158.44 19.63 19.86 29.98 215 155.10 18.97 24.35 28.33

18 215 151.38 19.07 23.96 29.97 569 155.41 18.91 24.13 28.28

19 546 145.02 20.03 22.67 29.80 266 154.80 18.91 24.39 28.28

20 571 154.15 19.50 20.77 29.76 269 157.11 18.49 24.68 28.23

21 269 156.09 18.58 22.69 29.75 571 151.64 19.46 23.22 28.20

22 569 158.02 18.97 20.90 29.75 51 155.26 18.80 24.05 28.19

23 514 151.80 19.49 21.60 29.75 239 155.65 18.60 24.34 28.13

24 531 151.52 19.69 20.96 29.71 514 151.12 19.44 23.15 28.13

25 239 153.60 18.69 23.08 29.70 531 149.66 19.65 22.74 28.09

26 51 158.16 18.83 20.61 29.61 546 146.99 19.98 22.25 28.02

27 212 150.14 18.09 25.59 29.60 524 152.57 19.01 23.47 28.02

28 516 150.42 19.58 21.20 29.60 544 149.87 19.51 22.71 28.01

29 524 153.04 19.07 21.70 29.59 512 154.70 18.58 23.97 27.99

30 544 152.91 19.54 20.36 29.59 516 149.23 19.54 22.62 27.96

Mean of sel. 153.16 19.51 22.54 30.08 153.80 19.45 23.95 28.48

Overall mean 143.45 18.43 20.82 28.21 143.45 18.43 20.82 26.49

Gain (%) 6.77 5.85 8.27 6.64 7.21 5.55 15.03 7.50

https://doi.org/10.1371/journal.pone.0215315.t007
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Mathew et al. [68] showed that Bayesian inference is superior to frequentist inference when

the posterior distribution of a variance component is bimodal. Mathew et al. [68], Waldmann

et al. [69], Schenkel et al. [70], and Harville et al. [71] did not find relevant differences between

the breeding values predicted by frequentist or Bayesian approach. Schenkel et al. [70] also

observed that the breeding values presented the same bias and accuracy. Silva et al. [72] found

results from noninformative analyses and results from REML/BLUP analyses (frequentist) for

some components of variance and heritability and for breeding values. The specific results

obtained by the frequentist and Bayesian approaches were similar (Table 3). This was expected,

Table 8. Order, progeny (Prog), breeding value (u+g), and Additive Genetic Index (AGI) of the 30 progeny selected simultaneously via Bayesian single-trait multi-

environment (BSTME) and multi-trait multi-environment (BMTME) models for number of days to maturity (DM), 100-seed weight (SW; grams), and average seed

yield per plot (SY; grams) evaluated in 203 soybean F2:4 progeny.

BSTME BMTME

Order Prog Trait AGI Prog Trait AGI

DM SW SY DM SW SY

1 521 156.86 20.65 23.60 31.23 521 158.49 20.53 25.58 29.96

2 267 148.06 20.37 26.28 30.95 550 157.61 20.22 25.23 29.64

3 550 157.02 20.34 22.85 30.86 267 156.48 20.22 25.23 29.50

4 556 152.90 19.98 22.75 30.28 556 154.00 19.90 24.16 28.96

5 235 152.08 19.13 25.14 30.21 235 158.30 19.01 25.41 28.90

6 545 149.87 20.16 22.99 30.20 537 151.64 20.13 23.49 28.83

7 537 151.62 20.19 22.12 30.17 562 157.59 19.03 24.92 28.82

8 554 151.38 20.32 21.80 30.16 545 151.83 20.08 23.62 28.82

9 520 153.16 19.77 22.42 30.09 262 163.15 18.01 26.68 28.81

10 56 154.13 19.81 21.74 30.03 554 150.73 20.26 23.24 28.80

11 262 154.55 18.18 26.24 30.03 520 153.73 19.69 24.01 28.79

12 562 158.54 19.12 21.94 29.98 56 153.22 19.74 23.82 28.75

13 568 157.48 19.60 20.81 29.95 568 154.28 19.54 23.99 28.75

14 272 154.68 19.25 22.58 29.90 567 153.49 19.60 23.70 28.70

15 515 149.69 20.63 20.37 29.90 272 155.53 19.16 24.43 28.65

16 567 158.42 19.63 19.89 29.84 515 146.49 20.60 22.00 28.50

17 266 147.92 19.03 25.27 29.84 215 155.30 18.97 24.45 28.50

18 215 151.37 19.07 23.84 29.81 266 155.18 18.92 24.55 28.44

19 546 145.02 20.04 22.60 29.64 569 155.26 18.91 24.15 28.44

20 571 154.10 19.50 20.77 29.61 269 157.13 18.50 24.76 28.40

21 569 157.98 18.97 20.90 29.60 571 151.54 19.45 23.22 28.35

22 514 151.77 19.49 21.55 29.59 51 155.06 18.80 24.06 28.35

23 269 156.07 18.59 22.61 29.59 239 155.75 18.60 24.43 28.30

24 531 151.51 19.69 20.96 29.56 514 151.13 19.44 23.18 28.28

25 239 153.57 18.69 22.99 29.54 531 149.61 19.65 22.74 28.24

26 51 158.15 18.83 20.62 29.46 524 152.56 19.01 23.51 28.17

27 516 150.40 19.57 21.19 29.45 546 147.20 19.99 22.29 28.16

28 524 153.04 19.07 21.66 29.44 544 149.77 19.50 22.70 28.16

29 544 152.89 19.54 20.36 29.44 512 154.69 18.58 24.03 28.15

30 212 150.11 18.09 25.41 29.43 212 157.80 17.97 25.11 28.13

Mean of sel. 153.14 19.51 22.47 29.93 154.15 19.40 24.09 28.64

Overall mean 143.45 18.43 20.82 28.06 143.45 18.43 20.82 26.63

Gain (%) 6.76 5.86 7.95 6.64 7.46 5.26 15.71 7.56

https://doi.org/10.1371/journal.pone.0215315.t008
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since non-informative prior distributions were used in Bayesian analysis. The modes of the

marginal posterior distributions of the genetic parameters were similar to the corresponding

REML estimates. From the Bayesian point-of-view, the estimates obtained via REML corre-

spond to the modes of the combined posterior distributions of the variance components,

obtained by Bayesian approach, given the use of uniform priors for the fixed effects and vari-

ance components [66].

The frequentist and Bayesian MTME models provided higher s2
g estimates and lower s2

int

estimates, which resulted in higher h2
prog for all evaluated traits. The highest h2

prog estimates were

found for DM and SW and the lowest for SY, which confirms that DM and SW are less com-

plex traits and are thus less influenced by the environment than SY [73–75].

The genotypic coefficient of variation (CVg) quantifies the magnitude of genetic variation

available for selection, and thus high values are desirable [76]. In this way, the increase seen in

this parameter with the use of the MTME models is important for breeding programs. The

residual coefficient of variation (CVe) is a measurement of experimental precision of statistical

and non-genetic nature. According to Resende and Duarte [52], CVe is of moderate magnitude

for the SY trait and low magnitude for the DM and SW traits, indicating good experimental

precision. Moreover, as expected, there were no alterations in the CVe estimates when the

FSTME and FMTME models were used (Table 3).

Genetic correlations

Studies on genotypic, phenotypic, and environmental correlations in soybean involve traits

that are evaluated from flowering to maturity; notably, yield and its components [77–80]. Our

results corroborate those reported by Cober et al. [81], who also obtained a high correlation

between DM and SY and no linear associations between the DM-SW and SW-SY pairs. The

authors argued that the genes controlling maturity in soybean have pleiotropic effects with

grain yield. Ablett et al. [82] and Lee et al. [83] reported that late maturity was associated with

high yield. Liu et al. [84] investigated the genetic architecture of three growth period traits and

confirmed that the soybean growth stages are highly correlated with grain yield. Li et al. [85]

and Zhang et al. [75] observed that the association between the BARC-016957-02165 marker

and seed yield was located in the same region as a QTL controlling pod maturity on chromo-

some 6, which explains the high correlation observed between these traits, as the QTL were

closer to each other.

According to Pollak et al. [14], selection biases may occur when traits are analyzed individ-

ually. This bias was observed in the present study, where the genetic correlation value between

the DM and SY traits exceeded the parameter space (value higher than 1) (Table 5). Viana

et al. [15] evaluated two traits in popcorn and also found that the genetic correlation obtained

with the single-trait model exceeded the parameter space.

According to Thompson and Meyer [86], the increase in accuracy obtained with the use of

multi-trait BLUP analysis compared with single-trait analysis is proportional to the difference

between the genetic and environmental correlations of the analyzed traits. In the context of

whole-genome prediction, Jia et al. [87], Guo et al. [88], and Jiang et al. [22] found that joint

prediction of multiple traits benefits from genetic correlations between traits and significantly

improves prediction accuracy compared to single-trait methods, specifically for low-heritabil-

ity traits that are genetically correlated with a high-heritability trait. This fact was observed in

our study, in which the DM variable showed high heritability and high correlation with SY,

consequently generating significant increases in selection accuracy for SY. However, for both

methodologies—frequentist and Bayesian—there was no significant increase in selection accu-

racy for the SW trait, as verified by its low correlation with the other evaluated traits.
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Progeny selection

The observed differences in the genotypic values predicted by the Bayesian and BLUP/REML

procedures were small, leading to a slight alteration in the ranking of the progeny selected by

both procedures. This finding was confirmed by Rank Spearman correlation (Table 6). How-

ever, compared with the FSTME and BSTME models, the respective MTME models showed

higher genetic gains for DM and, especially, for SY. According to Resende et al. [66], these are

the conditions for there to be correspondence between the frequentist and Bayesian methodol-

ogies for the fixed and random effect parameters: attribution of non-informative priori for the

fixed effects, normal priori for the random effects, and normal likelihood for the observations

vector. These promises were used in the present study, which explains the obtained results.

Despite the high agreement between the progeny selected for the DM and SW traits by both

procedures, there was little agreement for the SY trait, which resulted in greater gains pre-

dicted from selection via MTME. Piepho et al. [3] and Piepho et al. [62] recommended the use

of multiple-trait models to predict breeding values in annual crops, because this procedure has

the best statistical properties and provides more-accurate results.

Resende et al. [19] and Okeke et al. [89] stated that one of the main advantages of using multi-

variate models is higher selection accuracy. Okeke et al. [89] also reported that multi-environment

models were useful for understanding G×E interactions. Higher Acprog were observed when

obtained via MTME for all traits, with SY standing out with 42.29 and 21.37% increases in the fre-

quentist and Bayesian models, respectively. Greater accuracy and efficiency of multiple-trait mod-

els were also reported by Viana et al. [15] in selection among and within half-sib families.

However, it must be stressed that the BSTME model obtained superior accuracy in compar-

ison with the FSTME model for DM and SY, despite the similar broad-sense heritability values.

This is explained by the use of the estimator of selection accuracy. In this regard, Resende et al.
[19] described that when Bayesian accuracy is higher than frequentist accuracy, the distribu-

tion of the parameters attributed to Bayesian approach were probably more adequate than

those associated with the traditional model. The opposite can be considered true for the SW

variable, for which the frequentist models obtained better results due to a better adjustment of

the normal distribution of the parameters attributed to the data. These conclusions are also

valid for the MTME models, which exhibited different obtained accuracies; however, for the

SY variable, the FMTME model showed the best fit according to the mean accuracy of the

progeny (Table 3).

As can be seen in Tables 7 and 8, desirable gains are obtained in selecting the best progeny

for the DM, SW, and SY variables for all models based on the AGI. However, the high positive

correlation between the DM and SY traits can favor the selection of high-yielding and late-

cycle progeny. In this case, selection indices can help breeders select progeny that exhibit gains

for both traits simultaneously [90]. Although similar gains were found for both approaches

employed, it should be stressed that there was a slight increase in gain (%) when the 30 best

progeny were selected for the DM and SY traits using Bayesian approach. This is a desirable

factor that should be taken into account by breeders.

According to Silva et al. [1], individual plants or progeny in the F2:3 or F2:4 generations can

be selected aiming at the adoption of the recurrent selection method described by Hallauer

et al. [91], by exploiting genetic variability among and within progeny. Silva et al. [1] stated

that the F2:4 generation is suitable for selection, since 87.5% (1.75) of the total additive genetic

variance (2s2
a) that will be available in F1 is already available in F2:4. Thus, progeny selection

in F2:4 through a more precise method is relevant.

Early in the generation of the base populations of the soybean breeding programs, many

populations are commonly obtained at the expense of the number of progeny to be evaluated;
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i.e., the evaluation of future lines, be them for high or low heritability, is based on samples with

a finite (small) number of progeny. Thus, Bayes’ theorem is recommended for those situations,

as it gives precise solutions to the problem of finite-size samples, because for each data set—

large or small—there is an exact posterior distribution to draw inferences.

The MTME models provided better results than the single-trait models using frequentist

and Bayesian approach. Therefore, the former procedures can be efficiently applied in the

genetic selection of segregating soybean progeny. However, it is necessary to use an adequate

statistical tool that provides algorithms and routines to efficiently perform the analyses.

Though not necessarily easy, the use of Bayesian inference in quantitative genetics in the

breeding of crop species [69,72] is a tendency in breeding programs [5].

Conclusion remarks

For our data set, the average BMTME processing time using an Intel(R) i7-5500U (2.4 GHz)

processor with 8 GB of RAM was 1 h 40 min and 35 s, corresponding to approximately 0.006 s

for each MCMC iteration. Silva et al. [72] considered this performance plausible, but pointed

out that improvements can be obtained using the conditional decompositions proposed by

Hallander et al. [92]. For the same purpose, in addition to improving the prior information,

Montesinos-López et al. [13] proposed a Bayesian model for analyzing multiple traits and mul-

tiple environments for the whole-genome prediction model. The authors also developed an R-

software package that offers specialized and optimized routines to efficiently perform the anal-

yses under the proposed model. By contrast, the FMTME model took approximately 14 s to

converge. Despite the considerable difference in processing time of the analysis and output

size of the results (around 1.03 GB) due to the high number of interactions adopted, the Bayes-

ian model showed to be efficient for the proposed objective. Furthermore, it provided addi-

tional results to those obtained by the frequentist approach, with noteworthy credibility

intervals.

The Bayesian models have desirable potentials when using informative prior distributions,

providing parameters with lower standard deviations and/or possible genetic gains. However,

the quality of the informative prior may have questionable origins and may not generate con-

siderable advantages. Silva et al. [72] showed it can be advantageous to implement a Bayesian

framework for mixed-model analysis in the breeding of crop species using informative priors.

However, for potential future studies in plant breeding, the implementation of informative

prior fitted to MTME models can be the next step to be assessed.
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the traits’ correlations by score for number of days to maturity (DM), 100-seed weight
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S3 Fig. Posterior density for the Bayesian single-trait multi-environment model (BSTME)

of the estimate of variance components for 100-seed weight (SW). The solid color represents

the posterior distributions of 95% intervals and the solid vertical line indicates the mean.

(TIFF)

S4 Fig. Posterior density for the Bayesian single-trait multi-environment model (BSTME)

of the estimate of variance components for average seed yield per plot (SY). The solid color
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mean.
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64. Montesinos-López OA, Montesinos-López A, Crossa J, Kismiantini, Ramı́rez-Alcaraz JM, Singh R,

et al. A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model.

Heredity (Edinb). Springer US; 2018; https://doi.org/10.1038/s41437-018-0109-7 PMID: 30120367

65. Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B, Daydé J, et al. Genomic selection for yield
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