Effect of Elephant Grass Genotypes to Bioenergy Production

1Federal University of Mato Grosso, Cuiabá, Brazil.
2University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
3University of the State of Mato Grosso, Cáceres, Brazil.
4University Center of Várzea Grande, Várzea Grande, Brazil.
5Company of Research, Assistance and Rural Extension of Mato Grosso, Várzea Grande, Brazil.
6Brazilian Agricultural Research Corporation, Juiz de Fora (MG), Brazil.
7Brazilian Agricultural Research Corporation, Sinop (MT), Brazil.

Authors’ contributions

This work was carried out in collaboration between all authors. The authors FISC, FJSD and VQRS designed and wrote the protocol for the experiment. The authors HGF, JGA and MAAB conducted the experiment and wrote the first draft of the manuscript. The authors LVB, FGS, LMMF, IMSN, CEAC, WMP and LDSH discussed the results, corrected and improved the writing of the manuscript in English version. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2019/v38i130289

Editor(s):
(1) Dr. Luis F. Goulao, Professor, Tropical Research Institute - IICT, AgriSafe / BioTrop; Polo Mendes Hand, Agro-Industries and Tropical Agriculture Pavilion (3rd Floor), Portugal.

Reviewers:
(1) Alok Nahata, Ying Zhi Agricultural and Industries Sdn Bhd, Malaysia.
(2) Akhator, E. Peter, University of Benin, Nigeria.
(3) Nataliia Kutsokon, Institute of Cell Biology and Genetic Engineering NAS of Ukraine, Ukraine.
(4) Akinyemi Bosede Kemi, Benue State University, Nigeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49640

Received 02 April 2019
Accepted 18 June 2019
Published 25 June 2019

Corresponding author: E-mail: wender.mpeixoto@gmail.com;
ABSTRACT

The study aimed to evaluate the agronomic characteristics of elephant grass (*Pennisetum purpureum* Schum.) genotypes on energy production in the combustion form. A randomized block design with 3 repetitions was used. The treatments were arranged in subdivided plots scheme, considering as a plot the genotypes and as subplots, the harvest season. The agronomic characteristics plant height (H), leaf length (LL), leaf blade width (LBW), stem diameter (SD), tillers number (TN), stem percentage (SP), dry matter yield (DMY) were evaluated. The rainy season provided greater H to elephant grass genotypes with height above 3.5 m. The average SP obtained by the genotypes was 68.21% and 67.21% to the first and second year of cultivation, respectively, which gives the biomass good quality of burning. The rainy season provided greater DMY comparing to the dry season. In the first year of cultivation there were genotypes with annual dry matter yield (ADMY) above 50 ton ha⁻¹ year⁻¹, however, the non-maintenance of soil fertility promoted the reduction of 39.17% and 39.05% in the DMY and ADMY, respectively. Analyzing the agronomic characteristics, we conclude that the promising genotypes of elephant grass to produce energy in the form of direct combustion are CNPGL 91-25-1, Cubano Pinda, BRS Canará, Porto Rico and Mercker.

Keywords: Bioenergy; biomass; *Pennisetum purpureum*; stem percentage; yield.

1. INTRODUCTION

Fossil fuels present environmental problems that alter the climate dynamics, as well as being a finite resource. Therefore, there is a need to generate alternative energy, from renewable natural resources, to the point of meeting the needs of society, with minimal environmental impact.

Energy crops have been environmentally more sustainable alternatives to the intensive use of fossil fuels because the biomass produced can be used in several energy segments, for example, biofuel, electric energy and thermal energy. In the greenhouse gas (GHG) mitigation plan, these plants stand out from the fossil fuels for not emitting oxides to the environment responsible for the acid rains [1], low cost of production with minimal use of fossil fuel sources, high potential for carbon sequestration, once the emitted CO₂ is absorbed again during photosynthesis [2]. These characteristics have resulted in interest from both the private and public sectors, not only because of its economic applicability but also mainly because of the goals and agreements stipulated in the Rio 21, Kyoto Protocol and Paris Agreement [3].

There are promising species for energy use in the agricultural sector, among them elephant grass (*Pennisetum purpureum* Schum.), one of the most widespread tropical forage species in the world, used on livestock properties as a roughage [4]. Included among energy crops, it can be the most important renewable source for future energy production [5], due to its versatility such as fiber for paper industry [6]; biomass for the production of bioethanol [7]; direct combustion of biomass as a substitute for charcoal [8,9]; co-products generated in biorefineries [10,2]. In addition, it presents excellent energy balance elucidated by [11] in the use of in-kind burning of elephant grass, obtaining 21.3 units of renewable energy for each unit of fossil energy used in the production process.

In Brazil, traditionally, eucalyptus and its co-products are widely used as an energy resource. In this sense, elephant grass appears as an option because it presents dry matter yields above 50 ton ha⁻¹ year⁻¹ [12], approximately double the eucalyptus; lower production cycle with semiannual harvest; C4 metabolism that ensures greater carbon assimilation; calorific power between 4,100 and 4,500 kcal kg⁻¹ [13]; low production cost and the possibility of producing briquettes and pellets [14].

The variability of elephant grass genotypes is large and well under subtropical and tropical conditions in Brazil. Recently the Brazilian Agricultural Research Corporation (Embrapa) released to the Atlantic Forest biome, the cultivar BRS Capiaçu to forage purposes [15], but with potential to energy production, it has produced more than 80 ton ha⁻¹ year⁻¹ with two semiannual harvests [16]. On the other hand, there are cultivars that are in disuse and can be promising for direct burning, due to the high contents of dry matter and fiber that present [17].
Since the elephant grass is among the most relevant crops as a renewable source for energy production in the coming decades, this study aimed to evaluate the agronomic characteristics of elephant grass genotypes on the energy production in the combustion form.

2. MATERIALS AND METHODS

The experiment was carried out at the Experimental Field of the Empresa Mato-grossense de Pesquisa, Assistência e Extensão Rural (EMPAER) in Cáceres – MT, Brazil, located at 16°09’04” of Latitude South; 57°38’03” West Longitude; altitude of 157 m. The climate in the municipality, according to the Köppen classification, is Aw type, that is, tropical, metamérico climate, characterized by two well defined periods: Dry (May to September) and rainy (October to April).

The experiment lasted two years (from 2016 to 2018), with harvests every 6 months counted after the standardization harvest (March 2016), being made one harvest in the dry season (September) and another one in the rainy season (March), in four harvests in two consecutive years.

Chemical and granulometric analysis of the soil of experimental area was carried out as shown in Table 1 prior to planting where the establishment fertilization recommendation was made. After the last harvest of the elephant grass, a new analysis of the soil was made to verify the level of fertility of the soil after the four harvest cycles. The soil was characterized as Chernosolic Eutrophic Red-Yellow ARGISSOLO, medium/clayey texture.

Soil preparation was done with a plowing and two harrowing in the month of September 2015, without application of limestone, due to the percentage of saturation per desired base being above 50%, considered adequate for establishment of elephant grass [18]. The elephant grass seedlings were obtained in the nursery of the Experimental Field of the EMPAER. The planting of the stems was done in a “foot-with-tip” system, with the seedlings placed in the planting groove and covered with soil, using a spacing of 1.0 m between rows.

The single fertilization was carried out in the establishment of elephant grass in the amounts of 70 kg of P_2O_5, 100 kg of K_2O and 100 kg of N using the following fertilizers: simple superphosphate, potassium chloride and ammonium sulfate, respectively. Both nitrogen and potassium fertilizer were divided in two applications, the first one in planting (November 2015), and the second one shortly after the harvest to uniformity (March 2016).

The experimental design was a randomized block with three repetitions. The treatments were arranged in subdivided plots scheme, considering as genotypes (Cubano Pinda, Porto Rico, Vrukwna, Piracicaba 241, Cuba 116, Taiwan A 25, Mercker, Napier, Canará, Guaçu, Cameroon and the CNPGL 93-41-1 and CNPGL 91-25-1 clones) and harvest season (dry and rainy) as subplots. The experimental unit consisted of four rows of 5.0 m in length with spacing between rows of 1.0 m, totaling 20 m². The two central rows were considered as useful area, scoring 1.0 m at the ends.

The first harvest was made in September 2016 (dry harvest), and successive harvests were carried out every 6 months, as follows: March 2017 (rainy harvest), September 2017 (dry harvest); March 2018 (rainy harvest).

The agronomic characteristics evaluated were obtained by the arithmetic mean of three tillers selected at random within the useful area. They were: plant height – H (m), stem diameter – SD (mm), leaf length – LL (m), leaf blade width – LBW (cm), tillers number per linear meter – TN (linear m), dry matter yield per season – DMY (ton ha⁻¹) and annual dry matter yield – ADMY (ton ha⁻¹).

Table 1. Chemical and granulometric analysis in the 0 to 20 cm layer of the experimental area before planting (A) and after the last cut of the elephant grass (B)

<table>
<thead>
<tr>
<th></th>
<th>pH (CaCl₂)</th>
<th>P (mg dm⁻³)</th>
<th>K (cmolc dm⁻³)</th>
<th>Ca (cmolc dm⁻³)</th>
<th>Mg (cmolc dm⁻³)</th>
<th>Al (cmolc dm⁻³)</th>
<th>H+Al (cmolc dm⁻³)</th>
<th>SB (%)</th>
<th>CEC (cmolc dm⁻³)</th>
<th>V (%)</th>
<th>OM (g dm⁻³)</th>
<th>Sand (g kg⁻¹)</th>
<th>Silt (g kg⁻¹)</th>
<th>Clay (g kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.6</td>
<td>6.90</td>
<td>0.12</td>
<td>2.2</td>
<td>0.8</td>
<td>0.0</td>
<td>2.1</td>
<td>3.1</td>
<td>5.2</td>
<td>60</td>
<td>27.0</td>
<td>723</td>
<td>56</td>
<td>221</td>
</tr>
<tr>
<td>B</td>
<td>5.8</td>
<td>4.10</td>
<td>0.09</td>
<td>3.3</td>
<td>1.2</td>
<td>0.0</td>
<td>2.1</td>
<td>4.7</td>
<td>6.8</td>
<td>69</td>
<td>24.1</td>
<td>723</td>
<td>56</td>
<td>221</td>
</tr>
</tbody>
</table>

P = Phosphorus; K = Potassium; Ca = Calcium; Mg = Magnesium; Al = Aluminium; H = Hydrogen; SB = Sum of bases; CEC = Cation exchange capacity; V = Base saturation; OM = Organic matter
The dry matter content – DM% and stem percentage – SP% were obtained from three tillers selected at random within the useful area and represented the whole plant, leaf blade and pseudostem. These portions were duly separated into the morphological components, then minced and packed in a paper bag, weighed and placed in an oven of 55°C until reaching a constant mass. Afterwards, the samples were again weighed to obtain the air-dried sample.

The data collected were submitted to Lilliefors test for normality and Bartlett’s test for homogeneity of variances. We proceeded with analysis of variance and Scott-Knott’s test [19].

3. RESULTS AND DISCUSSION

3.1 Plant Height, Leaf Length, Leaf Blade Width and Stem Percentage

In the first year of cultivation, comparing both seasons (rainy and dry), all genotypes had higher H (P < .05) in the rainy. However, the CNPGL 93-41-1 clone did not differ statistically from the dry season (Table 2), which shows that the moisture factor did not affect it with a decrease in H.

The H of genotypes in the dry season, there was no difference (P > .05) with an average of 2.56 m. Otherwise, the genotypes Cameroon, Porto Rico, Taiwan A 25, Vrukwona, Guaçu, Cuba 116, BRS Canará and Cubano Pinda had the highest H (P < .05) in the rainy season.

In the second year of cultivation, CNPGL 93-41-1 presented a similar result to the other genotypes, obtaining greater H in the rainy season (Table 3). The H reduction in the dry season is due to the lack of rainfall, which restricts plant growth, occurring naturally at this time of year. With the return of rainfall, plant height increases were observed for all genotypes, thus demonstrating the direct relationship between soil water availability and elephant grass height [20].

The genotypes that presented, at the same time, greater H (P < .05) in the dry and rainy seasons in the 2nd year of cultivation were Taiwan A-25, Piracicaba 241, Cubano Pinda and BRS Canará with heights between 3.79 and 4.24 m. [16] evaluating semiannual harvests in elephant grass genotypes (BRS Capiacu, Venezuela and Madeira), biomass sorghum (BRS 716) and sugarcane (RB 92579 and cane energy) verified plant height varying from 2.9 to 3.4 m among the evaluated species/cultivars, with emphasis on elephant grass that presented the superior heights. It is worth noting that elephant grass has the potential to reach more than 5.0 m in height, which makes this feature extremely important for energetic purpose of elephant grass, as it positively correlates with dry matter yield [21].

Table 2. Plant height (H), Leaf Length (LL), Leaf Blade Width (LBW) and Stem Percentage (SP) of elephant grass genotypes, at 6 months of age in the dry and rainy seasons of the first year of cultivation (2016-2017)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>H (m) Dry</th>
<th>LL (m) Dry</th>
<th>LBW (cm) Dry</th>
<th>SP (%) Dry</th>
<th>H (m) Rainy</th>
<th>LL (m) Rainy</th>
<th>LBW (cm) Rainy</th>
<th>SP (%) Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNPGL 93-41-1</td>
<td>2.93A</td>
<td>2.79B</td>
<td>1.33A</td>
<td>1.01A</td>
<td>5.37A</td>
<td>4.67A</td>
<td>60.61A</td>
<td>68.48A</td>
</tr>
<tr>
<td>CNPGL 91-25-1</td>
<td>2.41A</td>
<td>2.94B</td>
<td>1.31A</td>
<td>1.16A</td>
<td>4.70A</td>
<td>4.35A</td>
<td>64.98A</td>
<td>69.06A</td>
</tr>
<tr>
<td>Taiwan A25</td>
<td>2.72A</td>
<td>3.35A</td>
<td>0.78bA</td>
<td>0.83A</td>
<td>1.23eB</td>
<td>3.06A</td>
<td>63.90A</td>
<td>66.30A</td>
</tr>
<tr>
<td>Cuba 116</td>
<td>2.67A</td>
<td>3.41A</td>
<td>1.11A</td>
<td>0.88A</td>
<td>3.74A</td>
<td>3.08cA</td>
<td>70.56A</td>
<td>66.70A</td>
</tr>
<tr>
<td>Merker</td>
<td>2.39A</td>
<td>3.11bA</td>
<td>1.27A</td>
<td>1.01A</td>
<td>5.07aA</td>
<td>5.09aA</td>
<td>66.25A</td>
<td>65.00A</td>
</tr>
<tr>
<td>Cameroon</td>
<td>2.47A</td>
<td>3.30A</td>
<td>1.20A</td>
<td>1.07A</td>
<td>4.37BA</td>
<td>4.58A</td>
<td>66.48A</td>
<td>62.63A</td>
</tr>
<tr>
<td>Piracicaba 241</td>
<td>2.26A</td>
<td>3.11B</td>
<td>1.38A</td>
<td>1.04bA</td>
<td>5.03A</td>
<td>3.99bA</td>
<td>72.62A</td>
<td>66.13A</td>
</tr>
<tr>
<td>Vrukwona</td>
<td>2.24A</td>
<td>3.36A</td>
<td>1.24A</td>
<td>0.92bA</td>
<td>4.13B</td>
<td>4.08bA</td>
<td>69.92A</td>
<td>65.50A</td>
</tr>
<tr>
<td>Napier</td>
<td>2.50A</td>
<td>3.02bA</td>
<td>1.22A</td>
<td>0.96aA</td>
<td>3.93bA</td>
<td>3.69cA</td>
<td>71.60A</td>
<td>70.80aA</td>
</tr>
<tr>
<td>Porto Rico</td>
<td>2.67A</td>
<td>3.35A</td>
<td>0.73bA</td>
<td>0.99A</td>
<td>2.30bA</td>
<td>3.12cA</td>
<td>70.17A</td>
<td>63.20A</td>
</tr>
<tr>
<td>Guaçu</td>
<td>2.85A</td>
<td>3.38A</td>
<td>1.09A</td>
<td>0.95A</td>
<td>3.17cB</td>
<td>4.02bA</td>
<td>75.07aA</td>
<td>69.70aA</td>
</tr>
<tr>
<td>Cubano Pinda</td>
<td>2.58A</td>
<td>3.57A</td>
<td>1.08A</td>
<td>1.04A</td>
<td>3.60bA</td>
<td>4.33bA</td>
<td>72.48aA</td>
<td>70.26aA</td>
</tr>
<tr>
<td>BRS Canará</td>
<td>2.55A</td>
<td>3.47A</td>
<td>1.35A</td>
<td>1.01A</td>
<td>3.77bA</td>
<td>4.14bA</td>
<td>75.39aA</td>
<td>70.80aA</td>
</tr>
<tr>
<td>CV (a) (%)</td>
<td>10.40</td>
<td>15.58</td>
<td>11.78</td>
<td>9.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV (b) (%)</td>
<td>8.80</td>
<td>17.77</td>
<td>10.04</td>
<td>11.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV (a) (%) : Coefficient of variation of plot; CV (b) (%) : Coefficient of variation of the subplot; Averages followed by the same letter, lowercase vertical and uppercase horizontal do not differ from each other by the Scott Knott test at 5%
In the first year of cultivation, comparing both seasons, all genotypes presented lower LL in the dry season (P < .05), except for Piracicaba 241 and BRS Canará genotypes (Table 2). During the dry season, there was a significant difference between the genotypes (P < .05) where only Porto Rico and Taiwan A 25 had lower LL, respectively, with 0.73 and 0.78 m. There was no significant difference between genotypes in the rainy season, with average LL of 1.07 m.

In the second year of cultivation, there was a statistical difference between both seasons, being that the CNPGL 91-25-1, Taiwan A 25, Piracicaba 241, Cubano Pinda and BRS Canará genotypes had the lowest LL in the rainy season (P < .05) (Table 3). In the dry season, there was no difference between genotypes, with average LL of 0.81 m.

The leaf blade is responsible for the photosynthesis and fixation of free carbon in the plant structure, but this can change the chemical characteristics of the biomass because there is a higher deposition of minerals compared to the more fibrous fraction coming from the stem [22]. This is undesirable due to the formation of chemical compounds that at high temperature damage the metallic surfaces of the boilers and increase the deposition of ashes [23].

As a strategy for the reduction of post-burning residues and better quality of biomass, the productive cycle of the energy crop is very important because gains are obtained as increased dry matter yield and percentage of fibers and reduction of minerals. [24], evaluating the yield of elephant grass BRS Canará to hay production at harvest intervals of 42, 60, 76, 91 and 105 days in the rainy season, verified an increase in dry matter yield and reduction in mineral matter, according to the increase in age, which consequently will have a direct influence on the calorific value of the biomass.

To LBW in the first year of cultivation, comparing both seasons, all genotypes had higher LBW in the rainy season (P < .05), except for CNPGL 93-41-1 and Piracicaba 241 genotypes which obtained respectively 4.67 and 3.99 cm (Table 2). When observed within each season, the CNPGL 93-41-1 clone and the Mercker genotype obtained higher LBW within the dry season near to Piracicaba 241, as in the rainy season, near to the Cameron.

In the 2nd year of cultivation, comparing the seasons, just CNPGL 91-25-1 genotype presented superior LBW (P < .05) in the dry season than the others (Table 3). In the dry season, there was a significant difference with superior LBW for most genotypes (P < .05), excepting Taiwan A 25, Porto Rico, Guaçu, Cubano Pinda with respective values of 1.59; 1.71; 2.13; 2.13 cm. In the rainy seasons the superior LBW (P < .05) was obtained by CNPGL.
93-41-1, Mercker, Cameroon, Piracicaba 241, Vrucwona, Napier and Guçu genotypes.

In breeding programs for biomass production, genotypes with higher LBW have a negative correlation with dry matter production (r=-0.81), in contrast, increases in variables such as H, SD and TN, the lower the LBW and thus higher DMY values will be obtained, according to [21]. Decrease in DM yield of elephant grass due to the presence of leaf blade is probably due to the lower density of this fraction, especially when compared with the stem. “Lighter” morphological structures are undesirable in direct burning due to the correlations between their elemental components (carbon, hydrogen, oxygen) and the quality of thermal energy [25]. In addition, the stem/leaf ratio has a direct influence on the biomass caloric value, which is generally higher in the stems [8]. Therefore, genotypes with lower leaf area (length and width) can present biomass with better quality of burning.

To SP there was no significant difference (P > .05) between seasons and genotypes, independent of the years of cultivation, and the average obtained was 68.21% and 67.21% to the first and second year of cultivation, respectively (Table 2). Decrease in DM yield of elephant grass due to the presence of leaf blade is probably due to the lower density of this fraction, especially when compared with the stem. “Lighter” morphological structures are undesirable in direct burning due to the correlations between their elemental components (carbon, hydrogen, oxygen) and the quality of thermal energy [25]. In addition, the stem/leaf ratio has a direct influence on the biomass caloric value, which is generally higher in the stems [8]. Therefore, genotypes with lower leaf area (length and width) can present biomass with better quality of burning.

The high stem percentage in elephant grass results in a higher stem/leaf ratio, and this reflects directly on biomass quality. [8], when making the characterization of the different parts of the elephant grass to the production of biofuels, verified a difference between the stem and leaf blade fraction, being ashes 1.75 and 4.0%, respectively; caloric power 18.11 and 16.21 MJkg$^{-1}$; nitrogen 0.99 and 1.01%; sulfur 1.47 and 1.75%. The stem of the elephant grass is structured in a fibrous, harder part, which forms the bark and marrow with vascular bundles rich in fibers. Its morphological structure is similar to sugarcane bagasse [27], which is already widely used as a source of energy in the form of combustion in the sugar and alcohol industry.

3.2 Stem Diameter, Tillers Number, Dry Matter Yield and Annual Dry Matter Yield

According to [26,28] the SD is of great importance in the selection of genotypes, since it is directly related to the dry matter yield besides biomass quality. Higher SD results in higher content of lignocellulosic compounds in the cell.

Table 4. Annual Dry Matter Yield (ADMY) and by season (DMY), Stem Diameter (SD) and Tillers Number (TN) of elephant grass genotypes at 6 months of age in the dry and rainy seasons of the first year of cultivation (2016-2017)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SD (mm)</th>
<th>TN (linear m)</th>
<th>DMY (ton ha$^{-1}$)</th>
<th>ADMY (ton ha$^{-1}$)year$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Rainy</td>
<td>Dry</td>
<td>Rainy</td>
</tr>
<tr>
<td>CNPGL 93-41-1</td>
<td>17.33A</td>
<td>16.08B</td>
<td>14.61B</td>
<td>14.11A</td>
</tr>
<tr>
<td>CNPGL 91-25-1</td>
<td>18.33A</td>
<td>15.08B</td>
<td>18.67B</td>
<td>20.00A</td>
</tr>
<tr>
<td>Taiwan A25</td>
<td>12.00B</td>
<td>14.25B</td>
<td>22.94A</td>
<td>19.00A</td>
</tr>
<tr>
<td>Cuba 116</td>
<td>13.00B</td>
<td>16.42B</td>
<td>17.72B</td>
<td>20.33A</td>
</tr>
<tr>
<td>Mercker</td>
<td>16.67A</td>
<td>16.08B</td>
<td>16.83B</td>
<td>16.17A</td>
</tr>
<tr>
<td>Cameroon</td>
<td>15.00B</td>
<td>16.50B</td>
<td>17.22B</td>
<td>18.06A</td>
</tr>
<tr>
<td>Piracicaba 241</td>
<td>17.67A</td>
<td>13.30B</td>
<td>14.78B</td>
<td>14.22A</td>
</tr>
<tr>
<td>Vrukwoman</td>
<td>14.00B</td>
<td>14.17B</td>
<td>18.78B</td>
<td>16.83A</td>
</tr>
<tr>
<td>Napier</td>
<td>14.00B</td>
<td>15.00B</td>
<td>20.11B</td>
<td>17.11A</td>
</tr>
<tr>
<td>Porto Rico</td>
<td>14.67B</td>
<td>13.17B</td>
<td>26.72A</td>
<td>20.94A</td>
</tr>
<tr>
<td>Guçu</td>
<td>13.33B</td>
<td>15.33B</td>
<td>18.72B</td>
<td>15.72A</td>
</tr>
<tr>
<td>Cubano Pinda</td>
<td>13.00B</td>
<td>20.58B</td>
<td>17.72B</td>
<td>14.50A</td>
</tr>
<tr>
<td>BRS Canarã</td>
<td>13.00B</td>
<td>14.83B</td>
<td>18.17B</td>
<td>16.33A</td>
</tr>
</tbody>
</table>

CV (a) (%): Coefficient of variation of plot; **CV (b) (%)**: Coefficient of variation of the subplot; Averages followed by the same letter, lowercase vertical and uppercase horizontal do not differ from each other by the Scott Knott test at 5%.
In the rainy season, there was a greater SD (P < .05) with 20.58 mm. In the second year of cultivation, comparing both seasons, the Taiwan A 25, Porto Rico, Napier, Guacu, Cubano Pinda, Goiano and EMPASC 309 genotypes had higher TN in the dry season (P < .05), with 22.94 and 26.72 tiller linear m⁻¹, respectively.

In the rainy season, there was no statistical difference between genotypes with a mean of 16.17 tiller linear m⁻¹. [32] observed higher TN, evaluating 80 elephant grass genotypes at different times. These authors contacted that TN varied between 22 and 91 for the genotypes Cana D'África and BAG-92, respectively, in the dry season, and from 26.1 to 72.6 tiller linear m⁻¹ to genotypes Goiano and EMPASC 309 respectively, in the rainy season.

In the second year of cultivation, when comparing both seasons, the Taiwan A 25, Camerano, Vrukwona, Napier, Guacu and Cubano Pinda genotypes obtained higher TN (P < .05) in the dry season (Table 5). In the dry season, the best genotypes were Taiwan A 25 and Porto Rico with TN of 26.67 and 25.22, respectively. In the rainy season, the genotypes that presented higher NT (P < .05) were CNPGL91-25-1, Taiwan A25, Cuba 116 and

wall. Thus, the reduction in the volatile fractions of the biomass as the hemicellulose, polysaccharides of lesser relevance in the composition of the oxidizer compared to the other fibrous fractions such as lignin and cellulose, due to the low thermal stability and the lower activation energy in the direct combustion. In addition, its presence increases ash generation during combustion [29,30].

When comparing the two seasons in the first year, the genotypes had no difference (P > .05), excepting CNPGL 91-25-1 and Piracicaba 241 which showed a reduction in the SD during the rainy season (P < .05) with values of 15.08 and 13.30 mm, inversely to Cuba 116 in the dry season (P < .05) with 13.0 mm (Table 4). In the dry season, the CNPGL 93-41-1, Piracicaba 241, CNPGL 91-25-1 and Mercker genotypes, were highlighted with higher SD (P < .05). In the rainy season, only Cubano Pinda presented the largest SD (P < .05) with 20.58 mm.

In the second year of cultivation, comparing both seasons, it is verified that in the rainy season there was a greater SD (P < .05) to the CNPGL 93-41-1, CNPGL 91-25-1, Taiwan A 25, Napier, Porto Rico and Cubano Pinda genotypes (Table 5). In the rainy season, the CNPGL 93-41-1, CNPGL 91-25-1 and Cubano Pinda genotypes had the largest SD. There was no difference (P < .05) between the genotypes during the dry season and the mean was 13.61 mm.

Table 5. Annual Dry Matter Yield (ADMY) and by season (DMY), Stem Diameter (SD) and Tillers Number (TN) of elephant grass genotypes at 6 months of age in the dry and rainy seasons of the first year of cultivation (2017-2018)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SD (mm)</th>
<th>TN (linear m)</th>
<th>DMY (ton ha⁻¹)</th>
<th>ADMY (ton ha⁻¹ year⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNPGL 93-41-1</td>
<td>15.56aB</td>
<td>22.33aA</td>
<td>19.61cA</td>
<td>16.83bA</td>
</tr>
<tr>
<td>CNPGL 91-25-1</td>
<td>14.22aB</td>
<td>21.33aA</td>
<td>20.56bA</td>
<td>18.94aA</td>
</tr>
<tr>
<td>Taiwan A25</td>
<td>9.67aB</td>
<td>14.33bA</td>
<td>26.67aA</td>
<td>21.44aB</td>
</tr>
<tr>
<td>Cuba 116</td>
<td>14.78aA</td>
<td>17.00bA</td>
<td>21.06bA</td>
<td>21.33aA</td>
</tr>
<tr>
<td>Mercker</td>
<td>15.67aA</td>
<td>16.33bA</td>
<td>15.56dA</td>
<td>16.86aA</td>
</tr>
<tr>
<td>Cameroon</td>
<td>15.22aA</td>
<td>17.33bA</td>
<td>21.44bA</td>
<td>9.56bB</td>
</tr>
<tr>
<td>Piracicaba 241</td>
<td>13.78aA</td>
<td>17.00bA</td>
<td>13.44dA</td>
<td>16.17bA</td>
</tr>
<tr>
<td>Vrukwona</td>
<td>14.33aA</td>
<td>16.00bA</td>
<td>18.50cA</td>
<td>12.44bB</td>
</tr>
<tr>
<td>Napier</td>
<td>12.89aB</td>
<td>17.00bA</td>
<td>21.39bA</td>
<td>13.50bB</td>
</tr>
<tr>
<td>Porto Rico</td>
<td>11.78aB</td>
<td>17.67bA</td>
<td>25.22aA</td>
<td>11.97aA</td>
</tr>
<tr>
<td>Guacu</td>
<td>12.78aA</td>
<td>15.67bA</td>
<td>18.94cA</td>
<td>13.44bB</td>
</tr>
<tr>
<td>Cubano Pinda</td>
<td>12.56aB</td>
<td>20.33aA</td>
<td>18.56cA</td>
<td>12.39bB</td>
</tr>
<tr>
<td>BRS Canará</td>
<td>13.67aA</td>
<td>16.00bA</td>
<td>17.39cA</td>
<td>13.56bA</td>
</tr>
<tr>
<td>CV (a) (%)</td>
<td>15.07</td>
<td>27.06</td>
<td>30.21</td>
<td>28.89</td>
</tr>
<tr>
<td>CV (b) (%)</td>
<td>12.76</td>
<td>13.69</td>
<td>28.50</td>
<td>16.33</td>
</tr>
</tbody>
</table>

Averages followed by the same letter, lowercase vertical and uppercase horizontal do not differ from each other by the Scott Knott test at 5%
Grass stands out among energy crops [35], and with total possibility of insertion into the Brazilian energy matrix consolidated by the use of sugarcane and eucalyptus, mainly by the amount of biomass produced and the production cycle [2], [12], evaluating elephant grass cultivars in the Northeast region of Brazil, observed that BRS Canará and Cubano Pinda obtained ADMY ranging from 66.3 to 84.3 ton DM ha\(^{-1}\) year\(^{-1}\) at 6 months of cultivation.

In the second year of cultivation (Table 5), there was no difference (P > .05) to seasons and genotypes within each season, with mean DMY of 14.94 ton DM ha\(^{-1}\) and mean ADMY of 29.94 ton DM ha\(^{-1}\) year\(^{-1}\), that is, it occurred a 39.17% and 39.05% reduction, respectively. Nevertheless, it was verified that all the genotypes had dry matter yield higher than that obtained by eucalyptus (20 ton DM ha\(^{-1}\) year\(^{-1}\)).

The reduction in dry matter yield per season and annual obtained in the second year of cultivation was due to reduction of soil fertility and not replacement of nutrients through fertilization, since after the last harvest, the reduction in nutrient contents P, K and OM (Table 2). A similar occurrence was verified by Ra et al. [36], because the mean DMY of eight elephant grass genotypes was 17.5 ton DM ha\(^{-1}\) year\(^{-1}\) (2012 and 2013), but decreased 6.4 ton DMM ha\(^{-1}\) (2013 and 2014), which was expected due to the reduction of natural soil fertility.

Elephant grass is naturally a grassland with high productive potential, either to animal feed or to energetic purposes, but the crop presents high extraction of nutrients from the soil, such as N, K, Ca and S, [37]. According Santos et al. [38], evaluating the nutrient removal in elephant grass pasture, observed that the yield of 30 ton DM ha\(^{-1}\) year\(^{-1}\) provides extraction equivalent to 480 kg N ha\(^{-1}\) year\(^{-1}\), 361 kg K\(_2\)O ha\(^{-1}\) year\(^{-1}\) and 117 kg P\(_2\)O\(_5\) ha\(^{-1}\) year\(^{-1}\). [39], evaluating elephant grass genotypes for energy production in the form of biomass, verified that the most extracted nutrients of the soil were potassium (310 kg ha\(^{-1}\)), calcium (167 kg ha\(^{-1}\)), nitrogen (121 kg ha\(^{-1}\)), magnesium (79 kg ha\(^{-1}\)) and phosphorus (41.4 kg ha\(^{-1}\)), which are essential to better exploit the productive potential of the crop [40].

Thus, the economic exploitation of elephant grass for bioenergy production via direct combustion special attention should be given to the replacement of nutrients, in order to maintain or even increase the dry matter yield obtained in
the first year, in the following years that are want to produce.

4. CONCLUSION

Elephant grass is an excellent alternative for energy purposes mainly due to high percentage of stem and dry matter yield, but maintenance of soil fertility is necessary to obtain satisfactory yields. According to the agronomic characteristics, the promising genotypes for direct burning are CNPGL 91-25-1, Cubano Pinda, BRS Canará, Porto Rico and Mercker.

ACKNOWLEDGEMENTS

We are grateful to the Coordination of Research of People of Superior Level (CAPES), Federal University of Mato Grosso.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

7. Santos CC, Souza W, Sant’anna C, Brienzo M. Elephant grass leaves have lower calcitrance to acid pretreatment than stems, with higher potential for ethanol production. Industrial. Crops & Products. 2018;111:193-200.

© 2019 Favare et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49640