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A B S T R A C T

Euschistus heros is an important pest in many crops in Brazil, and different control strategies, mainly involving
chemicals, have been evaluated; however, the side effects of these chemicals on the balance of inorganic element
levels in the hemolymph are unknown. Thus, the aim of this work was to determine the concentration of in-
organic elements (focusing on macro-elements) in the hemolymph of female and male E. heros adults, after
applying pyriproxyfen at a sublethal concentration (LC30= 6.68mL L−1 diluted in distilled water) to 4th instar
nymphs, which were kept in controlled conditions. The hemolymph pool was removed 48 h after adult emer-
gence, centrifuged and placed on an acrylic disk added with Gallium as internal standard for the analysis of total
reflection X-ray fluorescence. Most of the elements in the control treatment did not differ between females and
males. However, following insecticide application to females and males, respectively, there was a significant
increase in sulfur (19 and 51%), chlorine (33 and 137%) and calcium (47 and 82%) in the hemolymph. The
significantly higher increase in macro-elements in males' hemolymph indicates that the action of pyriproxyfen
may be sex-specific. Phosphorus and potassium concentrations also differed between females and males in the
control and treated groups. The observed variation in inorganic elements in the insect's hemolymph may be
related to the unknown effects of pyriproxyfen, mainly on immune and reproductive performance.

During the evolution of the Insecta, the chemical composition of the
hemolymph developed a balance with the surrounding environment,
achieving a status of ionic and mineral homeostasis (Shaw and
Stobbart, 1963). The hemolymph is defined as a watery blood con-
sisting of fluid plasma and free nucleated cells, known as hemocytes
(Nichols, 1989). Other substances related to the insect's metabolism and
physiology such as hormones, lipophorins, phosphatases and trehalose,
may also be found in the hemolymph (Wyatt, 1961). Pioneering studies
showed that several elements are present in the hemolymph, such as
metal ions and macro-elements, mostly in the form of salts, and these
play a role in ionic regulation, with variations between different insect
species (Snodgrass, 1998).

A series of studies have been published since the last century re-
garding the chemical composition and biochemistry of hemolymph in

arthropods (Beintema et al., 1994; Plantevin, 1967; Shaw and Stobbart,
1963; Sowers et al., 2006; Wyatt, 1961), and some have focused on
blood-sucking insects such as mosquitoes and some hemipteran bugs
(Clark et al., 2009; Coast, 2009; Fortes et al., 2011; Mantuano et al.,
2012).

It is known that some biological control agents can affect the con-
centrations of inorganic elements in insects such as Lepidoptera. In
Diatraea saccharalis Fabr. (Lepidoptera: Crambidae) larvae the con-
centration of macro-elements such as phosphorus (P), sulfur (S), po-
tassium (K) and calcium (Ca) in fat body samples increased after
parasitism by Cotesia flavipes Cameron (Hymenoptera: Braconidae)
(Pinheiro et al., 2010a). In the same insects, a morphological study
suggested that ionic imbalance may be associated with alterations in
basal labyrinth of columnar midgut cells, as well as in cytoplasm
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projections that contain mitochondria in the chamber of midgut goblet
cells (Pinheiro et al., 2010b); it could also be related to the presence
and alteration of spherites in all four types of midgut epithelial cells
(Pinheiro et al., 2008). However, studies on the effect of insecticides on
macro-element levels in the hemolymph of Pentatomidae have not yet
been reported.

Several studies have been carried out to assess the concentration of
heavy metals and macro-elements in soils (Adepetu et al., 1988;
Jørgensen et al., 2005; Kim et al., 2013), plants (Kim et al., 2012; Ma
and Dong, 2014; Pang et al., 2018; Parween et al., 2018), fauna and
water (Fianko et al., 2011; Johal and Dua, 1995; Kaur and Dua, 2012)
after exposure to synthetic chemical insecticides, which are of great
concern to environmentalists as hazardous chemical pollutants (Kabata-
Pendias, 2011).

For the control of Neotropical-brown stink bug Euschistus heros Fabr.
(Hemiptera: Pentatomidae) in Brazilian crops, neurotoxic insecticides
such as pyrethroids and neonicotinoids (often in combination) are the
main form of control (Tuelher et al., 2018). However, these products
are highly toxic to the agroecosystem complex, and are known to cause
pest resistance (Castellanos et al., 2018; Santos et al., 2018; Sosa-Goméz
and Silva, 2010) and sexual fitness hormesis (Haddi et al., 2016).

The use of biorational control methods, such as Insect Growth
Disruptors (IGD), could be a strategy to reduce populations of E. heros
with lower environmental impact and selection pressure, thus enhan-
cing insecticide resistance management (Ishaaya et al., 2005). Pyr-
iproxyfen, an IGD analog of juvenile hormone (JH), has shown pro-
mising results in previous stink bug-pest control bioassays. The effects
of JH and its analogous insecticides on the biochemical composition of
hemolymph have already been studied (Edwards et al., 1993; Scharf
et al., 2005; Yi and Adams, 2000); however, these studies did not focus
on macro-element composition in the hemolymph.

The aims of this study were to evaluate macro-element concentra-
tions in the hemolymph of adult E. heros treated with a sublethal con-
centration of pyriproxyfen.

For the bioassays, the insects were reared in polystyrene (PS)-crystal
boxes (11×11 cm×3.5 cm). The boxes contained pods of organic
common bean, peanuts and soybean as food, and a vial filled with
moistened cotton for direct hydration. For this study, only 4th instar
nymphs (N4) were used. All procedures were performed under con-
trolled conditions as it follows: 26 ± 1 °C, 65 ± 5% RH and 14 h
photoperiod.

A predetermined sub-lethal concentration (LC30) of pyriproxyfen to
E. heros N4 was used for application using the same methodology as
described previously (Cremonez et al., 2017). The commercial product
used was Tiger® 100 EC at LC30= 0.668mL a. i. L−1, diluted in distilled
water without adjuvant. For the control treatment, it was used pure
distilled water. For each treatment 1mL was topically applied over a
group of ten N4 inside the PS-crystal box using a Potter tower (Burkard
Scientific® BS00282, Uxbridge, London) at working pressure of
82.7 kPa. Food and water were added to the insects as described before.
Each box was an experimental unit. The survival insects were sexed and

individualized in Petri dishes with food, were remained for 48 h until
the hemolymph extraction.

The hemolymph of adult's females and males of pyriproxyfen and
control treatment was extracted as it follows. Each insect was carefully
pined ventral side up in a Petri dish with solid paraffin. Little incisions
were made in the lateral abdomen and an aliquot of the flowing he-
molymph was carefully drained with a sterile ultrafine needle syringe
(8mm). The collected samples were pooled into a 2.0mL vial
(Eppendorf®) and immediately stored in freezer (−4 °C). After all col-
lection, the vials with the hemolymph pool were centrifuged in room
temperature at 6000 rpm with microcentrifuge (HT® CM-610, Hsiangtai
Co., Taipei) and the supernatant plasma collected for TXRF analysis.

The sampling order was as it follows: control females; control males;
pyriproxyfen-treated females; and pyriproxyfen-treated males. For the
procedure, 10 μL of the plasma was placed in an acrylic disk carrier
(3 cm diam.) and 10 μL of Ga (10 μgmL−1 in deionized water) was
added over it as an internal standard (IS). The disks were placed in an
oven to dry (60 °C). The samples were analyzed in a TXRF spectrometer
(S2 PICOFOX®, Bruker Corp., Billerica, MA), using software Spectra
(PICOFOX v 7.2.5.0) following the methodology adapted from Cleto
et al. (2016). The samples were analyzed in triplicate at an acquisition
time of 300 s per carrier.

The bioassay followed a completely randomized design, with four
treatments: pyriproxyfen-treated and untreated (control) females and
males. The data were subjected to analysis of variance and the means
compared by Tukey test (p≤ 0.05). The whole process was formatted
and processed with the R® software (R Core Team, 2018).

Initially, it was possible to observe that the absence of background
effect indicates no complex matrix effect, with distinct representative
peaks related to macro-elements and some minor components (Fig. A.1,
Appendix A). The matrix effect is intrinsic from the sample solution and
can cause alteration in absorption, leading to systematic errors
(Klockenkämper and Von Bohlen, 2015), and the use of certain organic
samples may require a preparation technique to attenuate these effects,
as seen in high-sugar content beverages (Fernández-Ruiz et al., 2018).
However, the data in this study showed that the stink bug's hemolymph
present no complex organic matrix that could interfere in the analysis.

The contact with a sublethal concentration of pyriproxyfen in-
creased the macro-element concentration in the hemolymph of adult E.
heros (Table 1), and a graphic representation is complemented (Fig. 1).
Hemolymph levels of S, Cl and Ca in untreated stink bugs did not differ
between females and males. However, after insecticide application
there was a significant increase in S (19 and 51%), Cl (33 and 137%)
and Ca (47 and 82%) in females and males respectively. The con-
centration of P and K differed between females and males in the control
treatment, and P also increased significantly after application of pyr-
iproxyfen in both females and males (22 and 48%, respectively). The
levels of K increased by 24% in treated males in relation to the control,
however the insecticide did not affect the concentration of this macro-
element in the females' hemolymph.

In general, the element concentrations followed two possible

Table 1
Concentration levels (mg L−1) of macro-elements in the hemolymph of females and males of Euschistus heros adults treated with pyriproxyfen.

Element Control treatment
Pure distilled water

Pyriproxyfen LC30

0.668mL a. i. L−1

Female Male Female Male

S 241.00 ± 6.80 a 238.02 ± 2.71 a 285.67 ± 10.37 b 359.34 ± 9.76 c
Cl 237.71 ± 6.41 a 211.71 ± 4.76 a 316.17 ± 22.96 b 502.42 ± 26.90 c
Ca 180.30 ± 4.71 a 185.93 ± 1.34 a 264.99 ± 6.88 b 338.35 ± 8.29 c
P 305.01 ± 15.15 b 268.02 ± 3.47 a 373.39 ± 7.82 c 395.50 ± 19.06 c
K 640.94 ± 12.17 a 751.77 ± 11.77 b 614.33 ± 39.21 a 936.24 ± 44.90 c

Note: Means followed by the same letter in the line did not differ significantly from each other, Tukey test, p≤ 0,05. a. i. = active ingredient. Internal
standard=Ga+deionized H2O=10 μgmL−1= 10 ppm.
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patterns: they were similar in untreated females and males, as in the
case of S, Cl and Ca; or they differed between sexes before treatment, as
in the case of P and K. However, in both situations, concentrations
increased after pyriproxyfen treatment (Table 1).

Sulfur is required by all living organisms as basic component of
proteins and major metabolites (Roat-Malone, 2002). The sulfur amino
acids are important for growth and larval development, and are re-
quired for egg-shell formation in females (Shinbo, 1978). The con-
centration of S may be strongly correlated with major enzymes present
in the hemolymph, such as lysozymes and phenoloxidases, which are
functionally important in immune humoral responses (Cerenius and
Söderhäll, 2004; Nation, 2015), and in hemostasis (blood clotting) in
wound injuries (Dushay, 2009). The significant increase in S in pyr-
iproxyfen-treated males and females suggests that degradation of amino
acids may have occurred via direct insecticidal action during late ju-
venile development.

Chlorine is important for ionic homeostasis in insects, being re-
sponsible for osmotic adjustment in the ileal region of the hindgut, and
its regulation is mediated by a peptide hormone synthesized in the
corpora cardiaca known as chloride transport-stimulating hormone
(CTSH), and supported by ventral ganglia factors (VGFs) (Audsley et al.,
1992; Phillips et al., 1996). The increase in Cl in pyriproxyfen-treated
males and females suggests that this product may have neurohormonal
effects mainly related to homeostasis.

Calcium has many physiological roles, viz. neurotransmitter vesi-
cular transport in synapses, phosphorylase activation, hormonal reg-
ulation, gene expression and muscle contraction (Alberts et al., 2014;
Chapman et al., 2013). The latter occurs by the regulation of specific
Ca2+ ion-gated channels known as ryanodine receptors (RyRs)
(Ebbinghaus-Kintscher et al., 2006; Nauen, 2006). Specifically, in in-
sects, the cytosolic Ca2+ is the main endogenous activator of RyR
(Chapman et al., 2013; Sattelle et al., 2008). Furthermore, high con-
centrations of Ca in the hemolymph can inhibit lipid utilization, ec-
dysteroid binding and vitellogenesis (Manière et al., 2002; Swevers
et al., 2005) and are associated with programmed cell death
(Chamberlain, 2004). The hemolymph Ca may be derived from the
extracellular contents, and its concentration may reflect the disruption
of physiological processes as a side effect of insecticides in E. heros.

Phosphorus is a bulk element (Roat-Malone, 2002) and is an im-
portant component of many organic molecules, e.g. ADP, ATP and
nucleotides, and in the form of the molecular ion PO4

3−, is essential for
structural components, energetics and thus general maintenance of life

(Filippelli, 2008). The concentration of P is higher in insects with more
flight activity (Goldsworthy and Wheeler, 2018; Marden, 2000;
Wiesenborn, 2013). Some Pentatomidae such as E. heros are considered
invasive species and have a high flight capacity and reproductive po-
tential (McPherson et al., 2018), both of which are highly costly me-
tabolic activities (Chapman et al., 2013). On top of that, a previous
study on the effect of pyriproxyfen on Brachynema germari Kolenati
(Hemiptera: Pentatomidae) showed elevated energy allocation in the
insect's body, as demonstrated by raised levels of lipids and carbohy-
drates (Bagheri et al., 2010). The higher amount of P in pyriproxyfen-
treated hemolymph of E. heros may also be linked to the increased
energetic demand of stress-related actions caused by the juvenoid.

Levels of K were higher in the hemolymph of males than in females,
and the action of pyriproxyfen seemed to have an additive effect on that
disparity. In insects, K plays a role in the ionic regulation of the he-
molymph, and in many cases the Na:K ratio is very low, unlike in other
invertebrates (Hoyle, 1952). In fact, the K levels vary between species,
but in general they are high enough to damage the central nervous
system (CNS), a situation that is avoided by insulation of these cells by
specialized neurons that create a blood-brain barrier (Banerjee et al.,
2006; Desalvo et al., 2011).

Any alterations in K levels can affect normal neuromuscular activity
(Hoyle, 1953). Such variations in ionic K+ concentration in the he-
molymph may be caused by its export from the muscular tissue by the
direct flow of hemolymph water and Na+ to the gut, which can be
triggered by environmental interference, parasitism and associated
physiological disorders (Findsen et al., 2014; MacMillan et al., 2012) or
even by an alteration in midgut epithelial cells such as goblet and co-
lumnar cells, which are responsible for both direct and indirect ionic
transport (Anderson and Harvey, 1966; Harvey et al., 1983; Moffett
et al., 1995; Pinheiro et al., 2010b; Zeiske et al., 2002). The significant
increase in K in females and to a greater extent in males following
exposure to pyriproxyfen may be useful for future studies on its side
effects on ionic homeostasis and associated neuro-muscular aspects.

Living organisms can be used as indicators of specific environmental
parameters of contamination by pollutants due to disturbances in op-
timal levels of heavy metals and other elements in these organic sys-
tems and their components (Al-Hussieny et al., 2015; Andrello et al.,
2010; Areington and Varghese, 2017; Kaur and Dua, 2012; Rashed
et al., 2009). Such disturbances can arise naturally, but can occur more
rapidly and intensely following anthropological interference, such as
pesticide application (Kabata-Pendias, 2011). Due to E. heros

Fig. 1. Concentration and comparison of five macro-elements in the hemolymph of Euschistus heros treated with pyriproxyfen. * and ** indicate difference of means
within each element by Tukey test (p≤ 0,05).
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importance and spread throughout the national territory, macro-ele-
ment alterations in stink bugs' hemolymph treated with pyriproxyfen
could be used as a general pesticide contaminant bioindicator in Bra-
zilian agroecosystems. Future studies should be performed to analyze
micro- and trace elements in pyriproxyfen-treated pest stink bugs to
corroborate our findings.

It is possible to conclude that the insecticide pyriproxyfen sig-
nificantly increased the concentration of the macro-elements S, Cl, Ca, P
and K in the hemolymph of E. heros, affecting normal physiological
functioning, especially in males. These results indicate that pyriprox-
yfen may have gender-specific effects. The observed variation in in-
organic elements in the insect's hemolymph may also be related to the
unknown effects of pyriproxyfen on many physiological pathways.
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Appendix A

Fig. A.1. Spectra of male Euschistus heros hemolymph sample compared with the background reading, presenting the peaks of macro-elements and minor compounds.
IS= Internal standard (Ga)
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