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ABSTRACT: Knowing the spatial variability of sugarcane biomass in the early stages of devel-
opment may help growers in their management decision-making. Proximal canopy sensing is a 
promising technology that can identify this variability but is limited to quantifying plant-specific 
parameters. In this study, we evaluated whether biometric variables integrated with canopy 
reflectance data can assist in the generation of models for early-stage sugarcane biomass pre-
diction. To substantiate this assertion, four sugarcane-producing fields were measured with an 
active crop canopy sensor and 30 sampling plots were selected for manually quantifying chloro-
phyll content, plant height, stalk number and aboveground biomass. We determined that Random 
Forest and Multiple Linear Regression models are similarly able to predict biomass, and that 
associating biometric variables such as number of stalks and plant height with reflectance data 
can assist model performance, depending on the attributes selected. This indicates that, when 
estimating biomass in the early stages, sugarcane growers can carry out site-specific manage-
ment in order to increase yield and reduce the use of inputs.
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Introduction

Sugarcane is a raw material used in the produc-
tion of sugar, ethanol and recently, for the production 
of energy from high-fiber varieties (energy cane). Since 
its development in the production fields is not uniform 
(Amaral et al., 2015b), estimating its spatial variability in 
the early stages can lead to management opportunities 
to increase yield and reduce the use of inputs. 

Sugarcane aboveground biomass is an important at-
tribute to measure, since it is directly linked to the final 
stalk yield (Sandhu et al., 2012). Given this relationship, 
the use of canopy sensors presents the possibility of pre-
dicting sugarcane stalk yield as a guide for variable-rate 
nitrogen fertilization (Amaral et al., 2015b; Lofton et al., 
2012; Raun et al., 2005). However, although Amaral et al. 
(2015a) obtained reasonable correlations between canopy 
sensor measurements and sugarcane biomass in the early 
stages of experiments conducted under field conditions 
(r2~0.65), canopy sensor measurements did not result 
in reliable biomass estimation throughout the field cycle 
for crop management purposes. Thus, the integration of 
other crop information might improve these predictions.

For example, in experiments with rice, Tilly et al. 
(2015) suggest the applicability of plant height spatial 
data as a non-destructive estimator of biomass. In sev-
eral plot-studies on plant-cane, Rossi Neto et al. (2017) 
identified that the biometric attribute with the greatest 
influence on crop yield was the plant population. Thus, 
such data could assist in biomass estimation and guide 
site-specific management. As a consequence, multiple 
independent variables must be included in predictive 
models and multivariate data analysis techniques are re-
quired (Abdel-Rahman and Ahmed, 2008; De Benedetto 
et al., 2013). 

In this study we opted to use a machine learning 
algorithm, Random Forest, and compared its perfor-
mance to Multiple Linear Regression. The first is robust 
for a number of problems with training data (e.g. collin-
earity). It is widely found in the literature having been 
successfully deployed in several domains, and can cap-
ture non-linear relationships (Hastie et al., 2009). The 
second technique, however, is a linear model and is also 
one of the most used statistical tools in the literature 
(Draper and Smith, 1998). 

Biometric variables may be a useful supplement 
to canopy reflectance. Thus, the aim of this paper was 
to evaluate whether biometric variables in combination 
with canopy reflectance data can assist in the generation 
of models for early-stage sugarcane biomass prediction 
drawing on a comparison of the performance of Random 
Forest and Multiple Linear Regression.

Materials and Methods

Data sampling
The experiment was conducted in four commer-

cial fields cultivated with sugarcane in the northeast-
ern sector of the state of São Paulo, Brazil (Table 1). A 
canopy reflectance sensor was used to measure three 
distinct bands of the spectrum, allowing for the cal-
culation of vegetation indices. According to the crop 
development variability inferred by the sensor (ex-
pressed by the NDVI), 30 plots per field were allocated 
to five NDVI classes (six randomly selected plots per 
class), similar to the procedure adopted by Portz et al. 
(2011). The plots consisted of four sugarcane rows 5 
m long spaced 1.5 m apart. For each plot, a buffer of 
five meters’ radius was demarcated and the average re-
flectance value was obtained for each sensor band as a 
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function of all the readings from that buffer (Figure 1A 
and B). The purpose of the procedure was to facilitate 
correlation of the sensor data with the biometry data 
sampled in the plots.

The canopy reflectance data were obtained when 
the crop had reached approximately a stalk height 
of 0.5 m (Amaral and Molin, 2014) through the Crop 
Circle ACS-430 active sensor (Holland Scientific Inc., 
Lincoln, Nebraska, EUA), which emits modulated light 
and captures the resulting reflected light. In the first 
year, two independent sensor units (two GNSS receiv-
ers, both working with L1 band and internal algorithm 
correction) were used, whereas in the following year a 
set with four sensor units was used acting integrally (a 
single GNSS receiver, similar to the previously used). 
The readings were collected at 1 Hz from all the crop 
rows, by the sensor mounted on a high-clearance ve-
hicle and conducted at a machine-travel speed of ~4.44 
m s–1, maintaining a constant distance between sensor 
and plant canopy of approximately 0.8 m. This sensor 
works with three distinct spectral bands, in the red re-
gion (RED, 670 nm), the transition region between red 
and near infrared (RED-EDGE, 730 nm) and the near 
infrared region (NIR, 780 nm). Thus, in order to en-
hance the possibility of assisting in the prediction of 
sugarcane biomass, vegetation indices were calculated 
from these reflectance data (Table 2).

On the day after the sensor measurements were 
taken, the following data were sampled along a linear 
20 m of each plot (four rows 5 m long): chlorophyll con-
tent, obtained by a chlorophyll meter (SPAD-502, Konica 
Minolta Sensing Inc., Sakai, Osaka, Japan) on two sepa-
rated diagnostic leaves (+1 and +3 leaves, first and third 
leaf fully open, respectively – SPAD+1 and SPAD+3), in 
the median portion of the leaves, and the plot value cor-
responded to an average of twenty leaves; plant height, 
corresponding to the average of three plants, measured 
from the soil to the base of the leaf +1 (HEIGHT); 
and stalk number, obtained by counting all tillers that 
belonged to the plot (STALKN). The aerial part of the 
plants of three 1.5 m rows of each plot was manually cut 
and weighed for biomass determination.

Variable selection
The dataset used is composed of 120 instances or 

observations (thirty plots in four fields) and fourteen attri-
butes, namely: height and number of stalks, chlorophyll 
content in leaves +1 and +3, individual bands (RED, 
RED-EDGE and NIR), vegetation indices (NDVI, NDRE, 

CI, MTCI, CCCI and SAVI), and biomass as the meta-at-
tribute (response variable). Since the proposal was to 
create multivariable models, it was fundamental to an 
understanding of which attributes should be considered. 
Several methods can be used when making this selection, 
and often the subjectivity of the scientist must also be 
taken into account. Thus, three different approaches to 

Table 1 − Study site characteristics.
Field Area Year Variety Ratoon Geographic coordinates Altitude

ha m
1 6.43 2012 SP801816 8° 21°21’46.06” S 48°00’51.38” W 580
2 5.93 2012 CTC 2 4° 21°21’57.12” S 47°58’04.70” W 581
3 6.67 2013 CTC 2 3° 21°22’51.39” S 47°58’33.87” W 590
4 6.39 2013 CTC 2 3° 21°22’49.84” S 47°58’21.80” W 590

Table 2 − Vegetation indices used in different approaches.
Index Equation

Normalized Difference 
Vegetation Index NDVI = (NIR-RED) / (NIR + RED)

Normalized Difference 
Red-Edge Index NDRE = (NIR-REDGE) / (NIR + REDGE)

Chlorophyll Index CI = (NIR / REDGE)-1

MERIS Terrestrial 
Chlorophyll Index MTCI = (NIR-REDGE) / (REDGE-RED)

Soil-adjusted Vegetation 
Index SAVI = (1 + 0.5)*(NIR-RED) / (NIR + RED + 0.5)

Canopy Content 
Chlorophyll Index CCCI = NDRE / NDVI

RED = reflectance of red region (670 nm); REDGE = reflectance in the 
transition region between red and near infrared (730 nm); NIR = reflectance in 
the near infrared region (780 nm).

Figure 1 – Part of a field showing sensor data (small dots) and 
allocated plots (large black dots) according to five vegetation 
index classes (A) and, highlighted, a 5 m buffer selecting points to 
represent a plot (B).
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has a superior relationship with the sugarcane biomass. 
Thus, by evaluating subsequent correlations, we chose 
to retain the attributes HEIGHT, REDGE and CCCI (r 
< 0.7); the attribute NIR (even with r = 0.87) was not 
excluded due to non-linear trends presented.

Using the same principle, to evaluate the possi-
bility of using the NDVI (one of the most used indexes 
in the literature) instead of NDRE, it was necessary to 
change HEIGHT by STALKN since NDVI and HEIGHT 
were highly correlated (Approach 2). 

Although correlation analysis is one of the main 
forms of attribute selection, an approach in which the 
morph-physiological data were complementary was also 
adopted (Approach 3). For this approach, we decided 
not to use separated bands, since the information was 
already included in the vegetation indices and, thus, 
focused on the other biometric variables. We therefore 
decided to keep STALKN and HEIGHT in all situations. 
Furthermore, we investigated chlorophyll readings in 
different leaves; in this case, SPAD in leaf +3 was bet-
ter than SPAD+1 in all situations, while removing SPAD 
readings from the analysis impaired the simulated mod-
els (data not shown). All vegetation indices were tested 
in order to create new analysis possibilities, but the 
models that used NDVI prevailed over the others (data 
not shown; approach 3 - Table 3).

Modeling 
In this study we opted for using a machine learn-

ing algorithm, Random Forest, and compared its perfor-
mance to Multiple Linear Regression. The first is robust 
to a number of problems with training data (e.g. col-

attribute selection (Approaches 1, 2 and 3 - Table 3) were 
evaluated and compared to univariate linear regressions. 
One of the main goals for this selection was the removal 
of highly correlated variables (collinearity). When adjust-
ing a prediction model using a set of highly correlated 
variables, the quality of the model can decline, since they 
do not add information to the model. On the contrary, 
they can add noise (Draper and Smith, 1998). Conse-
quently, attribute selection facilitates data visualization, 
reduces storage requirements as well as processing time 
and improves model efficiency (Guyon and Elisseeff, 
2003). Therefore, all the correlations were analyzed, two 
by two (24 correlations), excluding those variables which 
presented correlation greater than 0.7 with the others 
(Figure 2). However, where the relationship was not lin-
ear, we chose to keep both variables to allow for possible 
non-linear behavior in the prediction models. 

In Approach 1, the NDRE index was used rather 
than NDVI because Amaral et al. (2015a) showed that it 

Table 3 − Attributes maintained according to the three attribute 
selection approaches, while biomass is the response variable.

Approach Attributes
1 HEIGHT REDGE NIR NDRE CCCI
2 STALKN REDGE NIR NDVI CCCI
3 STALKN HEIGHT SPAD+3 NDVI -
HEIGHT = plant height in the sampling spot; STALKN = stalk/stem quantity in 
the sampling spot; SPAD+3 = chlorophyll content, obtained by a chlorophyll 
meter in the leaf +3; REDGE = reflectance in the transition region between red 
and near infrared (730 nm); NIR = reflectance in the near infrared region (780 
nm); NDVI = Normalized Difference Vegetation Index; NDRE = Normalized 
Difference Red-Edge Index; CCCI = Canopy Content Chlorophyll Index.

Figure 2 – Correlation between variables and their linearity; at principal diagonal, data distribution (histogram) of each variable.
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linearity), is widely found in the literature, has been 
successful in several domains, and captures non-linear 
relationships (Hastie et al., 2009). It is an ensemble 
learning method for classification or regression, that 
operates by constructing a multitude of decision trees at 
training time and outputs the most popular class which 
is the mode of the classes (classification) or mean pre-
diction (regression) of the individual trees (Han et al., 
2011). The second technique, however, is a linear model 
and one of the most used statistical tools in the literature 
(Draper and Smith, 1998). It involves finding the “best” 
line to fit two attributes (or variables) so that one at-
tribute can be used to predict the other. Multiple linear 
regression is an extension of linear regression, whereby 
more than two attributes are involved and the data are 
fit to a multidimensional surface. 

To do so, scripts were developed with the R Proj-
ect for Statistical Computing. In particular, we used the 
Caret package (Classification and Regression Training), 
which is a compilation of functions that aims to facilitate 
the creation of optimized models, since it uses internal 
mechanisms to adjust hyperparameters (Kuhn, 2010).

Considering that the dataset consisted of 120 ob-
servations, cross-validation was used (k-fold = 10) for 
model adjustments, since this approach is recommended 
for small datasets, including simple (univariate) regres-
sions performed to compare the multivariable models´ 
performance. The metrics used for such comparison 
were the multiple determination coefficient (R2), root 
mean squared error (RMSE), and Ratio Percentage Devi-
ation (RPD - ratio between the actual biomass standard 
deviation and the RMSE of the validation). According 
to the classification proposed by Viscarra Rossel et al. 
(2006), RPD can be divided as follows: RPD < 1.0 indi-
cates a very poor model and its use is not recommended; 
RPD between 1.0 and 1.4 a poor model, where only high 
and low values   are distinguishable; RPD between 1.4 
and 1.8 indicates a regular model that allows its use for 
inferences and correlations; RPD between 1.8 and 2.0 
a good model where quantitative predictions are pos-
sible; RPD between 2.0 and 2.5 a very good model for 
quantifications; and RPD > 2.5 an optimum model for 
quantification.

Results

Sugarcane biomass estimations using a single 
indicator (univariate regression) showed low efficien-
cy (Table 4). Despite CCCI, all the vegetation indices 
showed similar ability when estimating biomass. The 
biometric parameter with the highest R2 with biomass 
was HEIGHT, which was comparable to the vegetation 
indices´ performance. 

Since biomass prediction using a single variable 
is limited, multivariable analyses have been proposed 
in order to improve the models´ performance. Ap-
proach 2 presented the worst performance in biomass 
estimation when multivariable models were developed 

(Figure 3C and D), with almost no increase when com-
pared to univariate regressions (NDVI and STALKN 
– Table 4). Approach 1, which would be the first op-
tion when using the proposed method for variable se-
lection, showed a slightly higher result than the other 
approaches. Approach 3, which maintained comple-
mentary agronomic variables, presented an intermedi-
ate performance, indicating that the high correlation 
between the attributes yielded no information gain for 
modeling.

The degree of importance of each variable for 
biomass quantification diverged for each approach 
used (Figures 4A, B and C). However, regardless of the 
variable selection approach (1 or 2), the individual NIR 
band and CCCI continued to aggregate information for 
the models, even though CCCI alone yielded high pre-
diction error (RMSE = 9.4 – Table 4). This happens 
because the variables that show little meaning when 
analyzed in isolation can be useful when they are put 
together in a model (Guyon and Elisseeff, 2003). In ad-
dition, chlorophyll readings were not important in any 
of the approaches adopted.

Discussion

Sensing technology focusing on light reflected by 
crop canopy is one of the most promising alternatives 
for estimating crop vigor and, in many cases, it allows 
for yield site-specific prediction. Such data can be ac-
cessed through orbital, aerial and terrestrial platforms. 
The last alternative in particular, is promising because 
it can be carried out by agricultural machinery when 
getting into the field for any kind of management, un-
der any ambient light condition and, in certain situa-
tions, it allows for real time interventions. However, 
we have shown that the information from this type of 
equipment was not efficient enough to satisfactorily 
quantify the aboveground biomass of sugarcane (Table 

Table 4 − Metrics obtained by prediction models of biomass with a 
single indicator.

Variable R2 RMSE1 RPD2

HEIGHT 0.52 6.53 1.4
STALKN 0.37 7.49 1.3
SPAD+1 0.10 8.97 1.1
SPAD+3 0.25 8.19 1.2
RED 0.33 7.74 1.2
REDGE 0.00 9.44 1.0
NIR 0.30 7.88 1.2
NDVI 0.49 6.72 1.4
NDRE 0.48 6.79 1.4
CI 0.47 6.89 1.4
MTCI 0.52 6.57 1.4
CCCI 0.01 9.40 1.0
SAVI 0.51 6.61 1.4
1RMSE = Root mean squared error, in Mg ha–1; 2RPD = Ratio percentage 
deviation.
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4 - RPD < 1.4, suggesting this is a poor model, where 
only high and low values   were distinguishable). For 
this purpose, obtaining other plant data has shown to 
be interesting (greater RPD – all examples on Figure 
3A-F). Thus, given a data set with a larger number of 
variables, we could proceed with classical linear mod-

eling, such as multiple linear regression, or with data 
mining algorithms, which deal with nonlinear relation-
ships, such as Random Forest. Despite the expected 
superior performance of Random Forest, we obtained 
similar results for both modeling algorithms, probably 
due to the relatively small data set.

Figure 3 – Predicted and observed biomass correlation of the models estimated by Random Forest for first (A), second (C) and third (E) approach 
and by Multiple Linear Regression, first (B), second (D) and third (F) approach.

Figure 4 – Degree of importance (normalized metric) of each variable in the Random Forest model for first (A), second (B) and third (C) approaches.
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Biomass quantification is inefficient when only 
one measurement is used (Table 4). This being the case 
there are limitations as regards reflectance measure-
ments of the sugarcane canopy. The CropCircle sen-
sor shows a nadir (top-down) view of the designated 
rows, which collected reflectance measurements from 
the top of the canopy only, impairing its sensitivity 
to biomass variability. Such limitation was due to the 
complexity of the sugarcane biomass, which comprised 
several tillers, each with several layers of green leaves, 
possibly dried leaves on the stalk inferior part, and the 
stalk itself, which may have had a different thickness 
and density. 

In this way, it is possible to improve the perfor-
mance of prediction models through integration with 
other data sources (as the examples on Figure 3A-F), 
a concept that has been increasing acceptance in pre-
cision agriculture, known as “data fusion”. However, 
the challenge was to develop a sensing technology 
for such application due to sugarcane being planted 
mostly throughout the billets, which contributes to a 
non-uniform stand, as well as presenting differences in 
the number of tillers between plants (ratoons). The dif-
ficulty is even greater when compared to a non-tillering 
crop (i.e., maize), since a stalk (tiller) may be positioned 
behind another and not be sensed.

In spite of this, there are tools available which 
will sense plant height, and can be adapted to sugar-
cane. This is true in the case of ranging sensors which 
can be simple ultrasonic sensors for dynamic laser 
scanning (Light Detection and Ranging - LiDAR tech-
nology). This indicated that, to date, Approach 1, as 
well as presenting the best performance, demonstrated 
better practical application 

We observed similar performances for the two 
methods of prediction model construction (Figures 
3A, C and E compared to Figures 3B, D and F), despite 
the expected superiority of the machine learning algo-
rithm. This was probably due to the fact that the data-
set was relatively small and did not, therefore, result 
in very complex relationships between the variables, 
since this would have been a great gain in machine 
learning algorithms, as it is more difficult to deal with 
linear regression. Only in Approach 3 did we see a 
slightly superior performance by Random Forest, per-
haps because it integrated less related measurements 
to each other which actually add information to the 
models.

However, biomass quantification needs to be used 
with caution when the absolute value is important for 
a particular sugarcane management strategy. Although 
the use of biometric variables increased the predictive 
models´ capacity, they were all classified as regular 
performance according to the RPD classification (Vis-
carra Rossel et al., 2006). Therefore, the models would 
be recommended only for inferences and correlations, 
since the errors associated with the models are in the 
order of 5 to 6 Mg ha–1.

Conclusion

Even though our study underpinned the idea that 
sugarcane sensing is a complex and problematic issue, 
we identified that vegetation indices, mainly the NDRE, 
associated with the number and height of stalks, may as-
sist in sugarcane biomass prediction in the early stages. 
However, prediction models need to be used with cau-
tion when it is critical to quantify the absolute value of 
biomass.

Biomass prediction through the Random For-
est algorithm shows a similar performance to multiple 
linear regression when used with a small dataset and 
variables with moderate correlation between each other. 
Therefore, due to the complexity of using this type of 
algorithm, linear regression may be preferred by less ex-
perienced users.
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