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Pesquisa Agropecuária, Rio de Janeiro, Rio de Janeiro, Brasil, 3 Centro Nacional de Pesquisa de

Agrobiologia, Empresa Brasileira de Pesquisa Agropecuária, Seropédica, Rio de Janeiro, Brasil
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Abstract

Agricultural landscapes are seen as areas of extreme importance for studying and develop-

ing strategies which integrate biodiversity conservation and ecosystem services with food

production. The main strategies for intensifying agriculture are based on conventional agricul-

tural practices of frequently using inputs for fertilization and correcting soil pH. Some studies

show that these practices generate impacts on nearby forest fragments through soil contami-

nation and increasing nutrient content. The objective of this study was to identify the impacts

on the functional groups of sciophilous (late successional/shade-tolerant species) and helio-

philous (pioneer/sun-loving) species of a tree community of 14 forest fragments near pasture

areas and agricultural areas under conventional practices, raising the hypothesis that higher-

fertility forest fragments adjacent to intensive agriculture modify the floristic composition of

the tree community. Consequently, this study is based on the following questions: i) Do forest

fragments within intensive farming environments present differences in floristic composition

of species?; ii) Does the soil fertility influence the tree species composition?; iii) Which vari-

ables influence species abundance and richness in the forest fragments with different types

of use around their environment? The floristic composition of fragments close to agricultural

areas are more similar to each other than the composition of fragments close to pasture

areas. Furthermore, the General Linear Model (GLM) results show a clear influence of the

intensive farming environment on the richness and abundance of the two functional groups in

the forest fragments, directly benefiting the abundance of heliophilous species, which are

also benefited by the greater declivity and smaller fragment area, while the abundance of

sciophytes is negatively correlated with these last two variables. The increase of calcium con-

tent is beneficial for the richness of heliophilous species, while the increase in phosphorus
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content influences a reduction in the richness of sciophyte species, which also strongly

respond to the isolation between fragments. The results indicate a dominance trend of pio-

neer species in fragments with nutritionally enriched soils, providing evidence that the intense

adoption of inputs in cultivated areas causes concrete impacts on the diversity of the tree

community.

Introduction

With the global demand for increased food production, agriculture is in increasing world

expansion [1,2], mainly in tropical countries [3]. This is one of the main activities causing

reduction and fragmentation of natural forests worldwide [4] and occupies almost 40% of the

soil throughout the planet [5]. Thus, agricultural landscapes are today seen as areas of extreme

importance for studying and developing strategies that integrate biodiversity conservation and

ecosystem services with food production [2,6]. The main concern with this reality is focused

on tropical regions which have the world’s highest biodiversity and the greatest pressure for

increasing agricultural land [7,8]. It raises the need to develop production models that not

only take into account greater production efficiency, but also the externalities that are implied

on the biodiversity and ecosystem services of a landscape [2,6,9–12].

One of the main consequences of fragmentation is the edge effect [13–15], which is gener-

ated by creating borders between forest and agricultural ecosystems. The creation of this

abrupt border is the main cause of alterations in the microclimate, the soil fertility and the

presence of chemical substances from the surroundings in the borders and interior of the frag-

ments [15,16]. This has short- and long-term effects on species composition [13,17–20], often

favoring the proliferation of generalist and pioneer species [21–23] and hardy exotic species

[22–25].

Edge effects are generally more intense in fragments of smaller area and with greater edge

ratio [14,22,26]. However, the intensity and types of edge effects have direct connection with

the characteristics and usage intensity in the environment [15,23,27].

The main practices for agricultural intensification are fertilization and pH correction which

demands a frequent use of chemical inputs [1,2]. Some studies show that the intensification of

these practices in agricultural fields causes changes in soil chemical characteristics on nearby

forest fragments through contamination by fertilizers. [28,29]. This contamination occurs via

fertilized soil particles in the crops being transported by wind to the fragments. These changes

in fertility levels of soils in forest fragments can have significant impacts on the floristic com-

position due to the great influence of soil chemical characteristics on vegetation composition

and spatial distributions [30–36].

Some nutrients are limiting to the growth of trees in forest environments [37–40], and the

continuous increase of fertility levels in forest fragment soils may lead to alterations in soil

chemical relationships [39–41], and possible species losses due competition and mortality

[42,43]. Some studies suggest that some species such as pioneers are more efficient in using

nutrient surpluses, with an increase in growth rates [33,39,40,43]. Thus, changes in soil fertility

conditions along with other impacts associated with forest fragmentation may favor the estab-

lishment of pioneer species to the detriment of late successional species.

This study was conducted in a region of Atlantic Forest which, like most tropical forests,

has developed on naturally acidic and nutrient poor soils. The vegetation of these forests devel-

oped with high species diversity and adapted to these chemical characteristics of the soil
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through mechanisms which enabled better absorption and utilization of nutrients and toler-

ance to high levels of aluminum [36].

A recent study showed increasing natural vegetation in the Atlantic Forest in recent years,

however this biome still remains as a biodiversity hotspot [44]. This is because the native vege-

tation remains extremely fragmented amidst a modified matrix such as agriculture and live-

stock-producing landscapes, and much of the vegetation is low quality with a predominance of

degraded secondary fragments [44,45].

Thus, the present study aimed to identify the impacts on the functional groups of sciophi-

lous and heliophilous species in the tree community of forest fragments in the Atlantic Forest

near agriculture areas with conventional practices of intensive fertilizer use. Pioneer or helio-

philous species are those which require direct light for seed germination, or those generally

classified as pioneers and early secondary. These species are the first colonizers of an environ-

ment in early ecological succession stages or which are common in altered natural environ-

ments. The non-pioneer/late successional or sciophilous species are those which can

germinate and develop under shade, being found under the canopy [46]. It was hypothesized

that the higher fertility of forest fragment soils adjacent to intensive agriculture modifies the

floristic composition of the tree community, adopting the premise that there are nutrients

added into the soils of these fragments [29].

Studies which aim to observe vegetation patterns with isolated factors such as the chemical

characteristics of the soil present limitations due to the great correlation between the soil

parameters and the vegetation itself, with it being greatly important to consider the landscape

aspects, especially when it comes to heterogeneous landscapes [20]. These would include sev-

eral factors related to forest fragmentation, water availability, and others [30,32,47]. Therefore,

in order to identify the impact of a change in the fertility levels within forest fragments on the

floristic composition of these sites, the vegetation correlation with local factors related to the

soil also needs to be evaluated. These factors such as slope, soil grain size and canopy opening,

as well as factors related to forest fragmentation such as size, isolation and shape of the frag-

ments directly affect the floristic composition. Thus, this study was guided by the following

questions:

i. Do forest fragments within intensive farming environments present differences in floristic

composition of species?

ii. Does the soil fertility influence the tree species composition?

iii. Which variables influence the species abundance and richness in the forest fragments with

different types of use around their environment?

Materials and methods

Site description

The study was carried out in the Guapi-Macacu Basin in the state of Rio de Janeiro, located

east of Guanabara Bay. The predominant climate in the region is Af tropical wet according to

the Köppen classification. The average precipitation varies between 1,300 and 2,200 mm and

the temperature between 14 and 27˚C, presenting an average of 21.1˚C [48]. The vegetation of

the region is Dense Ombrophilous Lowland Forest included in the Atlantic Forest (sensu

stricto) [49]. The forest cover of the basin occupies 42.4% of the territory and is divided into

larger and continuous fragments in areas of higher elevation, while hills and hillocks are

located in the lowlands with smaller and more dispersed forests in the landscape [48].
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The study was developed in 14 forest fragments dispersed in the Basin, with an environ-

ment predominantly consisting of agriculture and livestock. The fragments were selected in

four size ranges: 4 small fragments (< 15 ha), 4 medium fragments (> 19< 30 ha), 3 large

fragments (> 90< 200 ha) and 3 segments of continuous forests (> 40,000 ha) belonging to

the Parque Estadual dos Três Picos forest. Continuous forest segments were used to control

fragmentation effects. The Atlantic Forest fragments selected for this study have been frag-

mented for at least 18 years, and their selection followed some criteria such as the native vege-

tation structure (given by stratification, tree size and life forms), management and usage

history. There has been a great effort in identifying fragments of similar structure and with

similar dynamics of use in their surroundings in the last ten years.

The fragments are surrounded by different soil uses, predominantly pastures and crops

(43.6% and 4.8% of the territory, respectively) (Fig 1). Agriculture herein will be treated as

intensive crop, with high use of agricultural inputs and soil tillage, and pastures.

All the forest fragments used in this research work were located in private properties. All

the owners were contacted and gave permission for the researchers involved in this work to

enter and to collect data prior to the field collections. No specific permits from local authorities

were necessary because there was no need for tree cutting or intervention to any endangered

or protected species.

Intensive use areas are characterized by annual corn (Zea mays) rotations with manioc cul-

tivation (Manihot esculenta), with high frequency of soil rotation through plowing followed by

harvesting and use of fertilizers and lime. An average of 2000 kg.ha-1 lime and 60 kg-1 of 4-14-

8 NPK fertilizer are added for the corn cultivation. Some proprietors use organic compost

(manure) applied as cover as a complement to chemical fertilization. Agrochemicals are also

frequently used to control pests such as caterpillars (Spodoptera frugiperda). After this, new

plowing and harrowing is carried out for planting the manioc roots, without new chemical fer-

tilization. Management activities are almost non-existent in pasture areas (Brachiaria

Fig 1. Location of the studied fragments and land use classes in the Guapi-Macacu River Basin, Rio de Janeiro,

Brazil.

https://doi.org/10.1371/journal.pone.0212725.g001

Impacts of intensive agriculture on functional groups of the tree community of forests fragments

PLOS ONE | https://doi.org/10.1371/journal.pone.0212725 August 1, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0212725.g001
https://doi.org/10.1371/journal.pone.0212725


brizantha), with only general grazing occurring. The maximum stocking density of cattle is on

average 1 head.ha-1.

The criteria described by Laurance et al. (2002) [50] were adopted as references to evaluate

the effect of the soil use on the native vegetation areas. These authors establish that the

anthropic area of the environment must have a minimum size of 100 m in length and the same

area of width in contact with the fragment edge.

Sampling design

Six fragments were evaluated for an adequate evaluation of the established questions, with an

agricultural percentage in their perimeter being zero, and 5 fragments and 3 areas of continu-

ous forest (part of the Parque Estadual dos Três Picos) with a variable percentage in their

perimeter surrounded by agriculture covering all size classes of the selected fragments. All the

matrices classified as intensive crops have a continuous usage history for at least 10 years.

The selected forest fragments are characterized by a sloping hillside relief, typically uphill

from the edge of the forest toward the interior, and thus three different strata were established

for sampling, with the sole objective of sampling the differences in slope and distances from

the edge of the fragment to the production areas. The fragments were stratified as follows: i) 1st

third—area closer to the agroecosystem, which has greater anthropic influence; ii) 2nd third–

the area next to the 1st third, generally with great slope; iii) Final third—top hill region, with

lower slopes. Three plots of 50 x 5 m (250 m2) were allocated in each third, which totals an

area of 2,250 m2 per fragment. The plots were systematically delimited in each stratum, parallel

to the agroecosystem, with 10 meters of distance between them in the horizontal direction

(parallel to the edge) and 10 meters in the vertical direction (perpendicular to the edge and

towards the inside). Three plots were also allocated in the surrounding agricultural areas for

soil sampling, following the same methodology for allocating the plots within the fragments.

Floristic and phytosociological survey

A forest inventory was carried out in March 2016 with assistance from a botanist. All individ-

ual trees with diameter at breast height (DBH) greater than or equal to 5 cm were measured

and identified in all the plots. When possible, the identification was carried out in the field

and, when necessary, botanical material collections were carried out for further identification.

The taxonomic determinations were carried out by consulting the Herbariums of the Research

Institute of the Botanical Garden of Rio de Janeiro and the Department of Botany (RBR) of

UFRRJ (Federal Rural University of Rio de Janeiro), by bibliography, or by specialists. Part of

the floristic survey had already been carried out in a previous study [29] using the same meth-

odology. These data were also collected for conducting this work.

The species were classified into two functional groups according to Swaine and Whitmore

[46]: pioneer or heliophilous species, which require direct light for seed germination, or those

generally classified as pioneers and early secondary; and the group of non-pioneer/late succes-

sional or sciophilous species which can germinate and develop under the shade, being found

under the canopy and also in open environments [51]. Studies for the state of Rio de Janeiro

were used for these classifications in order to avoid variations in classifications [51–55]. Non-

classified species (NC), did not fall into any of the categories due to lack of information.

The calculations of the community phytosociological parameters were performed accord-

ing to Mueller-Dombois & Ellenberg [56] by calculating the absolute and relative parameters

of species density, dominance and frequency in order to obtain the Importance Value (IV) of

each species, which consists of the sum of the relative values mentioned above (S1 Table).
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Soil fertility and granulometry

Simple soil (different amounts of soil taken at different points within the plot areas) samples

were collected between February and March 2016 in order to analyze the relationship between

abundance and richness of functional groups of tree species and the soil fertility characteristics

of the forest fragments. Three soil samples were collected per plot at a depth of 0–5 cm with

the aid of a metal probe. Samples were collected at the ends (0; 50 m) and center (25 m) of

each plot, forming a sample composed of soil for each plot. Each composite sample was placed

in a plastic bag and identified for transport to the laboratory, where each soil sample was air

dried. After drying, they were sieved using an 8 mm sieve to remove coarse material. The sam-

ples were sent for chemical analysis in the Nutrient Cycle Laboratory of EMBRAPA Agrobiol-

ogy, which follows the methods recommended by EMBRAPA [57]. The chemical

characteristics analyzed were pH in water, calcium (cmolc.dm-3), magnesium (cmolc.dm-3),

potassium (mg.L-1), phosphorus (mg.L-1), carbon (dag.Kg-1) and nitrogen (dag.Kg-1). The

granulometric analysis of the samples was carried out at the Soil Physics Laboratory of the

UFRRJ Soils Department, using the Pipette Method [57], quantifying the sand, silt and clay

fractions expressed as percentage.

Canopy opening

Hemispheric photographs were taken for estimating the canopy cover of each fragment, from

which it was possible to indirectly calculate the canopy cover and light input in the plots [58].

The photographs were taken at the ends (0; 50 m) and center (25 m) of each plot using a digital

camera attached to a ‘fish eye’ lens positioned at a distance of 1.5 m from the ground using a

tripod. The tripod was always positioned to the north with the help of a compass in order to

maintain standardization of the photographs. Afterwards, each photo was analyzed with the

purpose to quantify white (the points related to the open sky) and black (referring to the vege-

tation) pixels, which was performed using the Gap Light Analyzer (GLA), Version 2.0 program

[59]. Analysis of the photographs enabled an estimation for each plot for the canopy opening,

direct light input and diffuse light. Direct light input was used as a measure of canopy opening

for the statistical analysis of the present study due to the high correlation of these parameters.

Slope

The central point in each plot (25 m) was measured with the aid of a digital clinometer for

evaluating the terrain slope.

Obtaining and evaluating landscape indexes

In order to understand the relationships between the structural variables of the landscape and

the tree community composition in the fragments, landscape metrics were used according to

the procedures used in Uzêda et al. [29]. The following measures were used: area, which refers

to the fragment size; perimeter/area ratio (PARA), which is an indicator of the fragment shape,

and therefore related to the amount of existing border; and Euclidean distance of the nearest

neighbor (ENN), which is an indicator of fragment isolation. The agricultural border percent-

age (agri) was also obtained, which is an indicator of the border perimeter percentage of the

forest fragment which is directly in contact with the agricultural area. All types of land use

along the fragment perimeter that made direct contact with its border which were delimited in

the map and coverage used were considered for this calculation.

The land use and coverage map of the Guapi-Macacu and Caceribu river basins on a scale

of 1:50.000 [60] was used to identify the areas under natural vegetation cover in the study area.

Impacts of intensive agriculture on functional groups of the tree community of forests fragments

PLOS ONE | https://doi.org/10.1371/journal.pone.0212725 August 1, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0212725


This map was elaborated based on the image classification of the TM-Landsat 5 sensor, from

June to August 2007, with a resolution of 30 meters. The original map was recorded to the

boundary of the Guapi-Macacu basin area, and the selected natural vegetation sites were

extracted: forest in initial, middle and advanced stages of regeneration. The fragment data

were spatialized in digital format (“raster”) with a resolution of 30 meters, and the Fragstats

program was used [61] for calculating landscape metrics.

Next, the proportion of the fragment boundaries to be found in line with the different types

of land use was calculated. As the studied fragments are only surrounded by pasture and agri-

culture, and therefore the percentages of these two edge types total 100, it was decided to only

use the border percentage with agriculture, thus avoiding highly correlated variables [29].

Data analysis

In order to identify the similarity of the structure and composition of the tree community

among the fragments, non-metric multidimensional scaling (NMDS) with the Bray-Curtis

similarity index [62] was used to verify clustering trends. Therefore, a matrix with the Impor-

tance Value (IV) of the species of each fragment (S2 Table) was used. NMDS construction was

performed in the statistical R program using the “vegan” packages, version 2.3.0, and “labdsv”

version 1.7.0 [63].

Generalized linear models (GLMs) were constructed and tested to identify the variables

that best explain the functional groups’ abundance and richness pattern in the fragments.

Therefore, in order to construct these predictive models, the richness and abundance of the

ecological groups (pioneer and shade-tolerant) were considered as dependent variables and

the levels of carbon, nitrogen, phosphorus, potassium, calcium and magnesium (C, N, K, Ca

and Mg, respectively), clay percentage in the soil (Arg), border percentage with agriculture

(lagri), Euclidean distance of the nearest neighbor (ENN), fragment size in hectares (area),

perimeter-area ratio (PARA), canopy opening (abos) and slope as independent variables (S3

and S4 Tables). We used abundance of each species in each ecological group and average data

of the independent variables in each stratum of each fragment as inputs. Next, 19 possible

models were tested for the abundance of heliophytes and 28 models for the abundance of scio-

phytes in total. Then, 33 models were tested for the richness of heliophilous species, and 27

models for the richness of the sciophilous species (S5 Table).

Using Gaussian data distribution, the models were tested and selected through the second

order Akaike criteria (AICc) generating a rank from the best to the worst model [64]. Models

with ΔAICc values smaller than two (ΔAICc < 2) and of higher AICc weight (AICcWi) were

selected. AICcWi is the selection probability of a given model in the cases of re-sampling the

available data. Verifying the likelihood of the parameters to the selected models was performed

by a chi-squared test (χ2). The analyses of the models were carried out in the R statistical soft-

ware program [63] using the packages “bbmle”, version 1.0.16, and “MuMIn”, version 1.15.1.

Results

A total of 4926 individuals were sampled from trees and palms, and 371 morphospecies were

identified in 58 botanical families for the 14 forest fragments (total sampling area of 3.15 ha)

studied in the Guapi-Macacu Basin. Of the morphospecies, 242 (66.58% of the total) were

identified at the specific level, 61 (16.44%) at the genus level, 36 (9.70%) at the family level and

27 (7.28%) remained undetermined (S1 Table). The richness of the fragments ranged from 50

species to 109 species.

The non-metric multidimensional scaling (NMDS) of the tree species community composi-

tion of the fragments (Fig 2) reflected the tendency of the sites belonging to fragments adjacent
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to the pastures areas to be grouped, predominantly in the lower quadrants of the graph,

whereas the fragments near intensive agriculture are concentrated in the upper quadrants.

Regarding the abundance of the heliophilous species, GLM indicated that the greater extent

of direct edge with agriculture (p< 0.001) and higher slope (p< 0.01) positively affected the

number of individuals, while the higher magnesium levels (p< 0.05) and the increase in the

size of the fragments (p< 0.05) had a negative relation with the number of individuals in this

functional group. Three explanatory models (Table 1) were selected for the abundance of

heliophiles, in which the variables of agriculture border percentage, fragment size, slope and

calcium and magnesium contents were included, and the latter two factors were not significant

by the chi-square test. The predictive model with the highest weight (AICcWi = 0.3167)

showed the agriculture border percentage (p< 0.001) and the slope (p< 0.01) negatively

interact in the abundance and the fragment size (p< 0.1) has a negative effect on heliophile

abundance. The second model (AICcWi = 0.1686) also presented the magnesium content

(p< 0.05) as explanatory, negatively interacting in the number of tree individuals in the helio-

philous group.

Next, four explanatory models were selected for the abundance of the sciophilous species

(Table 2). Only the increase in the area of the fragments presented a positive relation with the

abundance of these shade tolerant species (p< 0.05), while the slope was the only factor that

presented a negative relation with the abundance of individuals in the sciophilous group

(p< 0.05). The agricultural border percentage, phosphorus and calcium content variables

were not significant by the chi-square test in these models.

Two predictive models were selected for the richness of the heliophilous species (Table 3).

Both the higher weight model (AICcWi = 0.3066) and the lower weight model

(AICcWi = 0.1768) indicated calcium (p< 0.01) and soil clay levels (p< 0.001) as positive,

and the greater opening of the canopy (p< 0.001) as negative.

Four models were selected for the richness of the sciophilous species (Table 4), wherein

only the magnesium content showed a positive interaction (p< 0.1), while the higher isolation

factors of the fragment (p< 0.01), the increase in phosphorus levels (p< 0.1) and the higher

slope (p< 0.1) were negative. The highest weight model (AICcWi = 0.1614) only presented

the isolation variable of the fragments (p< 0.05) as explanatory for the species richness of the

Fig 2. Multidimensional non-metric scaling of the structure and composition of the tree species community in

fragments of small (p), medium (m), large (g) and continuous (c) sizes, adjacent to intensive agricultural

environments (A) and pastures (P). Fragments neighboring agricultural fields (IC) are in red and fragments

neighboring cattle grassland (EC) are in black. Stress = 0.11; R2 = 0.966.

https://doi.org/10.1371/journal.pone.0212725.g002
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sciophilous group. In addition to the negative interaction of isolation (p<0.01), the second

model (ΔAICc = 0.1; AICcWi = 0.1522) showed negative interaction with the increase in phos-

phorus content (p< 0.1) and positive interaction with magnesium content (p< 0.1). The

third model (AICcWi = 0.1450) added the terrain slope (p< 0.1) as a negative explanation.

Finally, the fourth model (AICcWi = 0.1241) only presented isolation (p< 0.01) as a negative

factor for sciophyte richness, just as the first model.

Discussion

Impacts of intensive agriculture on functional groups

The predictive model results point to a clear and direct influence of the intensive farming envi-

ronment on the tree community in the forest fragments. This can be observed by the influence

that the greater direct border percentage with agriculture areas has on the abundance of the

functional groups. According to the models, the forest fragments with greater border extension

focused on intensive corn and manioc cultivation are associated with greater pioneer species

abundance and the lowest abundance of sciophilous species. Furthermore, there seems to be

possible indirect impacts caused by the soil eutrophication inside the fragments, possibly due to

the aerial drift of fine particles of the soil which are eventually deposited inside these fragments.

Thus, the direct edge of a forest fragment with an intensive agriculture area has potential impact

on the abundance and richness of the functional groups due to differences in interaction

between functional groups and fertility levels. As indicated by the models, the heliophytes are

benefited by calcium levels and disadvantaged by magnesium levels, while the sciophilous spe-

cies are benefited by magnesium and are disadvantaged by the higher phosphorus levels.

Table 1. Results of the selected GLM models (ΔAICc< 2) to explain the abundance of heliophilous species in the forest fragments of the Guapi-Macacu Basin. The

independent variables, the term used in the model, their respective coefficients (95% CI) and their significance by the Chi-square test (χ2) are specified below the models.

Model/Parameters Term Coefficient χ2

Heliophilous = β0 + β1 agri + β2 area + β3 slope ΔAICc = 0 AICcWi = 0.3167

Intercept Intercept 145.900

Agri border percentage agri 576.40 0.0001708 ���

Fragment size area -0.41 0.0511857 #

Slope slope 1.478 0.0052936 ��

Heliophilous = β0 + β1 Ca + β2 Mg + β3 agri + β4 area + β5 slope ΔAICc = 1.1 AICcWi = 0.2113

Intercept Intercept 165.000

Calcium Ca 56.410 0.110645

Magnesium Mg -138100 0.046768 �

Agri border percentage agri 597.90 6.792e-05 ���

Fragment size area -0.56 0.010340 �

Slope slope 1.623 0.003206 ��

Heliophilous = β0 + β1 Mg + β2 agri + β3 area + β4 slope ΔAICc = 1.3 AICcWi = 0.1686

Intercept Intercept 15.4200

Magnesium Mg -60910 0.22489

Agri border percentage agri 605.70 8.551e-05 ���

Fragment size area -0.49 0.025151 �

Slope slope 1721 0.002357 ��

��� Significant at 0.1%,

�� 1%,

� 5% and #10% probability.

https://doi.org/10.1371/journal.pone.0212725.t001
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Table 2. Results of the selected GLM models (ΔAICc< 2) to explain the abundance of sciophilous species in the forest fragments of the Guapi-Macacu Basin. The

independent variables, the term used in the model, their respective coefficients (95% CI) and their significance by the Chi-square test (χ2) are specified below the models.

Model/Parameters Term Coefficient χ2

Sciophilous = β0 + β1 P + β2 area + β3 slope ΔAICc = 0 AICcWi = 0.2146

Intercept Intercept 7.97E+08

Phosphorous content P -4.46E+07 0.12067

Fragment size area 3.39E-04 0.04164 �

Slope slope -0.78 0.05859 #

Sciophilous = β0 + β1 agri + β2 area + β3 slope ΔAICc = 0.6 AICcWi = 0.1616

Intercept Intercept 6.30E+08

Agri border percentage agri -0.15 0.17479

Fragment size area 0.00 0.02455 �

Slope slope -0.89 0.02994 �

Sciophilous = β0 + β1 Ca + β2 area + β3 slope ΔAICc = 1.8 AICcWi = 0.0857

Intercept Intercept 6.08E+04

Calcium content Ca -1.56E+04 0.44894

Fragment size area 0.3878 0.02050 �

Slope slope -788.1 0.07184.

Sciophilous = β0 + β1 P + β2 agri + β3 area + β4 slope ΔAICc = 2.0 AICcWi = 0.0792

Intercept Intercept 7.71E+08

Phosphorous content P -3.48E+07 0.25275

Agri border percentage agri -1.01E-01 0.38941

Fragment size area 3.34E-04 0.04283 �

Slope slope -7.94E-01 0.05170 #

��� Significant at 0.1%,

�� 1%,

� 5% and #10% probability.

https://doi.org/10.1371/journal.pone.0212725.t002

Table 3. Results of the selected GLM models (ΔAICc< 2) to explain the richness of heliophilous species in the forest fragments of the Guapi-Macacu Basin. The

independent variables, the term used in the model, their respective coefficients (95% CI) and their significance by the Chi-square test (χ2) are specified below the models.

Parameters Term Coefficient χ2

Heliophilous = β0 + β1 Ca + β2 Cano + β3 Clay ΔAICc = 0 AICcWi = 0.3066

Intercept Intercept 15.52

Calcium content Ca 9.04 0.0011481 ��

Canopy opening Cano -0.2094 0.0002689 ���

Clay content Clay 0.2049 0.0005280 ���

Heliophilous = β0 + β1 Ca + β2 Clay + β3 ENN + β4 Cano ΔAICc = 1.1 AICcWi = 0.1768

Intercept Intercept 14.95

Calcium content Ca 8.59 0.0016990 ��

Clay content Clay 0.20323 0.0004671 ���

Isolation ENN 0.01462 0.2013926

Canopy opening Cano -0.24649 0.0001455 ���

��� Significant at 0.1%,

�� 1%,

� 5% and # 10% probability.

https://doi.org/10.1371/journal.pone.0212725.t003
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Among the potential impacts from surrounding agricultural areas on the interior of the

fragments, changes in soil fertility with increased nutrient levels have been widely discussed in

the literature [23,28,29,65]. A recent work [29] showed a trend of soil eutrophication in forest

fragments located in the same study area, with significant increases in calcium, phosphorus

and potassium, while another similar study [65] observed that the higher the fertilizer applica-

tion intensity in agricultural areas, the higher the nutrient content in nearby forest fragments.

The frequent practices of liming and fertilizer use in conventional agriculture fields combined

with soil tilling result in drift and transport of fine soil particles by air, which are deposited in

soil fragments [28,29,65]. The result is a significant increase in nutrient levels in the soils of

nearby forest fragments such as nitrogen [30,65], phosphorus [28,29], calcium and magnesium

[23,29].

The relationship between the abundance and richness of early and late successional species

and the increase in calcium, magnesium and phosphorus nutrient contents found in this study

demonstrate that the enrichment of nutrients in the soils of these fragments by the practices

implemented in their surroundings is a source of important impact in the tree community and

which is still little recognized. This was observed in some studies that identified changes in the

floristic composition of herbaceous leaves at the edges of fragments, possibly due to the large

input of liming particles for soil acidity correction and the use of nitrogenous fertilizers, caus-

ing a dominance of common species in less acidic soils or of nitrophilous species [23,66–69].

Pioneer tree richness is clearly benefited by increased calcium content, while late succes-

sional species are negatively impacted by increased phosphorus content. These nutrients tend

to increase in forest fragments near agriculture areas [23,29,65] due to the common practice of

liming and use of phosphate fertilizers. In addition, phosphorus has low mobility in the soil,

Table 4. Results of the selected GLM models (ΔAICc< 2) to explain the richness of sciophilous species in the forest fragments of the Guapi-Macacu Basin. The

independent variables, the term used in the model, their respective coefficients (95% CI) and their significance by the Chi-square test (χ2) are specified below the models.

Model/Parameters Term Coefficient χ2

Sciophilous = β0 + β1 ENN ΔAICc = 0 AICcWi = 0.1614

Intercept Intercept 13.81

Isolation ENN -0.04222 0.01327 �

Sciophilous = β0 + β1 P + β2 Mg + β3 ENN ΔAICc = 0.1 AICcWi = 0.1522

Intercept Intercept 15.42

Phosphorous content P -60910 0.063508 #

Magnesium content Mg 605.70 0.083546 #

Isolation ENN -0.49 0.004779 ��

Sciophilous = β0 + β1 Mg + β2 ENN + β3 slope ΔAICc = 0.2 AICcWi = 0.1450

Intercept Intercept 14.4

Magnesium content Mg 13.73 0.07294 #

Isolation ENN -0.04262 0.00850 ��

Slope Slope -0.15919 0.06733 #

Sciophilous = β0 + β1 P + β2 ENN ΔAICc = 0.5 AICcWi = 0.1241

Intercept Intercept 18.06

Phosphorous content P -0.814630 0.165476

Isolation ENN -0.04613 0.006773 ��

��� Significant at 0.1%,

�� 1%,

� 5% and

# 10% probability.

https://doi.org/10.1371/journal.pone.0212725.t004
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which can cause accumulation, and consequently lead to eutrophication of the system over

time [29]. Although magnesium content has a positive relationship with the richness of scio-

phytes, the previous results found in this same study area [29] did not indicate significant

increases of this nutrient in the fragments, which is the opposite of that found for calcium and

phosphorus, as previously mentioned.

Thus, continuous additions of nutrients over long periods may have significant impacts on

species composition of the forest community of forest fragments [37] close to conventional

agricultural crops, altering the composition and structure of the functional groups of the tree

community. Natural ecosystem plants are adapted to conditions with limited availability of

nutrients, maintaining a certain balance of adjustment to local fertility characteristics [36,37].

Thus, soil fertility conditions in tropical forests limit plant growth and establishment, therefore

constituting an important determinant of functional diversity on a local, landscape and

regional scale [30,32,37].

Some recent long-term studies have investigated the primary productivity response of trop-

ical rainforest trees to adding nutrients to the soil [37–41], demonstrating that even in soils rel-

atively rich in exchangeable bases (K+, Ca2+, Mg2+ and Na+) and in nitrogen and phosphorus,

some species and functional groups respond strongly to the addition of these elements and

potassium. However, the impact in regions with lower fertility such as in the areas of this study

may be more intense, since these regions tend to have more specialized flora when compared

to regions with higher fertility, which have a greater number of fast-growing and more gener-

alist tree species [32,37]. The literature demonstrates that fast-growing species are generally

more abundant in naturally nutrient-poor soils [33,43]. This is because the availability of nutri-

ents is not a limiting factor for pioneering and fast growing plants as their wood is low density,

which does not require a high investment in nutrients [35,43]. Therefore, pioneer species seed-

lings are more efficient in nutrient consumption, being able to out-compete shade tolerant

species in competitive environments [70].

Thus, constant deposition of nutrients in the forest fragment soils of this study may be cre-

ating a conducive environment for the proliferation of pioneer tree species. The fragments

within the pasture environment showed the highest IV values for the sciophilous species (S1

Table), which helps to explain the observed grouping of these fragments in the ordering analy-

sis. Thus, it is possible to observe that the pioneer or secondary heliophilous species may be

benefiting in the fragments within an intensive agriculture environment, where the effects of

nutrient drift are greater. When analyzing the two functional groups (heliophilous and scio-

philous), it is possible to observe that fast growing pioneer species generally present higher

rates of primary production in response to nutrient increase [4,70,71].

However, despite the influence of changes in soil fertility demonstrated in the results of our

study, this variable does not solely explain the composition of the functional diversity in the

fragments. The environment can affect the composition of the species in two ways: firstly by

edge effects, which are more intense when the environmental matrix is agricultural, changing

the chemical characteristics of the soil and creating direct impacts on the microclimate; and

second, by factors that hinder the recruitment of late successional species by reducing propa-

gule flow [4,14,72–74].

Agriculture areas may also impact shade tolerant species by influencing the connectivity

between the fragments, as they may be a more hostile environment for the movement of polli-

nators and dispersers [14,75], reducing seed flows [74]. Changes in the number of individuals

of some species due to decreased seed dispersal can cause local extinctions over time [74],

making it difficult to maintain viable populations. In addition, more intensive use in agricul-

tural areas may create unfavorable microclimatic conditions to the floristic community [76],

and may contribute to the impact on the abundance of some shade tolerant species.

Impacts of intensive agriculture on functional groups of the tree community of forests fragments

PLOS ONE | https://doi.org/10.1371/journal.pone.0212725 August 1, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0212725


Other impacts on functional groups

The higher abundance of sciophilous species was dependent on the fragment size, being the

only factor that positively influences the abundance of this group. On the other hand, the

abundance of pioneer species is greater in smaller fragments, which is directly related to the

fact that these smaller fragments are subject to greater intensity of edge effects [22,77]. The

fragment size is not solely the main factor for tree species abundance. Its indirect effect is

related to other associated factors such as edge effects, the characteristics of the landscape

matrix and the isolation between the fragments [8,77,78].

The impact of abrupt edge creation by the fragmentation process for tree communities has

been widely discussed, resulting in the elevation in mortality rates and changes in the recruit-

ment dynamics of later successional trees at the edges of fragments [17,76,79], and even in the

interior of small fragments [26], benefiting pioneer and generalist species [17,19].

Despite the significant effect on abundance, the species richness for the two functional

groups was not affected by the fragment size. For richness, the soil characteristics (fertility lev-

els and clay content), the canopy opening, the slope and isolation degree of the fragments are

more important. Plant diversity is highly related to soil fertility and grain size characteristics

[30,32,80], and these two factors are strongly correlated as previously discussed. A higher clay

content in the soil allows more bonds, which provides greater nutrient availability [31,32].

Along these lines, flatter lands have a higher amount of clay coming from higher lands and

deposited in these lower areas [31,32], which in turn also results in higher levels of soil fertility.

In addition to the influence on soil fertility, the slope of the terrain may make it difficult to

maintain sciophilous species in two ways; firstly, because the recruitment of these species is

difficult as they usually have large seeds which may present greater difficulties in establishment

in very sloped areas; secondly, greater slope is associated with tree falling and mortality of

large trees, since they present greater difficulty to remain fixed in these areas [32,43]. These sit-

uations explain the difficulty in maintaining the seedling recruitment of slow growing species,

showing the positive influence of this factor on the abundance of pioneer species, and a nega-

tive relation with the abundance and also richness of sciophilous species.

The higher degree of isolation of the fragments did not influence the abundance of the spe-

cies of the two ecological groups, but was one of the explanatory variables for the richness of

late successional species, being more important than the fragment size [8,77]. As already dis-

cussed, this factor leads to reductions in seed flow, decreasing the chances of seed dispersal

due to longer distances between fragments [4,72]. Initial successional species have an advan-

tage in seed dispersion because they produce a greater quantity of seeds and generally their

seeds are dispersed by wind or generalist animals [51]. On the other hand, late successional

species generally produce larger seeds dispersed by specialist animals [15], making it harder

for gene flows between more isolated fragments.

Finally, unlike what is expected, the larger canopy opening only had a negative influence on

the richness of heliophilous species. This result differs from that expected, since greater abun-

dance and diversity of light-loving species are expected for germination and growth in great

clearings [34,81]. However, areas with larger canopy openings may have a lower species rich-

ness (even of heliophiles) due to different disturbances, regardless of soil fertility. This is also

related to factors of the natural dynamics of succession in gaps, which may be totally different

in small and large gaps. Even if there is a small opening created in the canopy from the falls of

some trees or branches, regeneration will not necessarily be occupied by pioneer species [34].

The study sought to show the direct and indirect impacts of agriculture on the functional

diversity of trees in forest fragments of the Atlantic Forest. In addition to the well-known edge

effects, we tried to show that agricultural practices have an effect that has not yet been studied,

Impacts of intensive agriculture on functional groups of the tree community of forests fragments
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such as changes in soil fertility of natural forest ecosystems and their implications on biodiver-

sity. The use of an expressive number of forest fragments for comparing the intensive agricul-

ture and pastures in the surroundings demonstrated that the conventional intensive

agriculture can imply in a regression in the forest succession, either directly by the edge effects

and alteration in soil fertility, and/or indirectly by the possible impact on the flows of dispers-

ing and pollinating animals. However, as already shown, multiple factors negatively affect for-

est succession. In addition to the matrix effect, the fragmentation effects (size, isolation) and

local variables (slope, canopy, clay content) cannot be ignored in this process [35].

Thus, forest fragments immersed in an agricultural matrix and exposed to conventional

and intensive agriculture practices may be conditioned to a reduction in tree species diversity

through the replacement of late successional species by pioneer species. Late successional spe-

cies are responsible for most of the natural regeneration and the high diversity in mature tropi-

cal forests [19,36], and show a tendency to be restricted to areas with no edge effects reaching

them, such as in interiors of large fragments and fragments with little isolation. Thus, the dis-

cussion of conservation in agricultural production landscapes should take into account that it

is necessary to develop and encourage agricultural practices which are less impactful on biodi-

versity, in addition to the demand for maintaining large areas of natural remnants which is

essential for some species. This is important to reduce the direct impacts caused by edge

effects, such as the change in the fertility characteristics of the soils, and the impacts that the

matrix quality can imply on the population flows between the fragments [22].

Conclusion

This study indicates that the intense adoption of chemical inputs for fertilization in agricul-

tural areas causes concrete impacts on the tree functional groups of forest fragments. This

study shows that increasing soil fertility of forest fragments adjacent to intensive agriculture

areas causes impacts on both abundance and functional groups richness of the tree commu-

nity. The increase in phosphorus levels may cause a decrease in the richness of shade tolerant

species, while the pioneers benefit from increased calcium levels and the impacts inherent to

forest fragmentation such as size reduction and fragment isolation. In this way, a continuous

increase in the populations of pioneer species may be causing a regression in the successional

stage of these remnants. The ecological intensification of agriculture is a challenge and an

emergency for fragmented agricultural landscapes, where the need for biodiversity conserva-

tion policies and ecosystem services must be linked to agricultural production. This under-

scores the demand for policies which support developing more conservation-oriented

agricultural production strategies, and indicates potential negative externalities of adopting

strategies based on the conventional and intensive agricultural system in the tropics, which are

generally not considered.
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comunidade arbórea em fragmentos de uma paisagem agrı́cola. Pesqui Agropecu Bras. 2016; 51

(9):1120–1130.

30. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M. Soil nutrients influence spatial distri-

butions of tropical tree species. Proc Natl Acad Sci. 2007; 3(104):864–869.

31. Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-De Merona JM, et al.

Relationship between soils and Amazon forest biomass: A landscape-scale study. For Ecol Manage.

1999; 118(1–3):127–138.

32. Laurance SGW, Laurance WF, Andrade A, Fearnside PM, Harms KE, Vicentini A, et al. Influence of

soils and topography on Amazonian tree diversity: A landscape-scale study. J Veg Sci. 2010; 21(1):96–

106.

33. Gourlet-fleury S, Rossi V, Rejou-mechain M, Freycon V, Cornu G, Ge J, et al. Environmental filtering of

dense-wooded species controls above-ground biomass stored in African moist forests. J Ecol. 2011;

(99):981–990.

34. Bentos Tony Vizcarra, Nascimento HEM, Vizcarra MA, Williamson GB. Forest Ecology and Manage-

ment Effects of lightgaps and topography on Amazon secondary forest: Changes in species richness

and community composition. For Ecol Manage. 2017; 396:124–31.

35. Becknell JM, Powers JS. Stand age and soils as drivers of plant functional traits and aboveground bio-

mass in secondary tropical dry forest. 2014; 613:604–613.

36. Martins KG, Marques MCM, Santos E dos, Marques R. Forest Ecology and Management Effects of soil

conditions on the diversity of tropical forests across a successional gradient. For Ecol Manage. 2015;

349:4–11.

37. Wright SJ, Yavitt JB, Wurzburger N, Turner BI, Tanner EVJ, Sayer EJ, et al. Potassium, phosphorus, or

nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology. 2011;

92(8):1616–1625. PMID: 21905428

38. Santiago LS, Wright SJ, Harms KE, Yavitt JB, Korine C, Garcia MN, et al. Tropical tree seedling growth

responses to nitrogen, phosphorus and potassium addition. J Ecol. 2012; 100(2):309–316.

39. Mayor JR, Wright SJ, Turner BL. Species-specific responses of foliar nutrients to long-term nitrogen

and phosphorus additions in a lowland tropical forest. J Ecol. 2014; 102(1):36–44.

40. Alvarez-Clare S, Mack MC. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect

nutrient limitation in a lowland tropical wet forest? PLoS One. 2015; 10(4):1–16.

41. Vitousek PM, Porder S, Houlton BZ, Chadwick OA. Terrestrial phosphorus limitation: Mechanisms,

implications, and nitrogen-phosphorus interactions. Ecol Appl. 2010; 20(1):5–15. PMID: 20349827

42. Sardans J, Penuelas J. The Role of Plants in the Effects of Global Change on Nutrient Availability and

Stoichiometry in the Plant-Soil System. Plant Physiol. 2012; 160(4):1741–1761. https://doi.org/10.

1104/pp.112.208785 PMID: 23115250

43. Toledo JJ de, Magnusson WE, Castilho C V, Nascimento HEM. Forest Ecology and Management How

much variation in tree mortality is predicted by soil and topography in Central Amazonia? For Ecol Man-

age. 2011; 262:331–338.

44. Resende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, et al. From hotspot to

hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv. 2018; 16:208–214.

45. Joly CA, Metzger JP, Tabarelli M. Tansley review Experiences from the Brazilian Atlantic Forest: eco-

logical findings and conservation initiatives. New Phytol. 2014; 204:459–473. https://doi.org/10.1111/

nph.12989 PMID: 25209030

46. Swaine MD, Whitmore TC. On the definition of ecological species groups in tropical rain forests. Vege-

tatio. 1988; 75:81–86.

47. Spasojevic MJ, Harline K, Stein C, Mangan SA, Myers JA. Landscape context mediates the relationship

between plant functional traits and decomposition. 2019; 438:377–391.

48. Fidalgo ECC, Pedreira B da CCG, Abreu MB de, Moura IB de, Godoy MDP. Uso e Cobertura da Terra
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