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Summary

MicroRNAs (miRNAs) modulate the abundance and spatial-temporal accumulation of target
mRNAs and indirectly regulate several plant processes. Transcriptional regulation of the genes
encoding miRNAs (MIR genes) can be activated by numerous transcription factors, which
themselves are regulated by other miRNAs. Fine-tuning of MIR genes or miRNAs is a powerful
biotechnological strategy to improve tolerance to abiotic or biotic stresses in crops of
economic importance. Current approaches for miRNA fine-tuning are based on the down- or
up-regulation of MIR gene transcription and the use of genetic engineering tools to
manipulate the final concentration of these miRNAs in the cytoplasm. Transgenesis, cisgenesis,
intragenesis, artificial MIR genes, endogenous and artificial target mimicry, MIR genes editing
using Meganucleases, ZNF proteins, TALENs and CRISPR/Cas9 or CRISPR/Cpf1, CRISPR/dCas9
or dCpf1, CRISPR13a, topical delivery of miRNAs and epigenetic memory have been
successfully explored to MIR gene or miRNA modulation and improve agronomic traits in
several model or crop plants. However, advantages and drawbacks of each of these new
biotechnological tools (NBTs) are still not well understood. In this review, we provide a brief
overview of the biogenesis and role of miRNAs in response to abiotic or biotic stresses, we
present critically the main NBTs used for the manipulation of MIR genes and miRNAs, we
show current efforts and findings with the MIR genes and miRNAs modulation in plants, and
we summarize the advantages and drawbacks of these NBTs and provide some alternatives to
overcome. Finally, challenges and future perspectives to miRNA modulating in important crops

miRNA modulation. are also discussed.

Background

Plants are constantly challenged by numerous adverse conditions
that modulate their evolution (Crisp et al., 2016). Plant responses
to stresses involve a broad regulation of numerous genes,
interfering with several agronomic traits, such as plant growth
and productivity (Hackenberg et al., 2015; Yi et al.,, 2015).
Understanding these mechanisms is important for the develop-
ment of biotechnological tools to improve desirable agronomic
traits (Teotia et al., 2016; Zhang, 2015).

MicroRNAs (miRNAs) are short (21-24 nucleotide) RNAs that
modulate the amount and spatial-temporal accumulation of
target mRNAs and indirectly interfere with several plant path-
ways. These molecules are derived from noncoding RNAs arising
from the gene expression of miRNAs (MIR genes). MIR gene
transcription can be activated by numerous transcription factors
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that can be regulated by another set of miRNAs. In addition, MIR
genes or their transcripts are often regulated by other miRNAs.

Several types of abiotic or biotic stresses alter MIR gene
expression profiles, modulating the accumulation of miRNAs and
consequently of the targeted mRNAs (Ferdous et al., 2015;
Hackenberg et al., 2015). In plants, miRNA targets form a broad
group of genes involved in numerous biological processes,
including development and defence responses to pathogens,
insects and environmental stresses (Hackenberg et al., 2015; Yi
et al., 2015). The modulation of target gene expression by
miRNAs may occur at the transcriptional (site-specific DNA
methylation mediated by miRNAs) and posttranscriptional (by
mRNA degradation, translational inhibition or RNA deadenyla-
tion) levels (Borges and Martienssen, 2015). Stress-associated
regulatory networks involving the activity of miRNAs are poorly
understood, and unravelling such mechanisms is further
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complicated by the fact that one miRNA may regulate several
genes and that some genes may be regulated by multiple
miRNAs.

The understanding of the complexity of MIR genes has rapidly
increased as a consequence of next-generation sequencing (NGS)
and degradome sequencing technologies, as well as the exploita-
tion of bioinformatics tools, open-source miRNA databases and
stem-loop real-time RT-PCR. The constitutive, tissue-specific, or
stress- or senescence-induced overexpression of specific MIR
genes has been shown to improve desired agronomic traits in
different plant species (Dong and Pei, 2014; Hajyzadeh et al.,
2015; Ni et al, 2012; Trumbo et al., 2015; Zhang, 2015). In
addition, artificial MIR genes, endogenous and artificial target
mimicry, Meganucleases, ZNFs, TALENs, CRISPR/Cas9, CRISPR/
Cpf1 or CRISPR/Cas13a systems, and pri-miRNA or mature miRNA
topical delivery have been shown to be useful for modulating
miRNA accumulation.

Plant small RNA biogenesis: a brief overview

RNA interference (RNAI) in plants is a well-known mechanism that
controls genome stability and epigenetic reprogramming, plant
development, reproduction, defence responses and several other
biological processes by regulating gene expression. Small inter-
fering RNAs (siRNA) and miRNA are the two main small RNA
(SRNA) classes involved in this regulation. The sRNAs are derived
from single- or double-strand RNA (ss- or dsRNA) intermediates
that form hairpin-like precursors and are subsequently processed
by four DICER-LIKE proteins (DCL1 to 4; reviewed by Borges and
Martienssen, 2015).

miRNAs originate from species- or family-specific noncoding
RNAs transcribed from introns, exons or intergenic regions. MIR
genes are generally transcribed by RNA polymerase II, originating
the primary miRNA transcripts (pri-miRNAs) that contain imper-
fect and self-complementary foldback regions. Following 5’ m’G-
cap addition and 3’ polyadenylation, pri-miRNAs are converted
into miRNA precursor sequences (pre-miRNAs) by DCL1 and other
associated proteins (Borges and Martienssen, 2015). Pre-miRNAs
are exported from nuclear Cajal bodies to cytoplasmatic P-bodies
by HASTY protein and then processed by DCL1-4 to generate
miRNA duplexes of typically 21-24 nucleotides in length. Differ-
ent DCLs can process a single pre-miRNA, producing miRNA
molecules of distinct sizes, for example, DLC1 and DCL4 of 21
nucleotides, DCL2 of 22 nucleotides and DCL3 of 24 nucleotides
in length. These duplex miRNAs are 2’-O-methylated at both 3'-
ends by HUA ENHANCER 1 (HEN1), protecting the miRNAs from
the uridylation and degradation initiated by the nucleotidyl
transferases HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA uridy-
lyltransferase 1 (URT1) (Tu et al., 2015). Then, mature miRNAs
(miRNA-5p or miRNA-3p strand) are loaded onto Argonaute
(AGO) proteins and incorporated into a RNA-induced silencing
complex (RISC), while miRNA star (miRNA*) molecules are most
often degraded, although under certain circumstances these
products might also be loaded onto AGO and complexed into a
RISC. The miRNA-associated AGO scans RNA molecules for
sequence or near-perfect sequence complementarity and pro-
motes posttranscriptional gene silencing (PTGS) by catalysing the
endonucleolytic cleavage, translation inhibition or deadenylation
of the RNA target. Furthermore, Arabidopsis 24-nucleotide
miRNAs associate with AGO4, AGO6 and AGO9 to mediate the
transcriptional gene silencing (TGS) of target genes through RNA-
directed DNA methylation (RADM) (Borges and Martienssen,
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2015; Figure 1). In addition, miRNA compartmentalization has
been described in plants. For example, in Arabidopsis, miR390,
AGO7 and TAS3 transcripts are complexed into cytoplasmic
siRNA bodies that function in the biogenesis of TAS3-derived
trans-acting siRNA (Martinez de Alba et al., 2015).
Posttranscriptional gene silencing can be amplified when target
RNAs are cleaved and recognized by RNA-dependent RNA
polymerase (RDR) proteins, resulting in the de novo formation
of dsRNA molecules, which are processed by DCLs into secondary
SRNAs. These secondary sRNAs accumulate in the cytoplasm and
can move cell-to-cell through plasmodesmata, constituting the
systemic silencing signal (Borges and Martienssen, 2015).

The role of miRNA in plant abiotic or biotic
stress responses

Abiotic stresses, such as water deficit, salinity, low temperature,
high temperature, heavy metal exposure, nutritional deprivation
and high light intensity, as well as biotic stresses, such as viruses,
bacteria, fungi, nematodes and insects, are major constraints to
crop production worldwide. Throughout their evolution, plants
have improved and developed mechanisms to respond and adapt
to stressful conditions, including pathways in which miRNAs play
a critical role in promoting stress tolerance (Shriram et al., 2016).
MIR genes are up- or down-regulated in response to abiotic
(reviewed by Ferdous et al., 2015; Hackenberg et al., 2015) and
biotic stresses (Gupta et al., 2014) in numerous species, including
soya bean, sugarcane, rice, maize, wheat and tomato. Studies on
the expression or accumulation of these miRNAs have provided
several lines of evidence to better understand the regulatory
networks associated with defence mechanisms against different
types of stresses. From these findings, several biotechnological
tools have been applied for fine-tuning these networks and
improving tolerance to stresses in important crops (Table 1).

The overexpression, up- or down-regulation or knock-in of
transcribed MIR gene sequences has confirmed the involvement
of miRNAs in stress responses in different plant species. For
example, MIR gene overexpression with constitutive promoters
(e.g. Cauliflower mosaic virus (CaMV) 35S, maize ubiquitin 1 and
rice actin 1) has produced desirable agronomic traits, such as
drought, cold, heat and salinity tolerance and resistance to
pathogens (Table 1). Additional examples of patented inventions
using miRNA overexpression include improved resistance to cyst
nematodes (miR164 and miR396; W02012058266 A1 and
WO02012149316 A2), tolerance to drought (miR166;
CN102250903A) and salinity (miR397; W02007103767 A2),
artificial MIR genes (US8536405 B2, W(02009079548 A3) and
target mimicry (EP2873735 A1, W02012056401A1).

However, strong constitutive overexpression often causes
undesirable pleiotropic effects because miRNAs are frequently
involved in the regulation of a number of miRNAs (Ferdous et al.,
2017). The overaccumulation of certain miRNAs alters the
expression of essential target genes involved in plant develop-
ment, which may produce undesirable phenotypes (Trumbo
et al., 2015). Greater target specificity can be achieved with
overexpression driven by tissue-specific (Niu et al., 2016) or
stress-inducible (Gao et al., 2015) promoters. Additional strate-
gies include the overexpression of target mRNAs that are resistant
to specific miRNAs (Guan et al., 2013), the expression of artificial
target mimics that can cancel out the effect of endogenous
miRNA activity (Sharma et al.,, 2016) and the expression of
artificial MIR gene targeting only the desired mRNAs (Agrawal
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Figure 1 Overview of the miRNA pathway in Arabidopsis thaliana. In brief, MIR genes are transcribed by RNA polymerase Il in the nucleus, and their primary
transcripts are processed by the addition at 5’ terminus of a 7-methyl guanosine cap, 3’ polyadenylated and RNA spliced. Then, the transcripts fold into
primary miRNAs (pri-miRNAs), which are quickly processed by DICER-LIKE 1 (DCL1), supported by zinc-finger protein SERRATE (SE), a dsRNA-

binding protein thatinteracts with DCL1 (HYL1) and other molecular factors, generating the precursor miRNAs (pre-miRNAs) in Cajal bodies. Then, pre-miRNAs
are nucleus—cytoplasm transported by HASTY (HST) to P-bodies. Next, the pre-miRNAs are processed by DCL1 to DCL4 originating mature miRNA duplexes
of 21-24 nucleotides (nt) in length, which are immediately methylated by HUA ENHANCER1 (HEN 1) at the 3’ terminus. The double-strand miRNA is separated,
and single-strand mature miRNA isintegrated into RNA-induced silencing complex (RISC), while the strand complementary to the mature miRNA (miRNA star) is
degraded or “reactivated” and integrated into the RISC. Mature miRNAs of 21-23 nt in length associated with HEN SUPPRESSOR 1 (HESO1),

UTP:RNA uridylyltransferase 1 (URT1), Heat Shock Protein 90 (HSP90), Argonaute proteins 1to 10 (AGO1 to 10) and other molecular factors are integrated into
the RISC, which successively scans all cytoplasmic messenger RNAs (mRNA) mainly based on sequence homology. MiRNAs act in posttranscriptional

gene silencing (PTGS) by mediating target mRNA cleavage, decapping or deadenylation by AGO1 to 10 proteins or engage in translation and elongation
repression. Additionally, miRNAs of 24 nt in length are complexed with AGO4 and directed to the nucleus, acting on RNA-directed DNA methylation
(RADM), subsequently inducing transcriptional gene silencing (TGS). Thus, MIR genes can undergo TGS driven mainly by 24-nt miRNAs, and this methylation is
stabilized and maintained by heterochromatic siRNAs (hetsiRNAs). SMALL RNA DEGRADING NUCLEASE 1 to 3 (SDN1 to 3) functions in the turnover of
mIiRNA-5p or miRNA-3p before it is directed to the RISC. Finally, miRNAs produced and accumulated in single cells can be systematically moved (cell-to-cell) by
the vascular system comprising phloem and xylem and spreading to adjacent cells (reviewed by Borges and Martienssen, 2015).

activities of miRNAs (Table 1). More recently, genome-editing
technologies based on the CRISPR/Cas9 or CRISPR/Cpf1 system
have revealed new insights into miRNA fine-tuning, which has

et al., 2015). Jian et al. (2017) reported a new method for miRNA
overexpression or knock-down based on a viral vector (Barley
stripe mosaic virus) that can be used as a probe to investigate the
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been employed in the editing (Zhou et al., 2017) or transcrip-
tional regulation (Lowder et al., 2015; Tang et al., 2017) of MIR
genes. Next, we present and discuss the advantages and
limitations of each of these strategies.

Biotechnological approaches to fine-tuning of
miRNA activity

Transgenesis, cisgenesis and intragenesis

The transference of one or more MIR genes between noncross-
able plant species (transgenesis) or between crossable or the
same species (cisgenesis and intragenesis) has been successfully
performed in several plant species (Table 1). In addition, concep-
tually, any element used in T-DNA can be engineered to enhance
transgene expression, or the same native sequence can be used to
maintain the original cisgene features. Unlike cisgenesis, intrage-
nesis employs hybrid sequences (optimized genes and/or

(a) Artificial MIR gene
Promoter amiRNA gene
) — &

m7G . RNA polymerase ||
Primary amiRNA
AAAA SE
¥ QHYU

Precursor amiRNA EEEEEEEEEEEEO

Mature amiRNA duplexes um—ﬁ“’ HEN1
@ HST
amiRNA 21-24-nt————CHs
AGO1-10
RISC complex URT1 HESO1 HSP90
e N
CH;LLTT
mRNA target
AGO1-10
URT1 HESO1
PTGS
Phenotype
(b) Target mimicry
Promotera Target MIMIC gene
Target MIMIC ’ RNA polymerase ||
transcript —
’ Splicing
MIMIC mRNA mZG AAAA
Natural miRNAs CH,
AGO1-10
URT1 HEsSO1 HSP90
RISC complex '
m7G AAAA
MIMIC mRNA CH,LLLLL
AGO1-10
URT1 HESO1
Natural mRNA
m7G ——————  —AAAA PTGS

Natural mRNA
degradation decay

Reduced natural
miRNA level

Phenotype
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additional promoter and terminator sequences) from sexually
compatible species (Holme et al., 2013). For example, strong
constitutive (mostly CaMV 35S), strong endogenous (Lu et al.,
2010; Yang et al, 2013) or native tissue-specific or stress-
induced (Niu et al., 2016) promoters were exploited to overex-
press MIR genes (Table 1). However, the manipulation of MIR
genes using any of these strategies, especially overexpression
driven by a strong promoter, has also resulted in undesirable
traits, such as pleiotropic phenotypes (Table 1). This result can be
explained by the involvement of miRNAs in diverse and complex
regulatory networks. Strong overexpression impairs the fine-
tuning of several biological pathways, which might be overcome
using specific promoters (e.g. tissue-specific, stress-induced or
developmental stage-specific promoters).

Artificial MIR genes

Currently, various strategies exploit PTGS to down-regulate or
uncover the functions of specific genes (Figure 2a). These
approaches are primarily based on the accumulation of siRNAs
derived from dsRNAs using a virus-induced gene silencing model
(VIGS) and by the constitutive overexpression of an engineered
target gene (full or partial length) in the antisense or sense/
antisense orientation. However, these approaches produce a
diverse set of siRNAs that might potentially silence nontarget
genes (resulting in off-target effects). To overcome this problem,
an artificial MIR gene (amiRNA) strategy was developed to
produce specific miRNAs and effectively silence target genes
(Zhang et al,, 2018a). These amiRNAs have a conserved sec-
ondary foldback structure similar to that of a typical pre-miRNA.
Nonetheless, the original miRNA-5p:miRNA-3p sequence is
replaced by an engineered miRNA targeting a specific mRNA.
Thus, amiRNAs can be engineered to target any mRNA with
higher specificity compared to strategies based on dsRNA
overexpression or siRNA accumulation. Pre-amiRNA processing
typically results in a single amiRNA targeting for a known
sequence, thus helping to avoid off-target effects. In addition, the

Figure 2 Constitutive or transient expression of (a) artificial MIR genes to
accumulate artificial miRNA (amiRNA) and the depletion of the target
mRNA (Zhang et al., 2018a). In brief, the amiRNA gene under the control
of a typical promoter is transcribed by RNA polymerase Il in the nucleus,
and primary transcripts are similarly processed to canonical miRNAs,
originating primary amiRNA (pri-amiRNA). The pri-amiRNA is processed by
DCL1, SE and HYL1, originating precursor amiRNA (pre-amiRNA), which
are processed again preferentially by DCL1, resulting in the increased
accumulation of 21-nt amiRNA duplexes. However, it is not yet clear
whether DCL2-4 also acts on this pre-amiRNA. Niu et al. (2006) showed
that DCL1 development has a major effect on pre-amiRNA. However,
DCL1 knockout plants (dc/7) also showed the accumulation of these 21-nt
amiRNAs, although comparatively low accumulation was observed. This
finding may suggest that DCL2-4 can also act in pre-amiRNA processing.
Then, these 21-nt amiRNAs are methylated by HEN1, which subsequently
undergoes nucleus—cytoplasm transport by HST to P-bodies and becomes
integrated into the RISC, where it will act in @ manner similar to canonical
miRNAs on PTGS. (b) Target mimicry strategy to deplete specific miRNAs
(Peng et al., 2018; Zhang et al., 2017). The constitutive or transient
expression of the target mimic gene driven by a specific promoter is
transcribed by RNA polymerase Il in the nucleus. The primary transcripts
are processed with the addition at 5’ terminus of a 7-methyl guanosine
cap, 3’ polyadenylation and RNA splicing, originating primary mimic
mRNA, which is then transported to the cytoplasm, thereby depleting the
miRNAs.

© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1482-1500
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systemic movement of these mature amiRNAs is restricted in
some cases (Carlsbecker et al.,, 2010), and the production of
secondary siRNAs from pre-amiRNA sequences is very limited
(Manavella et al., 2012). Furthermore, amiRNAs are stable and
inheritable. The main drawbacks of this strategy are the selection
of backbone or pre-amiRNA sequences for effective silencing
without any off-target effects (Carbonell et al., 2015). For major
target specificity, mature amiRNAs must have low sequence
similarity with nontarget genes (Zhang et al., 2018a).

In addition to the control of endogenous gene expression and
the study of the role of new MIR genes, an amiRNA strategy has
also successfully been used to knock out genes from insect pests,
nematodes, viruses and other phytopathogens (Kis et al., 2016;
Wagaba et al., 2016). Similarly, Arabidopsis expressing two
amiRNAs targeting the mRNA of the P69 and HC-Pro proteins
showed resistance to Turnip yellow mosaic virus and Turnip
mosaic virus, respectively (Niu et al., 2006). Agrawal et al. (2015)
showed that tobacco overexpressing an engineered amiRNA was
resistant to Helicoverpa armigera.

Ju et al. (2017) developed a new overexpression system for
artificial and endogenous miRNAs and siRNAs based on delivery
from a viral satellite DNA vector for functional analysis in plants.
This viral system generated promising results for the overexpres-
sion of endogenous or artificial MIR gene, siRNAs and trans-
acting siRNAs in Nicotiana benthamiana.

Endogenous and artificial target mimicry

Similar to the overexpression of MIR genes, the negative
regulation of the accumulation of some specific miRNAs allows
the achievement of desirable agronomic characteristics. Endoge-
nous target mimicry (eTMs) is another natural mechanism
involved in modulating miRNA accumulation, controlling several
biological processes in plants (Karakilah et al., 2016; Lin et al.,
2015). These eTMs are innumerous long noncoding RNA (IncRNA)
or circular noncoding RNAs (circRNAs) transcribed from genome
and differential expressed usually in response to stresses or other
adverse conditions (Karakulah et al.,, 2016; Liu et al., 2017). It
acts as natural SPONGES mainly for quick fine-tune of miRNAs in
plant response or adaptation to a new condition. To reproduce
this mechanism, an artificial short tandem target mimic (STTM)
strategy was developed to modulate miRNAs accumulation and
improve desirable agronomic traits. This strategy is based on the
transient or constitutive overexpression (driven by constitutive,
tissue-specific or induced promoters) of an engineered IncRNA
with high nucleotide sequence identity to target mRNA (Reichel
and Millar, 2015; Figure 2b). Similarly, the overexpression of
synthetic circRNA is also suggested as potential alternative for
miRNA modulation in plants. These STTMs contain two or more
conserved binding site for the specific target miRNA, but with
three nucleotide mismatches at the miRNA-cleavage site, which
prevent its cleavage, whereas the miRNA remains hybridized and
biologically inactivated. Thus, STTM sequester miRNAs from the
endogenous target mRNA resulting in its up-regulation (Franco-
Zorrilla et al.,, 2007). Several STTMs targeting the MIR genes in
model and crop plants have been recently engineered and
constitutively expressed as transgenes for the comprehensive
functional analysis of miRNAs (Peng et al., 2018; Zhang et al.,
2017). In addition, STTMs have been optimized to enhance loss-
of-function phenotypes caused by artificial single target mimics.
Similarly, miRNA SPONGES are another synthetic transcript
produced from transgenes with activity similar to STTMs. These
RNAs SPONGES contain multiple miRNA binding sites in tandem

repeated and are often used to inhibit whole families of related
miRNAs in both plant and animal systems (Reichel et al., 2015;
Thomson and Dinger, 2016). For example, Jiang et al. (2018)
improved tomato resistance to Phytophthora infestans using a
STTM strategy to silence miR482b from Solanum lycopersicum.

MIR gene editing using endonucleases

Meganucleases and zinc-finger proteins (ZNFs) were the first
endonucleases engineered for plant genome editing. Meganu-
cleases recognize double-strand DNA sequences of 12-42
nucleotides in length in a highly specific manner, consequently
restricting the number of targets. In contrast, ZNFs consist of two
modules of tandem repeat DNA-binding domains flanking the
Fokl nuclease catalytic domain (Osakabe and Osakabe, 2015).
Each of these domains recognizes a unique nucleotide triplet,
while each module has specificity for >24 nucleotides. Similar to
ZNFs, transcription activator-like effector nucleases (TALENS)
comprise two modules of tandem repeat DNA-binding motifs
flanking a Fokl motif. However, each TALEN DNA-binding motif
recognizes a single nucleotide. Recently, clustered regularly
interspaced short palindromic repeats/CRISPR-associated pro-
tein-9 nuclease (CRISPR/Cas9), CRISPR/Cpf1 or CRISPR/Csm1
systems, a new nuclease class guided by RNA (guide RNA), have
been optimized for plant genome editing (Osakabe et al., 2016;
Granted patent US9896696B2; Wang et al., 2018a). Both nucle-
ases cause double-strand breaks (DSBs) at the target site, and
during DSB repair, the insertion or deletion (indels) of nucleotides
may occur. In addition to indels, nucleotide-specific editing can be
achieved using engineered donor DNA.

CRISPR/Cas9 nonhomologous end joining (NHEJ; Figure 3a)
can be achieved by the introduction of indels at pre-miRNA
sequences or the miRNA processing sites of MIR genes, which
impedes or retards miRNA biogenesis (Chang et al., 2016; Zhou
et al., 2017). Similarly, indel insertion in target genes can
interfere with miRNA-target mRNA pairing and lead to the
subsequent failure of mRNA cleavage into RISC. In addition,
homology-directed repair (HDR) (Figure 3b) and homology and
recombination-directed repair (HRDR; Figure 3c) can be achieved
by the full deletion or knock-in of MIR genes or their promoter
sequences (Zhao et al., 2016).

However, the knock-down or knock-in of MIR genes is
challenging compared to the modification of protein-encoding
genes due to the complexity of the regulatory networks, the
reduced length for gRNA design or targeting, and the fact that
miRNA is encoded within intron sequences, which hinders MIR
gene editing (Barrangou et al., 2015; Basak and Nithin, 2015).
Additionally, the length of MIR genes reduces the number of
possible gRNA/Cas9 targets, thus reducing the odds of finding a
target near the mature miRNA (Jacobs et al., 2015). In contrast,
CRISPR/Cas9-mediated knock-down can be more efficient con-
sidering homologous, orthologous or paralogous MIR genes and
pri-miRNA regions (Barrangou et al., 2015).

Typical binary vectors for the CRISPR/Cas9 system using a
transgenic approach basically contain one selection marker, a
Cas9 nuclease sequence that is codon-optimized to monocots or
dicots and flanked by two nuclear localization signals, and gRNAs
under the control of a specific promoter (Figure 3a-c). These
vectors can also contain donor DNA fragments in tandem repeats,
which are used as repair moulds of DSB in HDR and HRDR
strategies (Figure 3b, c). For the CRISPR/Cas9 or Cpf1 system
using a transgene-free strategy (without transgene integration
into the plant genome), the nuclease and gRNA are synthetized
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in vitro and then biolistically delivered into plant cells (Liang et al.,
2017; Figure 4).

Jacobs et al. (2015) showed that CRISPR/Cas9 successfully
targeted soya bean miR1514 and miR1509 using biolistic delivery
for the transient expression of the CRISPR/Cas9 vector harbouring
Cas9 nuclease and gRNAs. Similarly, Li et al. (2016a) induced
specific mutations in the miR156 recognition site of the rice jpa?
gene (ideal plant architecture 1), which improved several traits
related to plant architecture. Zhou et al. (2017) successfully
generated mono- and biallelic mutations in several MIR genes of
TO rice lines, resulting in loss of function for target miRNAs.

In addition to MIR genes, the CRISPR/Cas9 system can be used
for editing promoter or enhancer sequences (Chang et al., 2016;
Zhou et al.,, 2017). A challenge yet to be overcome is the
disruption or alteration of transcription start sites, cis-regulatory
elements (e.g. TATA- or GC-box) or other binding sites of trans-
acting factors (e.g. ABRE and DRE motifs) to achieve precise
miRNA expression that improves tolerance without pleiotropic
effects. Furthermore, CRISPR/Cas9 technology has recently been
used to modulate gene expression through the activation or
transcriptional repression of target genes. To this end, a deacti-
vated Cas9 nuclease (dCas9), lacking the two domains needed for
DNA double-strand cleavage (D10A/H840A), has been success-
fully used (Figure 5). The dCas9 is incapable of cleaving any DNA
but is successfully guided to the promoter sequence of desirable
MIR genes. In contrast, it can be fused to other functional
domains, for example dCas9:VP64 (quadruple tandem repeat of
the Herpes simplex virus VP16-activation domain), dCas9:SRDX
(synthetic transcriptional repressor pco-dCas9-3X) or dCas9:SET
(methyltransferase domain of the H3K9me3 writer) and dCas9:AT
(acetyltransferase domain), which act as transcriptional activators
(Chavez et al., 2015), repressors (Lowder et al., 2017) or epige-
netic modifiers (O'Geen et al., 2017), respectively. The transcrip-
tional modulation starts by dCas9 (or dCfp1) guided by gRNA to
sequences immediately upstream of the transcriptional start site
(TSS) of an MIR gene. In addition, the fused MS2-p65-HSF1
activation domains are simultaneously overexpressed, which will
interact with the stem-loop of gRNA and recruit additional
transcriptional factors to this promoter, improving its transcrip-
tional level (Lowder et al, 2015). Several promising results
already have been obtained using this approach, allowing further
expansion of the applications of this technology (Lowder et al.,
2018; Park et al., 2017). Tang et al. (2017) used the CRISPR/Cpf1
system to demonstrate the efficient transcriptional repression of
miRNA159b using deactivated Cpf1 (without the domain of DNA
cleavage) fused to the SRDX transcriptional repressor domain.

Furthermore, CRISPR/Cas13a use novel nuclease type (class Il
type VI-A endoribonuclease) also guided by gRNA to targeting
and cleaving single-stranded RNA (ssRNA or mRNA). LwaCas13a
from Leptotrichia wadei contain two nucleotide-binding domains
(2x HEPN) associated with different RNase activity. It has been
successfully established in mammalian and plant cells to knock-
down of any exogenous or endogenous RNA (e.g. immunity
against viral RNA, and single or multiple knock-down) and thus
enable numerous approaches with RNA biology (Abudayyeh
et al, 2017; Aman et al., 2018). In contrast to usual RNAI system,
CRISPR/Cas13a system also has activity in nuclear RNAs and
greater target specificity. In addition, point mutation in HEPN
domains abolished its nuclease activity (dead LwaCas13a or
dCas13a), expanding the possibilities of its use (East-Seletsky
et al., 2017). However, CRISPR/Cas13a has not yet been estab-
lished for pre-, pri-miRNA or mature miRNA editing in plants. On
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the other hand, LwaCas13a or dCas13a has great potential to
edit its transcripts by knock-down (e.g. miRNA binding, cleavage
and degradation) or loss of function (e.g. affecting miRNA/mRNA-
binding sites, both in MIRNA and in mRNA). Similarly, eTMs
modulation using CRISPR/Cas13a allows to increase the accumu-
lation of specific miRNAs. In other context, dCas13a can be fused
with a deaminase domain (e.g. ADAR2 domain to adenosine-to-
inosine deaminase, or dCMP domain to cytidine-to-uridine
deaminase) and used to edit polymorphisms/mutations in pri-,
pre-miRNA or miRNA sequences for various biological purposes
(Cox et al., 2017). The LwaCas13a or dCas13a expression driven
by tissue-specific or induced promoters, or in viral vectors can
allow more precise and consistent modulation of this target RNA.
At least, several orthologous Cas13 nucleases are being charac-
terized from other bacterial species, such as PspCas13b from
Prevotella sp. which showed higher levels of RNA knock-down
compared to LwaCas13a (Cox et al., 2017).

Topical delivery of pri-miRNA or mature miRNA

RNAi technology using transgene-free approach was recently
optimized from topical delivery (foliar sprays) of the nanostruc-
tured and stabilized dsRNA molecules in model or crop plants to
pathogens control or insect pest management (Joga et al., 2016;
McLoughlin et al., 2018). Carrier nanoparticle (e.g. biopolymers
of chitosan, silicon, carbon and clay nanosheets), ribonucleopro-
tein particle (e.g. peptide transduction domain—dsRNA binding
domain) and cross-linkers (e.g. tripolyphosphate, dextran sul-
phate and poly-D-glutamic acid) were successfully optimized to
improve the delivery and internalization of highly integrated RNA
in plant cell (Cunningham et al., 2018). However, use of this
technology for the delivery of pri-miRNA or mature miRNA aiming
the modulation of endogenous genes to improve agronomic traits
or cross-control of insect pest or pathogens is still being
established in plants. The higher stability and internalization
potential of the pri-miRNA compared to mature miRNA provides
possibilities for manipulation of the transcriptional profile of adult
plants without the use of transgenics. In respect to cross-control
of insect pests, delivery of structured pri-miRNA can prevent its
processing in the host plant (avoiding plant off-target modulation
and pleiotropic effects) and the acquisition by the insect in this
host plant results in natural delivery. These structured pri-miRNAs
are viroid-like engineered molecules flanked by pH-dependent
ribozymes domain, which are not processed by the RNA]
machinery of plant, but are efficiently processed into insect
digestive tract and cells (patent application from INPI under
number: BR102017006904-4; Maria Fatima Grossi-de-Sa, per-
sonal communication, 20 February 2019). Currently, the cost of
large-scale production of dsRNA is the major bottleneck; how-
ever, there are already some private companies that supply these
molecules, nanoparticles and stabilizing compounds.

Epigenetic memory

Plants are frequently exposed to different and/or concomitant
stresses, and these conditions trigger defence responses that
minimize the negative effects of additional stress. The defence
responses of plants are enhanced by retaining “molecular
memories” of previous stress events through epigenetic mecha-
nisms (Crisp et al, 2016). This epigenetic memory allows
subsequent defence or adaptation responses to be more efficient
upon exposure to the same stress. In some cases, this epigenetic
information can be transmitted from generation to generation
(Crisp et al.,, 2016; Kinoshita and Seki, 2014; Liu et al., 2015).
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The siRNA or miRNA-directed DNA methylation and histone epigenetic modifications at genomic regions that contain regu-

latory sequences (e.g. transcription regulatory sequences), protein
coding genes or MIR genes (Xie and Yu, 2015). The 24-nt miRNAs

phosphorylation,
are the main

modifications, which include methylation,
acetylation, ubiquitylation and sumoylation,
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Figure 4 CRISPR/Cas9 or CRISPR/Cpf1 system to target genes or generate MIR gene knock-down or knock-in using similar NHEJ, HDR or HRDR strategies,
but transgene-free. Above, CRISPR/Cas9 vectors for in vitro (e.g. Escherichia coli) production of guide RNAs (gRNA), free donor DNA fragment and
Cas9 or Cpf1 protein flanked by one or two nuclear localization signals (NLS) (Liang et al., 2017). After purification, the gRNA, nuclease protein and donor
DNA fragment are mixed and assembled in microcarrier particles (tungsten or gold) and delivered into plant cells (e.g. embryogenic callus, apical
meristem or protoplasts) using a biolistic particle delivery system.

are considered one of the primary modes for the epigenetic biological processes (Crisp et al., 2016). Thus, epigenetic modi-
modulation of the genome, which in turn modulates the fications in the genome from biotic or abiotic stress events act
expression of several genes or MIR genes involved in different indirectly inhibiting or activating the transcription of innumerable

Figure 3 Genome editing using CRISPR/Cas9 system. (a) The CRISPR/Cas9 system to target promoter sequences or generate MIR gene knock-down using
nonhomologous end joining (NHEJ) strategy. Above, a typical CRISPR/Cas9 NHEJ binary vector carrying a T-DNA that contains a selection marker gene
under control of a constitutive promoter, Streptococcus pyogenes Cas9 wild-type gene (SpCas9WT) codon-optimized to monocots or dicots and containing
one or two nuclear localization signals under control of a constitutive promoter, one or two RNA guide RNAs (QRNA1T or gRNA2) and an RNA scaffold in
tandem under control of the U6 RNA polymerase Il promoter containing a guanine (G) extra at the 3’ end. Below, an overview of the NHEJ strategy in
plants containing T-DNA from the CRISPR/Cas9 binary vector integrated into the genome (constitutive expression) or by transient expression (e.g. in
protoplasts) via biolistic approach or the type Il secretion system of Agrobacterium tumefaciens (Chang et al., 2016; Zhou et al., 2017). Below, the
complex gRNA:RNA scaffold is transcribed, associated with Cas9 nuclease in the nucleus and directed to the target sequence in genomic DNA. The gRNAs
match the target sequence (promoter sequence or MIR gene) and mediate its cleavage by Cas9 nuclease next to the protospacer adjacent motif (PAM),
generating a double-strand DNA break (DSB). After DNA cleavage, the damage is corrected by the DNA repair mechanism of the plant cell, but errors
(insertion or deletions of any nucleotides, named indels) can be inserted in the repaired DSB sequence, resulting in indels within the transcription start site,
cis-regulatory elements or other binding sites of trans-acting factors, leading to the up- or down-regulation of MIR gene expression. In addition, indels in
mIRNA processing sites prevent the biogenesis of these molecules. (b) CRISPR/Cas9 system to target promoter sequences or generate a MIR gene single
knock-in using a homology-directed repair (HDR) strategy. Above, a typical CRISPR/Cas9 HDR binary vector carrying a T-DNA, similar to NHEJ, but
containing only one gRNA and one to three copies of the donor DNA fragment engineered to match the target DNA sequence. These donor DNA
fragments are flanked by the target sequences of the gRNAs at the 5’ and 3’ terminus, homology arms that flank the target site and mutated target
sequence containing amino acid substitutions plus 4-6 synonymous substitutions, which prevent the edited DNA from being paired by the gRNA and
cleaved by Cas9 nuclease. These donor DNA molecules can be delivered by transgene integration into the genome and released by the gRNA or by a
biolistic approach using free donor DNA (donor DNA fragment without gRNA target), which will serve as a repair template for damaged DNA. Below, the
complex gRNA:RNA scaffold is transcribed, associated with Cas9 nuclease in the nucleus and directed to the target gene sequence in the genome. The
gRNAs match the target sequence (promoter sequence or MIR gene) and mediate its cleavage by the Cas9 nuclease next to the PAM sequence, generating
DSB. After DNA cleavage, this damage is corrected by the DNA repair mechanism using the free donor DNA fragment as the repair template based on the
homology sequence, resulting in nucleotide exchange and amino acid substitution (Sun et al., 2016; Zhao et al., 2016). (c) CRISPR/Cas9 system to target
promoter sequences or generate simultaneous MIR gene double knock-in using a homologous recombination-directed repair (HRDR) strategy. Above, a
typical CRISPR/Cas9 HRDR binary vector carrying a T-DNA, similar to NHEJ and HDR, containing two gRNAs and donor DNA fragments engineered to
simultaneously edit two interspaced target sites (Sun et al., 2016; Zhao et al., 2016). In brief, DSB is repaired by the DNA repair mechanism using the free
donor DNA fragment as the repair template. In this case, the donor DNA fragment is integrated into the target site by homologous recombination.
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Figure 5 Transcriptional modulation (activation or repression) of MIR
genes using CRISPR/dCas9 system. Above, a typical CRISPR/dCas9 binary
vector carrying a T-DNA that contains a selection marker gene driven by a
constitutive promoter; dead Cas9 (dCas9) gene codon-optimized to
monocots or dicots and containing one or two nuclear localization signals
(NLS) fused in tandem with dCas9:VP64, dCas9:SDRX, dCas9:SET or
dCas9:AT functional domains, and also driven by a constitutive promoter;
one RNA guide (gRNA) and an RNA scaffold in tandem driven by U6 RNA
polymerase Ill promoter containing a guanine (G) extra at the 3’ end; and
MS2, p65 and HSF1 activation domains fused in tandem and containing
one internal NLS driven by a constitutive promoter (Lowder et al., 2018;
Tang et al., 2017). Below, an overview of the dCas9:VP64, dCas9:SDRX,
dCas9:SET or dCas9:AT coupled with guide RNA and MS2:p65:HSF1 is
directed to promoter region of MIR gene controlling the MIR gene
transcription.

MIR genes and eTMs involved in the networks of responses to
these stresses.

Interkingdom cross-talk by the horizontal transference
of miRNAs

siRNA uptake from oral delivery and successful modulation of
endogenous target through the process of RNAi was showed by
first time in Caenorhabditis elegans. The horizontal transfer of
miRNA until recently was filled of controversies both in the
passive context (voluntary transfer during interaction, or by
uptake and secretion during feeding in the cell of host organism)
and active (release or ingestion of miRNAs by the host or parasite
organism as a form of defence or counter-defence). Transgenic
plants overexpressing dsRNA molecules and consequently accu-
mulating high amount of siRNAs that target insect pest or
nematodes genes were successful developed and displayed

improved resistance to these parasite organisms (Zotti et al.,
2018). However, it has been observed the requirement of dsRNA
delivery with longer length for successful processing by the RNAI
machinery of insect pest and efficient knock-down of its target
genes (Maria Fatima Grossi-de-Sa, personal communication, 20
February 2019). This suggests that although RNAi machineries
exhibit innumerable interkingdom similarities, they also have
important specificities. In addition, it is known that any type of
RNA outside its natural cellular context is easily and rapidly
degraded or inactivated. The presence of numerous types of exo-
and endonucleases prevents the occurrence of any aberrant event
in the host cell, both for endogenous and exogenous RNA. On the
other hand, the successful delivery of at least some dsRNA, siRNA,
pri-miRNA or mature miRNA molecules may occur; however, will
they in fact act on the modulation of endogenous genes? In fact,
it has been scientifically proven in the last years that the uptake of
miRNAs and the regulation of target genes in host organisms are
possible during compatible or incompatible interactions (Wang
et al., 2018b; Zhang et al., 2012). In addition, high stability of
pre- and pri-miRNA suggests their greater probability of being
delivered successfully in the cells of parasite or parasitized
organisms, but they will in fact be properly processed by the
RNAIi machinery of these organisms. It is believed that in some
cases is possible, since that these molecules are compatible with
RNAI machinery of the recipient organism. Unfortunately, sensi-
tive methods, appropriate approaches and efficient protocols
needed for elucidation of the pri-miRNA or mature miRNA
interkingdom cross-talk are yet very limited. The NGS technolo-
gies helped by powerful bioinformatics tools have enabled to
access more easily and precisely of the uptake and secretion of
miRNA during host-parasit interaction. In addition, these
approaches also allow to observe the regulation of endogenous
genes by these miRNA (Dickinson et al., 2013; Chen et al., 2013).
Furthermore, can these delivered miRNAs act as effector
molecules modulating host defence mechanisms or in counter-
defence? Weiberg et al. (2013) showed that Botritys cinerea-
siRNAs are successful delivered in Arabidopsis thaliana cells during
pathogenesis, binding to AGO1 and selectively silencing host
immunity genes. Similarly, Zhang et al. (2016b) showed that in
response to infection with Verticillium dahliae, cotton plants
increase accumulation of Gh-miR166 and Gh-miR159, which
were exported to the fungal hyphae for specific silencing of
virulence genes. In this same context, can miRNA cross-talk also
play a role in epigenetic feedback? In plants, there is still no
concrete evidence for this, but some studies show the presence of
numerous MiRNAs in milk of human or animals. In this context,
Perge et al. (2017) speculate that milk-derived miRNAs secreted
in exosomes might be involved in the epigenetic reprogramming
of the children. This would suggest that this mechanism may
indeed also occur in plants. It is believed that this mechanism
would be acquired evolutionarily from an interaction between
individuals and that would act both in reprogramming of host
defence and parasite counter-defence.

In respect to eTMs cross-talk, can they also act as exogenous
SPONGES in parasite or parasitized organisms? On the one hand,
eTMs are single-strand RNA extremely susceptible to the
extracellular environment or to ribonucleases. However, could
indeed its successful delivery trigger the regulation of endogen-
ous miRNAs? Despite possible delivery success of eTMs, they have
usually single binding site for sequence-specific miRNAs, thus
restricting their action spectrum in other nontarget organisms.
Unlike, circRNAs are more stability and can in fact be more active
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Table 2 Summary of major advantages, drawbacks and alternatives of the new biotechnological tools used to MIR gene or miRNA fine-tuning.

New biotechnological tools

Advantages

Drawbacks

Alternatives

Transgenesis, cisgenesis and
intragenesis

Artificial MIR genes

Viral vector-mediated
miRNA delivery

Endogenous (eTM), circular
(circRNAs) and artificial
short tandem target
mimicry (STTM)

Meganucleases, zinc-finger
proteins and TALEN

CRISPR/Cas9 or/Cpf1 non-
homologous end joining
(NHEJ)

CRISPR/Cas9 or/Cpf1
homology-directed repair
(HDR) or homology and
recombination-directed
repair (HRDR)

CRISPR/dCas9 or/dCpf1

Efficient tissue-specific or
induced expression of MIR
genes and accumulation of
miRNA

Modulation of target mRNA is
usually more specific compared
to RNAI strategies using dsRNA
or siRNA

Transgene-free approach and
suitable for proofs of concept

Efficient sequestration of
miRNAs, eTMs show
themselves better than STTM,
high stability of circRNAs and
expression driven by specific
promoters allows modulation
in adequate time and space

Greater target specificity and
allows target any DNA
sequence

Transgene-free indels or
knockout, biolistic-mediated
CRISPR ribonucleoprotein
delivery, target any DNA
sequence, highly efficient
editing, high percentage of
homozygous mutant already in
TO or T1 generation, easy
design and cloning of the
binary vector

Biolistic-mediated CRISPR
ribonucleoprotein delivery,
target any DNA sequence,
transgene-free genome
editing, deletion of full MIR
gene sequence, repair of MIR
gene sequence, repair of gene/
MRNA becoming resistant to
specific miRNAs

Efficient transcriptional
modulation of endogenous
genes associated to important
traits, expression driven by
specific promoters and
epigenome editing

Transgenic approach. In consequence of the
wide acting network of the miRNAs, its
constitutive overexpression often results in
pleiotropic effects

Transgenic approach, backbone selection,
potential off-targets and pleiotropic effects

Restricted host plant range, adult plant
resistance, very limited to nucleic acids
length and viral infection usually restricted
to young tissue or meristems

Transgenic approach and backbone
selection

Off-target cleavage, high specificity of the
Meganucleases and limited range of ZFN
and TALEN modules restrict its use to
editing few MIR genes. More onerous and
expensive compared to CRISPR system

Off-target cleavage and selection of target

site is limited by requirement of PAM motif

adjacent

Low repair efficiency driven by donor DNA
or low recombination efficiency, critical
design and onerous construction of binary
vector

Transgenic approach and off-target
transcriptional modulation

Modulation driven by tissue-, stage-specific
or induced promoters, and canonical
promoter sequence

Use of backbone from canonical MIR genes,
expression driven by specific promoters and
topical delivery using carrier nanoparticles

Development of new and optimized viral
vectors

Prospection and characterization of new
miRNA-specific eTMs, viral vector- or
nanoparticle-mediated eTMs or STMM
delivery, and Agrobacterium tumefaciens-
mediated transient delivery

Use of new genome-editing technologies

Use of new or improved nucleases

Biolistic-mediated CRISPR ribonucleoprotein
delivery, adjustment of the amount of DNA
donor delivery, use of new or improved
nucleases, use of transgenic approach with
elimination of transgene by Mendelian
segregation

Nucleases expression driven by tissue-
specific or induced promoter, topical
delivery of CRISPR ribonucleoprotein and
Agrobacterium tumefaciens-mediated
transient delivery
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Table 2 Continued

New biotechnological tools

Advantages

Drawbacks

Alternatives

CRISPR/Cas13a, Cas13b or
dCas13

Topical delivery of linear or
structured pre-miRNA and
mature miRNA

High specificity of target RNA,
greater knock-down efficiency
of pre-, pri-miRNA, mature
miRNA, eTMs and mRNA, both
cytoplasmic or nuclear and
possibility of tissue-specific and
site-specific RNA editing

Transgene-free approach,
efficient delivery using
nanoparticles, high RNA
internalization rate in plant

Technology still being established in plants,
may require transgenic approaches
depending on the strategy used and
transient editing

Delivery system and nanoparticle not yet
fully optimized for plants, high cost for
production of RNA in large-scale potential
of off-targets modulation

Linking previous findings in mammalian cells
with proofs of concept in plants, topical
delivery of CRISPR ribonucleoprotein and
Agrobacterium tumefaciens-mediated
transient delivery

Proofs of concept in model or crop plants
and process optimization of dsRNA
production

cell, low cytotoxic effects,
trans-kingdom cross-talk from
topical delivery of structured
amiRNAs in plants targeting
pathogens or insect pest, and
topical delivery of plant
miRNAs associated to
important traits

in this cross-talk. Until then, it is known that any exogenous RNA
captured by the cell is rapidly destroyed by the RNAI machinery
and a secondary siRNA-based regulatory signal is then amplified,
making this receptor cell even more prepared to destroy new
molecules of this invasive RNA. For example, plant viruses
efficiently bypass this primary defence mechanism of host by
encoding suppressor proteins of the RNAi pathway. Thus, it is
believed that successful modulation of targets trigger by secreted
miRNAs or eTMs, which potentially act as effectors in cross-talk
interaction, can be acquired during successive interaction and
improved by evolutionary mechanisms.

Challenges and future perspectives

Novel MIR gene-based NBTs have emerged as a powerful strategy
to improve several biological or agronomics traits, such as plant
tolerance to abiotic and biotic stresses. Although these advances
have been remarkable, its advantages and drawbacks need to be
discussed critically for the search for best alternatives (Table 2).
The constitutive overexpression of specific MIR genes improves
agronomic traits in several plant species. However, pleiotropic
phenotypes were also observed in these transgenic events in
consequence of the wide acting network of the miRNAs. The
overexpression driven by tissue- or stage-specific and abiotic and
biotic stress- or senescence-inducible promoters are powerful
approaches to overcome these undesirable effects (Ferdous et al.,
2017). The characterization of cis-regulatory elements in pro-
moter sequences of canonical MIR genes can provide knowledge
of the transcription factors associated with stress responses and
how the MIR genes are regulated by abiotic or biotic stresses.
From this, it is possible to better choose the type of promoter to
be used, in some cases can opt for the canonical promoter
sequence. In addition, artificial MIR genes are a great alternative
usually more specific and precise compared to other RNAi
strategies in modulation of target mRNA. However, its efficiency
is also related to the choice of the backbone and the promoter

sequence used for driven its expression. Thus, use of backbone
from canonical MIR genes and expression also driven by specific
promoters or topical delivery using carrier nanoparticles are some
promising alternatives. On the other hand, viral vector-mediated
miRNA delivery may be a usual alternative, but is limited to proofs
of concept, since they present some limitations that prevent their
use in commercial scale. Unlike the increase in miRNA accumu-
lation, eTM, circRNA and artificial STTM are strategies successfully
used to decrease miRNAs cargo in cell and efficiently improve
desirable traits. In addition, eTMs modulation showed themselves
better than STTM and expression driven by specific promoters can
allow its modulation in adequate time and space. Furthermore,
prospection of new eTMs or circRNAs, as well as delivery system
based on viral vectors, nanoparticles or Agrobacterium tumefaciens,
provides new alternatives for transgene-free plants. Genome-
editing technologies have been successfully optimized in plants
including modulation of MIR genes and miRNAs. Meganucleases,
ZFNs and TALENs although present higher target specificity
compared to the new nucleases used in plant genome editing,
this high specificity and the limited range of currrenlty available
modules restrict its uses to editing few MIR genes. In addition, the
assembly of these modules becomes a more expensive and onerous
activity compared to the new editing technologies based on CRISPR.
The CRISPR/Cas9 NHEJ has successfully allowed the insertion with
high specificity of transgene-free indels or knockout gene in several
plant genomes. In addition, its high efficiency of editing, high
percentage of homozygous mutant already in TO or T1 generation,
easy design and cloning of the binary vector, associated with
efficient nanoparticle or biolistic-mediated CRISPR ribonucleopro-
tein delivery, provides a powerful alternative for transgene-free
genomic editing. Similarly, CRISPR/Cas9 HDR or HRDR also allows
transgene-free genome editing, deletion of full MIR gene
sequence, repair of MIR gene sequence and repair of gene/
mRNA becoming resistant to specific miRNAs. However, both
HDR and HRDR approaches are limited to low repair or
recombination efficiency driven by synthetic donor DNA, added
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to critical design and onerous construction of binary vector. These
drawbacks can be overcome by adjustment of the amount of
DNA donor delivered, best selection of totipotent tissues for
ribonucleoprotein delivery, use of the new or improved nucleases,
and use of transgenic approach with later elimination of the
transgene by Mendelian segregation. However, for example, the
elimination of the transgene by segregation is not viable in
sugarcane due to its vegetative propagation. In addition, efficient
transcriptional modulation of MIR genes mediated by CRISPR
technology using the deactivated nucleases has allowed to
improve agronomic traits. Although it may be a transgenic-
dependent technology with potential of off-target transcriptional
modulation, nucleases expression driven by tissue-specific or
induced promoter, topical delivery of CRISPR ribonucleoprotein
and Agrobacterium tumefaciens-mediated transient delivery can
overcome these drawbacks. Unlike for these nucleases of DNA,
the Cas13a acts with high specificity directly on the RNA
molecules. Although it does not yet have many results in plant
systems, the current results obtained in mammalian cells are quite
promising. In this way, it allows the knock-down of pre-, pri-
miRNA, mature miRNA, eTMs, circRNAs and mRNA, both
cytoplasmic and nuclear. In addition, Cas13a can be associated
with possibility of tissue-specific and site-specific RNA editing,
transgene-free approach by topical delivery of CRISPR ribonu-
cleoprotein or Agrobacterium tumefaciens-mediated transient
delivery. Another transgene-free approach is based on topical
delivery of linear or structured pre-miRNA and mature miRNA.
Although not yet fully optimized in plants, its main advantages
are the efficient delivery using nanoparticles, high RNA internal-
ization rate in plant cell, low cytotoxic effects and possibility of
trans-kingdom cross-talk from topical delivery of structured
amiRNAs in plants targeting pathogens or insect pest genes. In
addition, the possibility of topical delivery of plant miRNAs
associated with important traits in crops (acting as enhancers of
phenotype or traits). Furthermore, studies on the interkingdom
mobility of small RNAs (siRNA or miRNA cross-talk) may provide
evidence to improve the understanding of pathogen-plant,
nematode-plant or insect-plant interactions. The elucidation of
miRNA cross-talk in the context of defence response, counter-
defence and plant adaptation based on epigenetic mechanisms
can assist in the development of NBTs. Finally, a better
understanding of regulation and expression profile that MIR
genes associated with abiotic or biotic stress tolerance of the
intrinsic features of RNAi machinery in different kingdoms and
exploitation of the advantages offered by NBTs may lead to
practical biotechnological applications to improve agronomic traits
in several crops worldwide. In addition, this knowledge enables
the development of new biotechnological products with greater
practicality, reduced generation time and low cost.
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