Journal of Plant Growth Regulation (2019) 38:812-823
https://doi.org/10.1007/s00344-018-9892-x

@ CrossMark

24-Epibrassinolide Mechanisms Regulating Blossom-End Rot
Development in Tomato Fruit

Lucas Baiochi Riboldi'© - Salete Aparecida Gaziola?(® - Ricardo Antunes Azevedo? - Sérgio Tonetto de Freitas>

Paulo Roberto de Camargo e Castro’

Received: 28 March 2018 / Accepted: 1 November 2018 / Published online: 30 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Blossom-end rot (BER) is a physiological disorder believed to be triggered by low Ca2* content in the distal fruit tissue.
However, many other factors can also determine fruit susceptibility to BER. It is possible that during fruit growth, Ca**
imbalance can increase membrane leakiness, which may trigger the accumulation of reactive oxygen species, leading to
cell death. Brassinosteroids are a class of plant hormones involved in stress defenses, specially increasing the activity of
antioxidant enzymes and the accumulation of antioxidant compounds, such as ascorbic acid. The objective of this study was
to understand the mechanisms by which 24-epibrassinolide (EBL) reduces fruit susceptibility to BER. Tomato plants ‘BRS
Montese’ were cultivated in a greenhouse and were weekly sprayed with water (control) or EBL (0.01 uM) after full bloom.
Plants and fruits were evaluated at 15 days after pollination (DAP). According to the results, EBL treatment inhibited BER
development, increased fruit diameter, length, and fresh weight. EBL-treated fruit showed higher concentrations of soluble
Ca** and lower concentrations of cell wall-bound Ca**. EBL-treated fruit also had higher concentrations of ascorbic acid
and lower concentrations of hydrogen peroxide, compared to water-treated fruit. EBL treatment increased the activity of the
three main antioxidant enzymes known as ascorbate peroxidase, catalase, and superoxide dismutase. According to the results,
EBL treatment maintained higher soluble Ca>* and antioxidant capacity, reducing fruit susceptibility to BER.

Keywords Antioxidant capacity - Blossom-end rot - Brassinosteroids - Calcium deficiency - 24-Epibrassinolide - Oxidative
stress

Introduction mechanisms regulating BER incidence in tomato fruit, like
oxidative stress, loss of xylem functionality, and expression
of some genes related to Ca>* transport in fruit cells (De

Freitas et al. 2017; Ikeda et al. 2017).

Blossom-end rot (BER) is a physiological disorder that
develops at the distal fruit tissues, leading to softening

and subsequent necrosis. Although calcium (Ca") defi-
ciency has been considered for a long time the main cause
of the disorder, recent studies have shown more complex
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Calcium deficiency is highly affected by environment fac-
tors such as high temperatures, low air relative humidity,
and soil salinity, as well as by genetic predisposition of the
genotypes (Ho and White 2005). In this case, a few studied
factors such as fruit shape (Riboldi et al. 2018b) and loss
of xylem functionality in the distal portion (Riboldi et al.
2018a) have emerged as key factors determining fruit sus-
ceptibility to BER.

Brassinosteroids (BRs) have been shown to induce
stress tolerance in plants (Maia et al. 2018), and to
increase cell viability under stress conditions by increasing
the cellular capacity to scavenge reactive oxygen species
(ROS) (Liu et al. 2009). Studies using exogenous applica-
tions of BRs have also shown that it can promote a better
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adaptation of plants to stresses (Wu et al. 2017; Maia et al.
2018; Riboldi et al. 2018c).

In some studies, it is possible to verify that the mecha-
nism of BRs action is different from abscisic acid action,
a traditional hormone studied in plants under stress. The
use of BRs has been reported to activate plant antioxidant
defenses such as a generation of compounds such as ascor-
bic acid or even to activate enzymes such as superoxide
dismutase (SOD), ascorbate peroxidase (APX), and cata-
lase (CAT) that inactivate ROS (Yadav et al. 2012; Maia
et al. 2018). Thus, stress tolerance conferred through the
exogenous application of this hormone is different from
all the mechanisms already analyzed in studies on Ca>*
disorders (Saure 2001, 2014).

One of the main effects of Ca®* in plants is maintenance
of membrane function and stability (Hepler and Winship
2010). Thus, Ca** deficiency results in membrane degrada-
tion, which can be evidenced by the peroxidation of lipids
and generation of reactive oxygen species (ROS). Indeed,
previous studies have shown high levels of ROS, such as
superoxide radicals, hydroxyl radicals, and singlet oxygen
(0O%), in fruit tissue with BER (Aktas et al. 2005; Turhan
et al. 2006; Mestre et al. 2012). In this context, BR could
increase fruit tissue capacity to scavenge ROS, which could
prevent or reduce fruit susceptibility to Ca®* deficiency
(Turhan et al. 2006). However, an extensive study focusing
on the relationship between oxidative metabolism and BER
development revealed that reducing fruit Ca®* concentration
also reduced the activity of the main enzymes responsible
for ROS detoxification, leading to H,O, accumulation, lipid
peroxidation, and BER symptom development in the fruit
(Mestre et al. 2012).

Production of ROS can also be increased under exposure
to many abiotic stresses (Wu et al. 2017). Under stress con-
ditions, such as exposure to salt or water deficit, increasing
H,0, production is the major contributor to cell and tissue
damage in plants (Choudhury et al. 2017). Plant cells have
a large number of protective mechanisms to eliminate or
reduce ROS (Cuypers et al. 2016). The activation of the
enzymatic antioxidant system, which operates by the sequen-
tial and simultaneous actions of enzymes including SOD,
CAT, and APX, is one of them (Gratio et al. 2015; Alves
et al. 2017). The accumulation of H,0, is prevented in plant
cells either by CAT and peroxidases or by the ascorbate—glu-
tathione cycle where APX reduces it to H,O (Gratao et al.
2005). 24-Epibrassinolide (EBL) was shown to increase the
activity of enzymes such as APX, CAT, SOD in plant cells,
as well as enhance the synthesis of antioxidant substances
such as ascorbic acid, resulting in lower contents of ROS,
and lipid peroxidation in the cells (Maia et al. 2018). Ascor-
bic acid (AsA) can also directly scavenge ROS produced
during aerobic metabolic processes such as photosynthe-
sis or respiration; however, the extent to which the direct

reduction of ROS occurs in plants remains to be determined
(Gallie 2013).

According to the previous studies, it is possible that nei-
ther total Ca** nor ROS alone can fully explain BER devel-
opment in tomato fruit, but rather the interaction between
Ca®* and ROS levels in the tissue. Therefore, the objective
of this study was to understand the mechanisms through
which EBL inhibits BER development in tomato fruit.

Materials and Methods

Plant Material, Growth Conditions, and Application
of Treatments

This study was carried out using the ‘BRS Montese’
(EMBRAPA) tomato, which has long-shaped fruit. The
seeds used in the study were donated by Agrocinco Seeds
of Value (Monte Mor, Sdo Paulo, Brazil). The experiment
was performed in a greenhouse with average solar radiation
at midday of 1000 umol m~2 s~!, average temperature of
18.3 °C, and relative humidity of 77% at night and 28.2 °C
and 52% during daytime, respectively. Seeds were seeded
separately in trays with a 1:1 (v/v) peat-based substrate
mixture (Plantmax HT, Eucatex Brazil) and expanded ver-
miculite, and supplemented with 1 g L™! of NPK (10:10:10)
fertilizer and 4 g L™! of dolomitic limestone, supplementing
calcium and magnesium.

Thirty days after planting, the seedlings were transplanted
into individual 30 L pots containing substrate mixture. Plants
were fertilized every 20 days, during growing and fructi-
fication time, with 10 g of slow release fertilizer contain-
ing N (43 kg ha™!), P,O5 (21.2 kg ha™!), K,0 (32 kg ha™),
MgO (5.3 kg ha™'), S (13.3 kg ha™!), Fe (1.1 kg ha™!), Cu
(0.13 kg ha™!), Mn (0.16 kg ha™!), Zn (0.05 kg ha™!), B
(0.05 kg ha™1), Mo (0.04 ka ha™1), but without Ca (Basacote
Plus, Agricultural Soil Fertilizer; Compo Expert) to stimu-
late BER incidence.

When plants started blooming, they were sprayed weekly
with a 125-mL solution per plant containing water (control)
or 24-epibrassinolide—EBL (Sigma-Aldrich, Saint Louis,
MO, USA) (0.01 uM). The EBL concentration was deter-
mined based on the level that has been shown to trigger plant
responses in other studies (Ogweno et al. 2008; Jiang et al.
2012; Yadav et al. 2012; Zheng et al. 2016; Riboldi et al.
2018c). Fruit samples were harvested on the first cluster at
15 days after pollination (DAP).

BER Incidence, Growth Parameters, and Xylem
Functionality

The incidence of BER was calculated by multiplying the
number of fruits with BER symptoms by 100 and dividing
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by the total number of fruit in the first cluster. The plant dry
weight was determined by drying the samples (65 °C) until
constant weight. Leaf area was determined through a leaf
area meter (LI-3100C Area Meter, LI-COR, Lincoln, USA),
using all the leaves. Both plant dry weight and leaf area were
determined at full bloom. Fruit length and diameter were
determined using a caliper. Fruit weight was determined
using the average of fruits.

Xylem function was measured in developing fruit as pre-
viously described by Ho et al. (1993) and De Freitas et al.
(2011b). Fruits were harvested 15 days after pollination and
held in sealed plastic bags for 20 min with 100 mL of free
water to reduce transpiration until the peduncle of each fruit
was immersed in a solution of 1% Safranin-O at 20 °C under
<20% relative humidity. After 24 h, fruit were cut into three
equal sections at a 90° angle to the peduncle axis. The num-
ber of stained vascular bundles (xylem vessels) was counted
in the placenta and pericarp tissues at the cut surfaces at the
blossom and peduncle end regions of each fruit.

Determination of Leaf Stomatal Conductance, Leaf
Transpiration Rate, and Leaf Water Potential

An infrared gas analyzer (IRGA) model LCpro+ (ADC Bio-
Scientific LTD., Hertfordshire, UK) was used to determine
stomatal conductance (g,, mol H,0 m™ s™!) and transpi-
ration rate (E, mmol H,O m™2 s™'). The evaluations were
accomplished between 9 and 11 am in fully expanded leaves
close to the first cluster at 15 DAP. For the determination
of leaf water potential, we used the equilibrium vapor pres-
sure method by means of a psychrometric technique using a
microvoltmeter model HR-33T (Wescor, Logan, UT, USA)
coupled to Wescor C-52 chambers (Wescor, Logan, UT,
USA).

Total Tissue Ca?*, Mg?*, and K* Contents in Leaf
and Fruit and Ca* Bound to the Cell Wall

Nutrient analysis was accomplished in proximal and distal
fruit tissues, as well as in fully expanded leaves close to the
first fruit cluster. Samples were oven dried at 65 °C until
constant weight. About 500 mg of dry material was added
to 6 mL of nitroperchloric acid (2:1). The digestion was
performed in a plaster block at 240 °C with 15 g of distilled
water. Nutrient quantification was performed by atomic
absorption, according to Malavolta et al. (1997). The results
were expressed as g of Ca>", Mg?*, and K™ per kg of tissue
dry weight.

Calcium bound to the cell wall was determined in fruit
distal tissue after extracting cell-wall material following the
protocol described by Campbell et al. (1990). The quan-
tification of Ca®* was carried out using the same method
described above.

@ Springer

Apoplastic and Cytoplasmic Electrolytic Leakage
and Soluble Ca?* Content in Fruit Tissue

Fruit electrolyte leakage was performed according to the
protocol described by De Freitas et al. (2011a). Three fruit
pericarp discs with 1 cm in diameter and 0.7 cm thickness
were collected in each replication. The discs were then
added to 50 mL tubes containing a 0.4 M mannitol solution,
which were placed on a rotary shaker (CT-165, Cientec).
The conductivity in the mannitol solution was recorded for
6 h at 1 h intervals. Subsequently, the samples were frozen
and thawed three times to determine the total conductivity
(Saltveit 2002).

Apoplastic electrolyte leakage was considered to be the
leakage of ions during the first 3 h of increasing solution
conductivity, representing the ions leaking from the apoplast
space in the tissue (Saltveit 2002). Cytoplasmic electrolyte
leakage was considered to be the last 3 h of increasing solu-
tion conductivity, representing the ions leaking through
the membranes in the tissue (Saltveit 2002). The results
were expressed as the percentage increase of electrolyte
leakage per gram of tissue per hour relative to total tissue
conductivity.

At the end of the 6 h, 1 mL solution of the samples was
collected to determine soluble Ca**, Mg?*, and K* in fruit
tissue according to the approach described above. The
results were expressed as g of Ca2*, Mg?*, and K* per kg of
tissue dry weight.

Ascorbic Acid, MDA, H,0,, and Enzymatic Assays

The determination of ascorbic acid (AsA) was based on the
method described by Carvalho et al. (1990), of reducing
2,6-dichlorophenol indophenol sodium (DCIP) by ascorbic
acid, which has a strong reducing action. Distal fruit tissue
was used, obtained from fruits after 15 DAP.

The measurements of the malondialdehyde (MDA) and
hydrogen peroxide (H,0,) contents were performed in the
same extraction, using distal fruits tissue, collected 15
days after pollination and leaves, collected next to the clus-
ters. The concentration of MDA was calculated from the
absorbance at 535 nm by using the absorbance coefficient
155 mM~! cm™!, following a correction for unspecific tur-
bidity determined by the absorbance at 600 nm (Heath and
Packer 1968).

H,0, was measured spectrophotometrically after reaction
with KI as described by Alexieva et al. (2001), using the
same tissue used for MDA analysis. The reaction was devel-
oped for 1 h in darkness at room temperature and absorbance
measured at 390 nm. The amount of H,0, was calculated
using a standard curve prepared with known concentrations
of H,0,.
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The total protein concentration was determined by the
method of Bradford (1976) using bovine serum albumin
as a standard (Bio-Rad Protein Dye Reagent), using distal
fruits tissue, collected 15 days after pollination and leaves,
collected next to the clusters. Superoxide dismutase (SOD,
E.C. 1.15.1.1) activity was carried out as reported by Con-
stantine and Ries (1977) by the inhibition of NBT chloride
photoreduction. One unit of SOD activity was defined as the
amount of the enzyme required to inhibit the reduction of
NBT by 50% under the specified conditions. SOD activity
of the extracts was expressed as U mg™~! protein.

Catalase (CAT, E.C. 1.11.1.6) activity was determined as
described by Kraus (1995) with modifications as described
by Azevedo et al. (1998). CAT activity was calculated
using an extinction coefficient for H,0, of 39.4 mM~' cm™!
and results were expressed as umol~! min~! mg protein.
Ascorbate peroxidase (APX, E.C. 1.11.1.11) activity was
determined by monitoring the rate of ascorbate oxida-
tion at 290 nm at 30 °C. APX activity was expressed as
umol ™" min~! mg protein (Nakano and Asada 1981).

Experimental Design

The experiment followed a randomized blocks design with
five blocks per treatment and four plants per block. There-
fore, each treatment was composed by a total of 20 plants.
The data were subjected to analysis of variance (ANOVA)
and the averages were compared by the ¢ test with statisti-
cal significance at 5%, using SAS statistical software (Cary,
North Carolina, USA). The data without normal distribution
were analyzed using Friedman’s non-parametric test with
statistical significance at 5%. Pearson’s correlation was
also performed with statistical significance at 5%. Solu-
ble Ca**+APX, Soluble Ca**+AsA, Soluble Ca**+SOD,
Soluble Ca>*+CAT, represent the sum of each respective
average, whereas Soluble Ca**-H, 0O, represents the subtrac-
tion of each respective average. In this case, the data were
centered on the respective average so that, the magnitude of
the values of different parameters had the same weight at
the time of adding or subtracting. Total correlation refers to
all values added or subtracted, depending on its correlation,
inhibiting or triggering BER.

Results

BER Incidence, Biometric, and Physiological
Parameters

The incidence of BER was markedly different between
water- and EBL-treated plants. BER levels in the control
were higher than in EBL-treated plants, with 44.2% of BER
incidence reduction (Fig. 1).

50 q

N w N
o S I=)

BER incidence (%)

5}

Control EBL

Fig. 1 Blossom-end rot (BER) incidence in tomato subject to EBL
treatment. Fruit were harvested at 15 days after pollination. *Aver-
ages are statistically different according to the ¢ test (5%). Data shown
as mean + standard deviation

There were also no differences between leaf area and dry
weight between treatments (Table 1). Fruit length, diameter,
and weight were higher in EBL-treated plants (Table 1).

There were no differences in leaf stomatal conductance,
leaf transpiration, and leaf water potential between treat-
ments (Table 1). Xylem functionality was similar between
treatments (Table 2).

Nutrient Concentration in Leaf and Fruit Tissues
and Membrane Permeability

The Ca** partitioning between leaves and fruits varied with
the treatments (Table 3). In leaves, Ca®* concentration was
higher in control plants, compared to EBL-treated plants.
In fruits, the highest concentration of soluble Ca** was
observed in EBL-treated plants. In proximal and distal fruit
tissue, the highest Ca®* concentration was observed in con-
trol plants. The highest ratio between proximal and distal
part (P/D) was observed in EBL-treated plants. Ca>" bound
to the cell wall in distal fruit tissue was higher in the control
treatment. The ratio between the wall-bound Ca®* and the
soluble Ca**, both in the distal tissue (CW/D), was higher
in control plants (Table 3).

In another way, there were no differences in Mg>* con-
centration between treatments in leaves and fruit proximal
and distal tissue (Table 4). EBL-treated plants had higher
concentrations of soluble Mg>* in comparison to control
plants. K* concentration in leaves, fruit soluble, proximal,
distal tissue (Table 4), and ratio P/D showed no differences
between treatments.

There were no differences between treatments in cyto-
plasmic and apoplastic electrolyte leakage in proximal fruit
tissue (Table 5). However, in the distal fruit tissue, the cyto-
plasmic electrolyte leakage was higher in control plants,
whereas the apoplastic leakage was higher in EBL-treated
plants.
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Table 1 Leaf area per plant, plant dry weight at maximum growth (60 days after planting), fruit length, fruit diameter, and fruit weight subjected
to EBL treatment

Treatments Leaf area (cm?) Dry weight (g) Fruit length (cm) Fruit diameter (cm) Fruit fresh weight (g)
Control 7639.5+787.7* 76.2+17.9 85.9+3.1 54.0+2.3 140.8+12.4

EBL 7626.6 £1597.9 68.1+9.6 92.1+3.5% 57.3+1.28% 165.5+14.4%*

CV % 11.82 16.52 343 2.6 7.02

CV coefficient of variation

*Averages are statistically different according to the ¢ test (5%). Data shown as mean + standard deviation

Table 2 Leaf stomatal conductance (g,), leaf water potential (‘¥w), leaf transpiration (E), and xylem functionality (XF) of tomato subjected to
EBL treatment

Treatments g, (mol H,O m2sh Yw (MPa) E (mmol H,O m2s7h XF proximal XF distal
Control 0.17+0.01 —0.80+0.14* 2.51+0.14%* 17.72+3.95 3.95+4.56
EBL 0.15+0.02 —0.68+0.60 2.32+0.16 17.62+3.92 3.92+5.37
CV % 13.69 28.43 6.7 12.3 14.4

CV coefficient of variation

*Averages are statistically different according to the ¢ test (5%). Data shown as mean + standard deviation

Table 3 Ca®* concentration in leaves (g kg™' DW), soluble, proximal, and distal fruit tissue (g kg™' FW), cell wall-bound Ca** (g kg™! DW) in
tomato subjected to EBL treatment

Treatments Leaf Soluble? Proximal Distal Ca>* P/ID® Cell wall® cw/D?
Control 39.5+1.7% 0.16 +0.01 1.6+0.21* 1.1+0.18* 1.45 0.9+0.19% 0.8
EBL 359+1.0 0.20+0.02%* 1.4+0.15 0.8+0.12 1.75 0.6+0.11 0.7
CV % 3.35 6.28 5.4 16.7 - 17.1 -

CV coefficient of variation

* Averages are statistically different according to the 7 test (5%). Data shown as mean + standard deviation
4Soluble soluble concentration in distal end

°P/D proximal/distal

¢Cell wall Ca>* bound to the cell wall of the distal end

dCW/D cell wall/distal

Table4 Mg?** and K* concentration (g kg™' DW) in leaves, solu-
ble, proximal, and distal fruit tissue from tomatoes subjected to EBL

treatment
Table 5 Electrolytic leakage from tomato fruits (% h™') in tomato
Treatments Leaf Soluble® Proximal  Distal P/D® fruits subjected to EBL treatment
Mg** Treatments ~ CP* AP cp® AD®
Control 57+£0.7 06+0.12 19+03 1.7+0.12 1.12
*
EBL 58407 08+013* 19402 194015 1.0 Control 1.6+031 3.0+048 1.3+0.05 2.710.431<
cvV % 311 759 .02 .45 i EBL 1.5+£043 3.0+059 1.1+0.08 3.2+0.46
K+ CV % 10.11 11.73 11.61 10.11
Control 294459 357+2.1 359+7.1 35.0+33 1.03 CV coefficient of variation
EBL 263+60 37.0x£32 359x47 345x70 1.04 *Averages are statistically different according to the ¢ test (5%). Data
CV % 9.82 7.79 9.87 9.16 - shown as mean + standard deviation
] o 4CP and AP: cytoplasmic and apoplastic leakage from proximal part,
CV coefficient of variation respectively

*Averages are statistically different according to the ¢ test (5%). Data

eI °CD and AD: cytoplasmic and apoplastic leakage from distal part,
shown as mean = standard deviation

respectively
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Fig.2 Ascorbic acid concentration in tomato fruits subjected to EBL
treatment. Fruit were harvested at 15 days after pollination. *Aver-
ages are statistically different according to the 7 test (5%). Data shown
as mean + standard deviation

Antioxidant Concentration and Activity in Leaf
and Fruit Tissues

The concentration of AsA was 8% higher in EBL-treated
plants (Fig. 2). There was no significant difference in malon-
dialdehyde (MDA) content in both leaves and fruits, using
EBL treatment, compared to control (Fig. 3). Hydrogen per-
oxide (H,0,) content decreased in response to EBL treat-
ment in leaves and fruits, being higher in leaves in compari-
son to fruits (Fig. 3).

On the other hand, the activity of SOD, CAT, and APX
was higher in leaves and fruits of EBL-treated plants
(Fig. 4). Focusing on the effects of their activity on fruits,
SOD, CAT, and APX had 16, 12.5, and 18.4% increases after
EBL treatment, respectively (Fig. 5).

Correlation Among Parameters Related to BER
The correlation analysis between the variables evaluated in

the study revealed that some of the physiological variables
correlated positively with BER (Table 6). The variables that

12000 | 25000 |
A B
< 10000 20000 |
o
— 8000 4
15000 4
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= 6000 {
o
E 10000
:; 4000 -
a
= 2000 | 5000 {
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60 - 10
C * D T
50 - J
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‘Tc» 40 1
S °]
I 301
£ 41
= 20 1
o
4
T 10 1 27
0 0
Control EBL Control EBL

Fig.3 Oxidative damage induced by EBL treatment in tomato tis-
sues expressed as MDA content (nmol g=' fresh weight) and
H,0, pumol g~! fresh weight. a MDA content in leaves; b MDA con-
tent in fruits; ¢ H,0, content in leaves; d H,0, content in fruits. Fruit

were harvested at 15 days after pollination. *Averages are statistically
different according to the ¢ test (5%). Data shown as mean + standard
deviation
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Fig.4 Oxidative stress-related enzymes activity in tomato plants and
fruits subjected to EBL treatments. a Superoxide dismutase activity
in leaves; b Superoxide dismutase activity in fruits; ¢ Catalase activ-
ity in leaves; d Catalase activity in fruits; e Ascorbate peroxidase

had positive correlations with BER were cytoplasmic leak-
age, H,0,, soluble Ca**-H,0, cell wall-bound Ca**, CAT,
MDA, SOD, total variables related to triggering BER. The
variables that had negative correlations with BER were AsA,

@ Springer

activity in leaves; f Ascorbate peroxidase activity in fruits. Fruit were
harvested at 15 days after pollination. *Averages are statistically dif-
ferent according to the t-test (5%). Data shown as mean + standard
deviation

apoplastic leakage, soluble Ca’"+APX, soluble Ca**+AsA,
APX, soluble Ca”*, soluble Ca**+SOD, soluble Ca**+CAT,
total variables related to inhibiting BER.
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Fig.5 Suggested physiological and morphological mechanisms regu-
lating BER incidence in tomato varieties with elongated fruits

Discussion

Blossom-end rot (BER) is a disorder that affects grow-
ing fruits. It increases oxidative compounds in fruit distal
tissue, leading to membrane peroxidation and cell-wall
damages, reaching all tissue in a later stage (Aktas et al.
2003). Some hormones, such as ABA, are being used to

reduce BER damage, but focusing on adapting the plants
to a restrictive environment (Riboldi et al. 2018c).

Recently, some hormones started to be tested, with new
approaches, such as brassinosteroids. They are a class of
hormones with many responses in plants and main effects
are related to stress responses (Soares et al. 2016; Shahzad
et al. 2018). In this study, EBL had a great effect on reducing
BER incidence in developing tomato fruit by about 44.2%.
Due to some well-known evidence, it was noted how EBL
may modulate the antioxidant activity in plants (Liu et al.
2009; Xia et al. 2009; Soares et al. 2016). It is possible that
these plants responded by increasing stress-related defenses,
like the antioxidant response.

In addition to oxidative stress factors, other possible
mechanisms related to morphological factors such as fruit
size, weight, and number of xylem functionality, physiologi-
cal factors such as stomatal conductance, water potential,
and transpiration, as well as nutritional factors such as Ca*™,
Mg?*, and K* may also be possibly involved in determining
fruit susceptibility to BER.

Physiological/Morphological and Nutritional Factors
Regulating BER Development

Although EBL is a hormone related to plant growth, its
effect was only observed in the fruit and not on leaf area or
plant dry weight. Ca®* is transported through the transpira-
tory current, reaching the fruit and aerial parts of plants via
the vascular system, especially through the xylem vessels.
As suggested in other studies, functional xylem vessels are
required to maintain proper fruit Ca>* uptake to support the
active growing cells at the fruit distal end (Bondada et al.
2005).

However, the EBL treatment had no effect on the number
of functional xylem vessels in the fruit during growth and
development. Some studies have shown that using BRs in
tissue culture can lead to a greater differentiation of xylem
vessels instead of phloem vessels (Nagata et al. 2001). It is

Table 6 Corrf.:latio.n analysis . Inhibiting BER R* p value Triggering BER R% p value

between physiological analysis

and BER incidence 1t10 C_leLe_E?l_ine AsA -0.32 0.36 Cytoplasmic leakage +0.50 0.14

parameters potentially inhibiting . _

(= R?) or triggering (+ R) BER Apoplastic leakage 0.30 0.4 H,0, +0.32 0.37

in tomato fruits subjected to Soluble Ca**+APX -0.28 0.43 Soluble Ca?*-H,0, +0.32 0.36

EBL treatments Soluble Ca**+AsA -0.27 0.45 Cell wall Ca** +0.29 0.41
APX —0.24 0.49 CAT +0.19 0.59
Soluble CaZ* —0.24 0.5 MDA +0.12 0.74
Soluble Ca**+SOD -0.06 0.85 SOD +0.11 0.76
Soluble Ca**+CAT —-0.03 0.93 Total +0.54 0.33
Total -0.34 0.8

*Positive correlations mean a proportional correlation between two variables and negative correlations
mean inversely proportional correlation between the variables. Pearson at 5%
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also important to consider that xylem and phloem vessel
differentiation depends on other plant hormones and their
final ratio in the tissue, which may explain the lack of EBL
effect on functional xylem vessels.

The effects of EBL controlling plant susceptibility to
environmental stresses are important and this relation is
becoming clearer with new studies (Singh and Shono 2005;
Dobrikova et al. 2014; Soares et al. 2016; Shazad et al.
2018). Nevertheless, it was possible to see that EBL treat-
ment reduced plant transpiration, changing leaf water poten-
tial. The movement of water and solutes in the plant takes
place in response to water potential gradients. Therefore, the
EBL reduction of leaf transpiration and the increase in water
potential observed resulted in lower leaf Ca>* accumulation
in EBL-treated plants.

The content of Ca** in fruits was also affected by EBL
treatment. In proximal and distal fruit parts, water-treated
fruit showed greater tissue Ca?* content. However, recent
studies have shown that the concentration of total Ca>* in
the tissue cannot fully explain BER incidence, because other
pools of Ca”* at the cellular level are also involved (De Frei-
tas et al. 2017).

Despite higher total fruit tissue Ca>* content in water-
treated plants, the content of soluble Ca** in the distal tissue
was higher in EBL-treated fruit and also negatively corre-
lated with BER. Furthermore, the Ca%* bound to the cell
wall was higher in water-treated plants. In that case, higher
Ca** bound to the cell wall reduces the Ca’* available for
other cellular functions such as membrane structure and
stability, potentially increasing fruit susceptibility to BER.
The observed lower Ca>* bound to the cell wall may be the
result of lower pectin methylesterase (PME) activity and/or
lower synthesis of desterified pectin in the tissue in response
to EBL treatment (Peaucelle et al. 2012). De Freitas et al.
(2012) have shown that reducing PME expression and activ-
ity can reduce Ca>* binding to the cell wall, increasing other
pools of Ca*" in the cell and inhibiting BER development
in tomato fruit.

The results of electrolytic leakage confirm some evidence
of maintenance of membrane integrity and soluble Ca>* con-
tent. The electrolytic leakage in the apoplastic portion is
directly related to the solutes present in the apoplast and
that the analytical solution is mixed in the first hours. In
this case, there is a higher apoplast leakage in EBL-treated
plants. Complementing what has already been discussed
above, for Ca®* to protect the membranes it must be in the
soluble form, it becomes immobile once bound to the cell
wall. Thus, there was a lower incidence of BER in EBL-
treated plants, and this can be explained by the higher con-
centration of these solutes in the apoplastic portion, mainly
composed of soluble Ca’*.

In the cytoplasmic leakage, which corresponds to the sim-
plastic portion, there is greater leakage in the control plants
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and at the same time, a higher concentration of Ca>* bound
to the wall and lower soluble Ca®*. It is also the highest
positive correlation, considering the main variables. This
analysis corresponds directly to the stability of the mem-
brane, since they represent the solutes that were mixed in
the solution, passing through the membrane after several
hours of analysis.

BER is believed to be triggered by a cell-localized Ca**
deficiency that leads to plasma membrane damage, cell plas-
molysis, and water-soaked tissue at the blossom-end region
of the fruit that becomes dark-brown, as cells die (Ho and
White 2005; Rached et al. 2018). Therefore, the loss of
integrity of these membranes leads to higher cytoplasmic
leakage.

Then, for the control plants, which exhibited a higher
BER incidence, soluble and cell wall-bound Ca2* levels
regulated the onset of BER. On the other hand, plants treated
with EBL presented lower rates of BER precisely because
they had more stable membranes and soluble Ca>* available
in the apoplastic solution. Therefore, using physiological
and nutritional parameters, it is possible to consider that
the increase of cell wall-bound Ca”", leaf Ca®*, cytoplasmic
distal leakage, could have triggered BER in the fruit and
EBL could lower the electrolytic leakage and improve the
integrity of the membranes, which represented lower BER
incidence in this treatment.

Oxidative Stress-Related Factors Regulating BER
Development

Brassinosteroids can stimulate growth, as well as enhance
the plant’s ability to overcome stresses, such as drought, high
temperatures, or oxidative stress (Liu et al. 2009; Soares
et al. 2016). In this way, EBL could improve the relation-
ship between plants and the environment (Singh and Shono
2005).

In normal conditions, ROS are produced by cell metabo-
lism, which is aggravated under stress conditions. Generally,
in these conditions, there is an increase in the rate of lipid
peroxidation, resulting from an increase in accumulation of
ROS. In this way, some compounds such as singlet oxygen,
hydroxyl radical, anion superoxide, or hydrogen peroxides
attack the unsaturated lipids, especially fatty acids, and cause
their peroxidation (Van Breusegem and Dat 2006), leading
to the liberation of malondialdehyde (MDA) (Yamauchi
et al. 2008).

Brassinosteroids are well known as acting to increase the
antioxidant defense. In this study, EBL treatment increased
ascorbic acid (AsA) content in the fruit, which could help
explaining the reduction in BER incidence in EBL-treated
fruit. Ascorbic acid is the most abundant, powerful, and
water-soluble antioxidant that acts to prevent or minimize
the damage caused by ROS in plants (Athar et al. 2008),
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protecting and preventing membrane damage and leakage.
It is also possible to observe that AsA had the highest nega-
tive correlation, showing the importance of this compound
in inhibiting BER development.

Furthermore, our results show a great increase in the
activity of the enzymes SOD, CAT, and APX, in both
leaves and fruit. Our study reveals an important stimula-
tion of SOD activity in EBL-treated leaves and fruits and a
high increase of CAT activity in EBL-treated tomato leaves
and fruits. APX is part of the ascorbate—glutathione cycle
and is responsible for the elimination of hydrogen peroxide.
The stimulation of the APX activity has been reported to be
triggered as a plant response to stress conditions (Liu et al.
2009; Borges et al. 2018), such as ROS generation during
BER development in fruits. Therefore, these enzymes act
as scavengers, transforming ROS into less dangerous com-
pounds, such as water.

Indeed, studies have shown that high expression and
activity of these enzymes in response to brassinosteroids
resulted in plants more tolerant to stresses such as drought,
oxidative, salt, and some metals conditions (Liu et al. 2009).
In this study, total enzyme activities were considered, but
it is important to bear in mind that most of these enzymes
are present as isoenzymes in a number of plants, including
tomato (Gratdo et al. 2005, 2015; Pompeu et al. 2017; Car-
valho et al. 2018). Therefore, it is not possible to establish
whether the changes observed in this study are due to an
overall change by all isoenzymes of a particular enzyme,
for instance SOD, or to only one or another isoenzyme.
Ongoing research in our laboratories is considering these
possibilities particularly in the case of SOD whose distinct
isoenzymes reallocate in distinct cell compartments, and
therefore respond to specific changes in superoxide in dif-
ferent organelles.

Our study was the first to show the effects of EBL on
different pools of Ca®* at the cellular level as well as on
antioxidant mechanisms inhibiting BER development in fruit
tissue. Therefore, the combined effect of specific pools of
Ca”" and enzymes involved in stress resistance resulted in
fruits less susceptible to BER in response to EBL treatment.

Possible Mechanism Inhibiting BER in Response
to EBL

For many years, researchers have considered BER as a dis-
order caused only by Ca®* depletion in the tissues in the
distal portion of the fruit. However, more recently, it has
been concluded that localized Ca®* deficiency may lead to
membrane leakage, which results in BER symptom develop-
ment (Saure 2014).

Under stress conditions, increasing tissue ROS produc-
tion to levels greater than the cells can metabolize may result
in lipid peroxidation and cell death. In this case, we can

treat BER as a direct consequence of ROS accumulation in
the tissue (Rached et al. 2018), because the main symptoms
observed during the development of the disorder are the loss
of membrane stability and tissue necrosis.

In this study, EBL increased tissue antioxidant capac-
ity, minimizing the effects of ROS on tissue oxidation and
BER incidence. Therefore, spraying the plants with EBL
increased plant resistance to low Ca>* availability and stress
conditions. In addition, EBL reduced cell wall-bound and
increased water-soluble Ca®* contents, as well as increased
AsA leaves, both showing a strong negative correlation with
BER incidence.

Higher activity of oxidative stress-related enzymes such
as APX, CAT, and SOD, possibly helped reducing H,0O,
concentration and lipid peroxidation, which resulted in
the observed lower distal fruit tissue membrane leakage
and BER incidence. Accordingly, the correlation analysis
showed that cytoplasmic leakage and H,0O, levels were the
main factors triggering BER in the fruit. In that case, ROS
possibly acted by disrupting membranes, increasing mem-
brane leakage, and triggering BER in the fruit.

Conclusions

In this study, EBL inhibited BER development in ‘BRS
Montese’ tomato fruit. EBL maintained higher soluble
Ca”* and lower cell wall-bound Ca** contents in fruit tis-
sue, reducing fruit susceptibility to BER. EBL also increased
ascorbic acid content and decreased hydrogen peroxide con-
tents, as well as increased the activity of the three main anti-
oxidant enzymes known as ascorbate peroxidase, catalase,
and superoxide dismutase in fruit tissue.

The results show that not only Ca®* content plays a role in
determining fruit susceptibility to BER, but also the oxida-
tive activity in distal fruit tissues.

Although brassinosteroids are still not commercially used
in agriculture, there is a great potential use of these hor-
mones to improve plant stress resistance and reduce tomato
fruit susceptibility to BER.

Future studies should be carried out to optimize doses,
timing of applications, and possible interactions between
brassinosteroids and other hormones. Furthermore, studies
are also required to better understand the mechanisms regu-
lating the activity of the main antioxidant enzymes, as well
as increasing soluble Ca®* and decreasing cell wall-bound
Ca**.
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