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ABSTRACT - Canola is an important rotation crop for the winter season and the use
of atrazine-resistant hybrids can lead to an increase in yield. This work was aimed at
evaluating the effect of atrazine on photochemical and biochemical processes of
photosynthesis in triazine-resistant canola. The experiment was conducted in a
greenhouse, with triazine-resistant hybrid Hyola® 555TT, in a randomized block design
with three replications. The treatments consisted of application or no application of
atrazine on canola plants. The plants were assessed at one, three, five, and eight
days after application (DAA) for chlorophyll indexes, modulated chlorophyll a
fluorescence and gas exchange. Chlorophyll indexes were higher in canola plants
treated with atrazine. Application of atrazine caused an increase in fluorescence at
steady state and a reduction in quantum efficiency of photosystem II and electron
transport rate, at 1 DAA, and a reduction in photochemical quenching, at 1 and
3 DAA. Lower stomatal conductance, at | DAA, and higher net carbon assimilation
rate, at 8 DAA, were found in plants treated with atrazine. The application of atrazine
temporarily reduces electron transport between photosystems and increases
chlorophyll indexes in resistant canola plants, raising the net carbon assimilation
rate at eight days after application.

Keywords: Brassica napus, chlorophyll indexes, gas exchange, modulated
fluorescence.

RESUMO - A canola é uma importante cultura para rotagdo na estagéo fria, e 0 uso
de hibridos com resisténcia a atrazina pode contribuir para o aumento da
produtividade. Este trabalho objetivou avaliar o efeito da atrazina nos processos
fotoquimicos e bioquimicos da fotossintese em canola resistente a triazinas. O
experimento foi conduzido em casa de vegetacao, com o hibrido resistente a triazina
Hyola® 555TT, no delineamento em blocos casualizados com trés repeticbes. Os
tratamentos consistiram da aplicacdo ou ndo de atrazina nas plantas de canola. As
plantas foram avaliadas em um, trés, cinco e oito dias ap6s a aplicacdo (DAA)
quanto aos indices de clorofila, fluorescéncia modulada da clorofila a e troca de
gases. Os indices de clorofila foram maiores nas plantas de canola tratadas com
atrazina. A aplicacdo deste herbicida ocasionou aumento na fluorescéncia em estado
estavel e reducéo na eficiéncia quantica do fotossistema Il e na taxa de transporte de
elétrons, em 1 DAA, bem como redugdo na dissipacgéo fotoquimica, em 1 e 3 DAA.
Menor condutancia estomatica, em 1 DAA, e maior taxa de assimilacéo liquida de
carbono, em 8 DAA, foram observados em plantas tratadas com atrazina. A aplicacdo
de atrazina temporariamente o transporte de elétrons entre os fotossistemas e aumenta
os indices de clorofila em plantas de canola resistentes, aumentando a taxa de
assimilacao liquida de carbono aos oito dias apds a aplicacao.

Palavras-chave: Brassica napus, indices de clorofila, troca de gases, fluorescéncia
modulada.
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INTRODUCTION

Control of invasive weeds in canola (Brassica napus L. var. oleifera), especially of turnip,
which belongs to the same family (Brassicaceae), affects development and reduces yield. Thus,
use of triazine-resistant (TT) hybrids is an important alternative for weed management. In
Brazil, these hybrids are still being tested and will likely be registered in forthcoming years.

Triazine-resistant canola was originated from Brassica rapa L. by selection in response to
herbicide spraying in the field and stable gene introgression into the crop through recurrent
backcrossing between similar weeds and the crop (Tranel and Horvath, 2009). There are at least
eight mutations at the target site for triazine resistance, but replacement of serine with glycine
at codon 264 of the psbA gene, which encodes for protein D1, is the most common type of mutation
found in weeds (Friesen and Powles, 2007). This type of resistance takes place because of a
mutation in the chloroplast genome, where the psbA gene is encoded; thus, it is 100% maternally
inherited and can only be disseminated by seeds, rather than by pollen (Friesen and Powles,
2007; Tranel and Horvath, 2009).

Triazines bind to protein D1 (a stable secondary electron acceptor of photosystem II (PSII)
found in the thylakoid membrane at the quinone B binding site), stopping the flow of electrons
and causing the accumulation of free radicals (Friesen and Powles, 2007). Another atrazine
(6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) binding site — protein D2 — was
reported to exist, which partially inhibits the recombination reaction of ‘S’ charge states of the
oxygen-evolving system (Jursinic et al., 1991). Because of the low affinity of this site, only small
amounts of atrazine will bind to it, causing negligible effects and playing a secondary role in
susceptible plants, in which the higher affinity site is that of protein D1 (Jursinic et al., 1991;
Walsh et al., 2012).

Leaf chlorophyll content is important to estimate the photosynthetic potential, as it is
responsible for light energy absorption and transfer. Changes in physiological parameters of
plants exposed to stress (e.g., to herbicides) can be detected by certain methods, such as chlorophyll
afluorescence and gas exchange measurements (Sousa et al., 2014; Kalaji et al., 2016). Chlorophyll
a fluorescence provides information about pigment complexes, their organization, excitation
energy transfer between them, and several PSII-specific electron transfer reactions (Stirbet and
Govindjee, 2011). Thus, damages to the photosynthetic apparatus can be detected, even when
the symptom is not visible yet (Girotto et al., 2010).

Therefore, knowledge of the primary metabolism in resistant plants exposed or not to atrazine
herbicide is crucial to assess the occurrence of plant damage as a result of herbicide application.
For this reason, the aim of this study was to investigate the action of atrazine on photochemical
and biochemical processes of photosynthesis in triazine-resistant canola plants.

MATERIAL AND METHODS

The experiment was performed in a greenhouse, at the Embrapa Trigo, Passo Fundo, RS,
Brazil, using canola hybrid Hyola® S55TT, which is resistant to triazine herbicides, in a randomized
block design with three replications. The greenhouse was set to the temperature of 20 °C, with
natural lightning (approx. 13:40 hours of photoperiod). Three plants were sown in 4.8 liter pots
filled with peat substrate (Plantas Garden Plus Turfa Fértil), and each pot was regarded as an
experimental unit. Irrigation was performed manually, every two days, in the trays in which the
pots had been placed, maintaining a water depth of approximately 2 cm.

Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) was applied at the dose
of 2 kg of active ingredient per ha!, when canola plants were at the four-leaf stage, using a CO,
backpack sprayer with a spraying volume of 120 L ha!. Treatments consisted of the application

or not (control) of atrazine. The evaluations were performed at one, three, five, and eight days
after application (DAA).

Chlorophyll indexes

Chlorophyll a and b and total chlorophyll indexes were estimated using a chlorophyll meter
(Falker, model ClorofiLog) in three leaves of each plant, in a total of 27 measurements per
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treatment, with values expressed as Falker chlorophyll index (FCI). FCI is a relative chlorophyll
content value based on absorbance and reflectance correlations. The chlorophyll a/b ratio was
also calculated.

Modulated chlorophyll a fluorescence

A fluorescence chamber coupled to an infrared gas meter (LI-COR, model LI-6400-XT) was
used to assess modulated fluorescence. The measurements were performed according to the
methodology proposed by Sousa et al. (2014) with modifications. Three measurements were
performed per treatment, on completely expanded leaves. The leaves were stored in the dark for
20 min. After that, modulated light was emitted at 0.2 umol m?2 s!at 0.25 kHz in order to estimate
initial fluorescence (F ). Maximal fluorescence (F,)) was calculated after a saturating light pulse
of 8000 pmol m= s

Thereafter, actinic lighting (light absorbed by the photosynthetic apparatus which causes the
transport of electrons) was provided with a photosynthetically active radiation of 100 pumol m s-!
for stabilization of photosynthetic rates. Afterwards, a sequence of 20 pulses of saturating light
(8000 umol m™ s!) was applied at 30-second intervals. During each pulse, the following parameters
were obtained or calculated: F,’ (maximal fluorescence in a light-adapted state); F,’ (minimal
fluorescence measured immediately after actinic light was switched off); Fy (fluorescence
obtained in a steady-state or terminal fluorescence); F,/F,, (maximum photochemical efficiency)
[F,/F,=(F,F,)/F,l; F,//F, (actual maximum photochemical efficiency) [F,’/F,/=(F,,~F,)/F\T; Pps;
(quantum efficiency of PSII) [®, = (F,,~F,)/F,/; ETR (electron transport rate) [ETR=®,, . f . 1.4,
wherein @, corresponds to the quantum efficiency of PSII, f, the fraction of absorbed photons
that are used by PSII, set as 0.50 in this study, I, incident photon flux density (umol m= s!), and
4, leaf absorbance, set as 0.84; qP (photochemical quenching) [qP = (F,/~F()/(F,,/-F,)]; aN
(non-photochemical quenching) [QN=(F,~F,)/ (F,~F,)]; and NPQ (non-photochemical quenching)
[NPQ=(F,~-F,,)/F,,/ (Baker, 2008; Sousa et al., 2014).

Gas exchange

Stomatal conductance (g ), net carbon assimilation rate (A;), and transpiration (E) were
measured using the largest leaf of two plants from each pot, in a total of six measurements per
treatment. The measurements were performed using an infrared gas meter, with a photosynthetic
photon flux density of 1600 umol m= s, in a growth chamber (LI-COR, model LI-6400-2B), at an
atmospheric CO, concentration (400 parts-per-million). Water-use efficiency (WUE) was also
calculated [WUE=A /E].

Statistical analysis

The standard deviation of the measurements was used to compare the means of the
treatments for the fluorescence variables evaluated during emission of saturating light pulses.
Analysis of variance (p<0.05) was performed for the other variables and, when there was statistical
significance, Tukey’s test (p<0.05) was used to compare the means, considering both interactions
within each assessment period and the mean of assessment periods in the absence of interaction.

RESULTS AND DISCUSSION
Chlorophyll indexes

No interaction was found among the factors (application of atrazine and assessment periods)
associated with chlorophyll index. However, a separate effect of treatments was detected, showing
stronger effects for all variables when atrazine was used (Table 1). Chlorophyll a and b and total
chlorophyll indexes were higher, yielding 4.21, 10.89, and 5.51% in atrazine treatments.

The structure of the chlorophyll molecule has four nitrogen (N) atoms; therefore, higher
amounts of this molecule may be associated with an increase in nitrogen metabolism in the
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Table 1 - Chlorophyll a and b, chlorophyll a/b ratio and total chlorophyll indexes in Hyola® 555TT canola hybrid for treatments
with and without atrazine with means for assessment periods

Treatment Chlorophyll a Chlorophyll b Chlorophyll a/b Total Chlorophyll
With atrazine 26.99 a 6.72 a 4.04b 33.72a
Without atrazine 2590 b 6.06 b 430a 31.96 b
CV (%) 4.01 6.82 3.41 4.40

Means followed by different letters in the column are statistically different according to Tukey’s test (p<0.05).

plant. Some reports indicate an increase in chlorophyll content in corn after application of atrazine
(Rao, 1982). The use of simazine (6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine), a PSII
inhibitor from the triazine group, boosted the growth and nitrogen content in peach (Prunus
persica (L.) Batsch) and apple (Malus domestica Borkh.) (Ries et al., 1963). These effects could
result from the increase in nitrate reductase activity or from auxin-like activity (Ries et al.,
1967; Copping et al., 1972). An increase in the activity of this enzyme has been described in rye
after simazine application, indicating that this herbicide can elevate nitrate uptake or increase
enzyme synthesis or activation (Ries et al., 1967). Nitrate reductase reduces nitrate (NO,),
taken up by the roots, to nitrite (NO,). Later, nitrite is converted by nitrite reductase to ammonia
(NH,*), which is then converted into amino acids and proteins (Taiz and Zeiger, 2013).

There are some reports on higher chlorophyll contents in atrazine-treated plants, which is
known as ‘greening’ effect (Ebert and Dumford, 1976). An increase in total chlorophyll content
was described for atrazine-treated barley (Hordeum vulgare L.) leaves, which the authors attributed
to a stimulatory effect of the herbicide on the enzyme involved in chlorophyll biosynthesis
(Klendgen, 1979 apud Flora et al., 2013). In a study carried out with peas treated with triazine
herbicides, there was an increase in the activity of aminolevulinic acid dehydratase, which
acts in the biosynthesis of porphyrins, heme compounds and chlorophyll (Wu et al., 1971).

The chlorophyll a/ b ratio was lower in plants treated with atrazine, because of a considerable
increase of chlorophyll b in relative terms (4.2% of increase in chlorophyll a; 10.9% of increase
in chlorophyll b). When the total chlorophyll index remains unchanged and the chlorophyll a/b
ratio decreases, it is said that the plant adapted to less light energy intensity (shade), which
points to lower capacity of plants to deal with excessive light energy (Rensen and Vredenberg,
2011).

However, given that the total chlorophyll index also increased in response to atrazine in
resistant canola plants (Table 1), the lower chlorophyll a/ b ratio will not cause damage to plants
exposed to excessive light. Therefore, it cannot be said that atrazine-resistant canola plants are
more sensitive to photoinhibition when exposed to this herbicide as both chlorophyll a and b
indexes increased, allowing plants to take up more light energy.

Modulated chlorophyll a fluorescence

With respect to F, F,, F,,and F,’, the modulated fluorescence of chlorophyll a showed no
interaction between factors and no differences between treatments (with and without atrazine)
(Figure 1 and Figure 2). Initial fluorescence (F,and F,) was measured using oxidized Q, and
maximal fluorescence (F,, and F,;)) using reduced Q,. However, in dark-adapted leaves, from which
parameters F and F,, are obtained, non-photochemical quenching is inactive; in comparison, in
light-adapted leaves, from which parameters F,” and F,’ are obtained, quenching is active (Koblizek
et al., 2001).

Steady-state fluorescence - F¢ — was different for treatments at 1 DAA (Figure 2A), in which
a higher F was found with the atrazine treatment. In other assessment periods, this difference
decreased, and there was no difference between treatments (Figures 2B to 2D).

F, corresponds to the energy released by the electrons that moved beyond the quinone
quencher in the electron transport chain, on the path to photosystem I, i.e., it points to the loss
of energy by electrons between photosystems II and I (Vieira et al., 2010). Therefore, it may be
considered that the application of atrazine in resistant canola plants plays a role at this stage of
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which indicates that the application of atrazine
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center nor blocks the flow of electrons (Figure 1
and Figure 2).
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= Regarding maximum photochemical
0.6 1 efficiency - F,/F,,— and actual photochemical
0.5 - efficiency - F,//F,;’ —, there were no differences
0.4 | between treatments (Figure 1 and Figure 3).
' Several authors concluded that F, /F, is not a
0.3 - good indicator of stress in the photosynthetic
02 | apparatus, as there were no differences
between the control treatment and several

1 ' 3 ' 5 ' 8

500 -

0.8 -

0.1 1 stressors (Mehta et al., 2010; Sousa et al.,
2014). In the present study, F, /F,, ranged from
0.66 to 0.76 (Figure 1). These values are lower
Time (days after application) than those regarded as normal (0.75 to 0.85)
for plants not subjected to stress (Bolhar-
='With atrazine Without atrazine Nordenkampf et al., 1989).

Maximum photochemical efficiency (F,/F,,)

0.0 -

Actual photochemical efficiency (F,’/F,,) is
obtained from F’ and F,’ measurements made

Vertical bars indicate standard deviations.

Figure 1 - Initial fluorescence (F,) (A) and maximal when non-photochemical quenching is active.
fluorescence (F,,) (B) for chlorophyll a and maximum Hence, this parameter is useful for evaluating
photochemical efficiency (F,/F,,) (C) in Hyola® 555TT canola the contribution of non—photochemical
hybrid for treatments with and without atrazine at one, three, quenching to changes in the operating
five, and eight days after application. efficiency of PSII in light-adapted leaves (Baker,

2008). Therefore, mnon-photochemical
quenching, which represents the excitation energy lost in the form of heat, was not influenced
by the application of atrazine in resistant canola plants.

F,’/F, ranged from 0.65 to 0.75 for plants not exposed to atrazine treatment, in all light
pulses (Figure 3). Low values of F,’/F,’ are expected for hybrid Hyola® 555TT, since the mechanism
of resistance to triazines in this hybrid leads to a smaller PSII activity (Rensen and Vredenberg,
2011). The mutant D1 protein causes charge recombination in PSII instead of the use of electrons
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Figure 2 - Initial fluorescence (F,’), maximal fluorescence (F,,”), and steady-state fluorescence (F,) for chlorophyll a in Hyola®
S55TT canola hybrid for treatments with and without atrazine and light flashes at one (A), three (B), five (C), and eight (D) days
after application.

in linear transport, which would reduce nicotinamide adenine dinucleotide phosphate in the
oxidized form (NADP*) and generate ATP, for later use in carbon reduction reactions (Fuerst and
Norman, 1991).

Quantum efficiency of PSII - @, — was different for treatments at 1 DAA (Figure 3A). Higher
@, was found in the atrazine-free treatment. This may be explained by the estimation method,
which relies on Fg values; it also differed between treatments in this assessment period.
Therefore, an increase in steady-state fluorescence in atrazine-treated plants led to lower
quantum efficiency of PSII. In other periods, the differences between treatments decreased and
were no longer significant (Figure 3B to 3D).

@, measures the rate of light absorbed by PSlI-associated chlorophyll used in the
photochemical process and may provide an estimate of the linear electron transport rate and of
total photosynthesis (Maxuell and Johnson, 2000). When there are changes in this parameter,
net CO, assimilation rates are also expected to differ.

Corroborating the results obtained for @, ,, the electron transport rate - ETR — was lower for
the treatment without atrazine, at 1 DAA, while in the other periods, treatments did not differ
(Figure 4). The ETR in treatments with and without atrazine was, respectively, 18.2 and 19.2 at
1 DAA, 23.1 and 24.1 at 3 DAA, 21.3 and 22.1 at 5 DAA, and 25.1 and 25.2 at 8 DAA, on the
average of light pulses (data not shown). Such values correspond to a reduction in ETR, as a
result of atrazine application, of 5.5, 4.3, 3.5, and 0.1% for the evaluation periods of 1, 3, 5, and
8 DAA, respectively.
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Figure 3 - Actual maximum photochemical efficiency (F,’/F,,”) and quantum efficiency of photosystem II (®,, ) in
Hyola® 555TT canola hybrid for treatments with and without atrazine and light flashes at one (A), three (B), five (C), and
eight (D) days after application.

Both gN and NPQ did not show differences between treatments in any of the assessment
periods (Figure SA to SD). Non-photochemical quenching (NPQ) is a photoprotective process that
removes excess excitation energy within chlorophyll-containing complexes by means of heat
dissipation, preventing the formation of damaging free radicals (Murchie and Lawson, 2013).
This process is regulated by a protein, PsbS, and the xanthophyll cycle (Kiss et al., 2008; Murchie
and Niyogi, 2011; Ruban et al., 2012).

Acidification of the thylakoid lumen leads to protonation of PsbS and formation of zeaxanthin,
changing the conformation of the PSII antenna, thereby inducing quenching of excitation energy
(Ruban et al., 2012). Because NPQ requires knowledge of the dark-adapted values (F, and F,)), if
the value of F,,/F,, is lower than 0.83, which occurred in the present study, the NPQ value should
be treated with caution, especially when comparing leaves with different F, /F,, values (Murchie
and Lawson, 2013).

Photochemical quenching (qP) differed at 1 and 3 DAA and was higher in the atrazine-free
treatment for all light pulses (Figure S5A and 5B). Again, the influence of F on the other calculated
parameters is perceptible. Photochemical quenching uses Fy for its estimation while non-
photochemical quenching (qN and NPQ) does not take this variable into consideration. The level
of photochemical quenching of PSII indicates the proportion of reaction centers that are open, in
a non-linear relationship (Murchie and Lawson, 2013).

Gas exchange

Regarding gas exchange at 1 DAA, there were differences between treatments for the variable
g, (Figure 6A). The atrazine-free treatment showed higher stomatal conductance, outperforming
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Figure 6 - Stomatal conductance (A), net CO, assimilation (B), transpiration (C), and water-use efficiency (D) in Hyola® 555TT
canola hybrid for treatments with and without atrazine at one, three, five, and eight days after application.

the other treatment by 34.37%. The increase in stomatal conductance leads to higher CO,
diffusion within leaves, thereby increasing the photosynthetic rate, thus possibly augmenting
biomass accumulation and yield (Taiz and Zeiger, 2013).

Despite the difference found in g, there was no influence on A at 1 DAA and statistical
differences between treatments were not detected, even though higher rates were found for the
atrazine-free treatment (Figure 6B). The higher stomatal conductance in plants not subjected to
atrazine treatment was detected only at 1 DAA; thus, it may not have been sufficient to change
A, . At 3 and 5 DAA, treatments did not differ for the assessed gas exchange parameters, indicating
that the effect of atrazine on stomatal conductance did not last and did not interfere with the
other primary metabolism parameters (Figure 0).

Plants treated with atrazine showed a higher A, value at 8 DAA, which was 18.37% higher
than in the atrazine-free treatment (Figure 6B). This increase in the photosynthetic rate in
plants treated may demonstrate recovery of the plant from the stresses caused by the herbicide
or be a result of the increase in chlorophyll indexes.

Atrazine increased chlorophyll indexes in resistant canola plants, which may be the result
of an increase in nitrate reductase activity or of the stimulatory effect of the herbicide on the
enzyme responsible for chlorophyll biosynthesis. As observed in chlorophyll a fluorescence, atrazine
increased steady-state fluorescence and reduced quantum efficiency of PSII and electron transport
rate at 1 DAA, in addition to reducing photochemical quenching at 1 and 3 DAA (Figures 2 to 5).
These results indicate the interference of atrazine in electron transport between the
photosystems, even though the hybrid is resistant to this herbicide.
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The higher net carbon assimilation rate at 8 DAA in plants exposed to atrazine treatment
may be explained by the higher chlorophyll indexes in these plants in all assessment periods.
Higher chlorophyll indexes improve the capacity of plants to take up light energy which is later
used to produce ATP and NADPH - potent reducing agents which are crucial for carbon reduction
reactions.

In this paper, the authors reported the effects of atrazine application on photochemical and
biochemical processes in a resistant canola hybrid. In another work evaluating more herbicides
and canola hybrids, in a greenhouse, non-treated plants of the hybrid Hyola® 5S5TT presented
20% more shoot dry matter than those that received the treatment with atrazine (2 kg i.a. ha’l),
at 29 days after application, despite no differences were found according to the t test (p=0.07)
(authors, data not published).

In conclusion, the application of atrazine temporarily reduces electron transport between
photosystems II and I and increases chlorophyll indexes in resistant canola plants, raising the
net carbon assimilation rate at eight days after treatment. More studies are needed to clarify
the effects of atrazine on dry matter production at maturity and grain yield by triazine-resistant
canola plants, as well as evaluate other triazine-resistant canola hybrids.
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