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Measurements of transpiration in cultivated plants are of utmost importance, especially in semi-arid 
regions where there is low water availability with this, the present work aimed to determine daily 
transpiration, root distribution, and soil water extraction of ‘Tahiti’ lime plant under different micro-
sprinkler placements in semi-arid conditions of northern Minas Gerais state. We assessed soil water 
balance, root system and sap flow of plants irrigated by three different micro-sprinklers setups: T1 - a 
micro sprinkler with 35 L h

-1
 flow rate located between two plants and along the plant row; T2 - a micro 

sprinkler with 70 L h
-1 

flow rate watering and between two plants, along the plant row; and T3 - a micro 
sprinkler with 35 L h

-1
 flow rate located 0.3 m from the plant. Treatments changed root distribution, soil 

water extraction, and transpiration of Tahiti lime. In T2 water loss was lower in upper soil layers than in 
the remaining treatments. Sap flow in T2 was higher than in T3 and T1, which indicates better water use 
in T2. 
 
Key words: Sap flow, root, soil moisture. 

 
 
INTRODUCTION 
 
Transpiration measurements are of utmost importance, 
especially in semi-arid regions where low water availability 
is prominent as consequence of lacking and irregular 
rainfall. Climate change has medium to long-term effects 
on water resources and reduces water availability or the 
liability of water supply to  numerous  areas  where  water 

scarcity is already faced (Consoli et al., 2017). Therefore, 
precision is to be prioritized in irrigation management so 
as to increase water-use efficiency.  

Transpiration rates are directly related to leaf area (Lai, 
2015) but canopy geometry and planting can also 
influence transpiration as  these can affect the interaction 
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between transpiration and other environment factors, 
such as relative humidity, temperature, wind, solar 
radiation, and soil water availability. Soil water content 
and climate alter water status of plants, gas exchanges, 
and leaf temperature, influencing growth, development, 
and overall yield (Santos et al., 2013). 

Root-zone drying leads to stomatal closure, even in 
turgid leaves, to decrease transpiration water loss (Silva 
et al., 2015; Sampaio et al., 2010; 2014). Stomatal 
closure is linked to chemical signaling, especially abscisic 
acid (ABA), and other signals, such as pH and 
redistribution of inorganic ions from roots to shoot, as a 
response to water deficit. Lima et al. (2015) reported that 
water deficit as a result of alternate partial root-zone 
drying leads to higher ABA production in papaya trees. 
Santos et al. (2013) reported that either full or partial 
water deficit reduce photo-synthesis rates, transpiration, 
and stomatal conductance in ‘Tommy Atkins’ mangoes.  

On the other hand, irrigation setup on the field changes 
water supply to plants and influences water-saving 
irrigation strategies, especially in warmer regions. Coelho 
et al. (2016) observed that using micro-sprinklers with 
different flow rates and wetting diameters affected leaf 
area, root distribution, and yield of ‘Grand Nain’ bananas. 

Root distribution directly influences water and nutrient 
uptake by plants. According to Taiz and Zieger (2013), 
plants’ roots are predominately superficial in well-watered 
soils; though, superficial roots decrease and deeper roots 
increase when water is depleted close to soil surface. 
Deeper roots growing towards soil water can be 
considered a second line of plant defense from incorrect 
irrigation management. Accordingly, knowing the root 
system distribution and its water-extracting patterns 
allows the use of more adequate crop practices, such as 
irrigation management and fertigation (Santos et al., 
2016), which might provide increases in water-use 
efficiency and nutrients uptake by plants.  

Several methods have been proposed to quantify water 
demand of plants. Among the alternative methods to 
determine transpiration of citrus plants, those that are 
based on heating plant stems (stem heat balance, 
thermal dissipation, and heat pulse methods) have 
advanced the knowledge of water relations and provided 
good transpiration estimates (Boehringer et al., 2013; 
Pinto Jr et al., 2013; Marin et al., 2008; Coelho Filho et 
al., 2005). As advantages, these methods are non-
destructive (Hernandez-Santana et al., 2016), need no 
calibration, are easy to install, and allow monitoring 
numerous plants simultaneously.  

A few studies have been done aiming at quantifying the 
transpiration of ‘Tahiti’ lime by using stem heat balance 
method (Vellame et al., 2012; Marin, 2008; Rojas et al., 
2007; Coelho Filho et al., 2004). However, these studies 
have not addressed the relation between sap flow, water 
extraction by roots, and the irrigation system in place. 

Therefore, the objective of this work was to determine 
daily transpiration, root distribution, and  water  extraction  

 
 
 
 
patterns of ‘Tahiti’ lime under different micro-sprinkler 
placements and grown in semi-arid conditions. 
 
 
MATERIAL AND METHODS 

 
The work was carried out at an Experimental Farm of Mocambinho 
belonging to the Agricultural Research Enterprise of Minas Gerais 
(EPAMIG), located at the municipality of Jaíba, Minas Gerais state, 
at 15º32'S and 43º46'W. Soil at the experimental area is a Typic 
Quartzipisamment (90% sand, 2% silt, 8% clay, and mean density 
of 1.62 kg dm-3), in a BSwh climate (savanna hot climate, according 
to Köppen classification), with rainy summers and dry winters. 
‘Tahiti’ lime, Citrus latifolia Tanaka, seedlings were grafted onto 
four-year old Rangpur lime Citrus limonia Osbeck) at a spacing of 5 
× 7 m. Plant rows were east-west oriented and plants were irrigated 
daily.  

The experimental design was randomized blocks in which each 
experimental unit consisted of three measurement plants. We 
assessed three micro sprinkler setups: T1 - a micro sprinkler with 
35 L h-1 flow rate located 2.5 m from the plant  and along the plant 
row, following a plant-emitter-plant setup; T2 - a micro sprinkler with 
70 L h-1 flow rate watering two plants, located 2.5 m from one 
another, along the plant row, following a plant-emitter-plant-plant-
emitter-plant setup; and T3 - a micro sprinkler with 35 L h-1 flow rate 
located 0.3 m from the plant, along the plant row. Pressure-
compensating micro sprinklers were used to avoid fluctuations in 
rate flows. 

Crop practices for citrus were used when carrying out the 
experiment as recommended by Coelho et al. (2004). Irrigation 
scheduling was based on reference evapotranspiration (ETo), 
computed by Penman-Monteith method using daily data of a 
weather station near the experiment site and crop coefficients to 
determine crop evapotranspiration (ETc) (Doorenbos and Pruitt, 
1977). Therefore, each tree was given the same amount of water, 
but it was applied differently. Cumulative rainfall over the study, 
from May to December, was 23.5 mm. Mean ETo was 4.4 mm day-1 
and its lowest and highest measurements were 2.1 and 7.0 mm 
day-1, respectively. Mean solar radiation was 19.4 MJ m-2 day-1 and 
its lowest and highest measurements were 9.0 and 26.4 MJ m-2 
day-1, respectively. 

Water movement within the plant was measured by calculating 
sap flow using the stem heat balance approach, as recommended 
by Baker and Van Bavel (1987). The heat supplied at a constant 
rate (Pin) to sampled volume can be split into different heat fluxes 
(Equation 1).  
 

fsvrin QQQQP 
  

 
                                                     (1) 

 
where, Qr is the radial heat loss from the sensor, Qv is the heat 
transported axially by the stem both above and below the control 
volume, Qs is the stored heat by unit time at heated section, and Qf 
is the heat transported by convection through plant sap. Potency 
applied to the heating element was measured following Equation 2. 
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where, V is the voltage (volt) and R is the resistance (ohm) of 

heating elements. 111.9, 111.6, 90.8, and 60.6 corresponded to 
models SGB9, SGB13, SGB16, and SGB19, respectively. Radial 
outward flux (Qr) was calculated from the thermal conductivity of a 
cork   (Ksh),   which   consisted   of   a   radial   flow  gauge,  from  the  



 

 
 
 
 
difference in temperature (ΔT) adjacent to the heating element, and 
from the outer surface of the cork, calculated by a thermopile with 
alternate joints (flow gauge) attached to the heater (Equation 3). 
 
 

TKQ shr   
                                                                            (3)

  
Ksh was calculated at dawn (4 to 5 a.m.) when sap flow was zero or 
close to zero. Axial fluxes (Qv) were calculated with Equation 4. 
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where, A is the cross-sectional area of heated section of the stem 
and Kst is the thermal conductivity of the stem, which is considered 
0.42 Wm-1K-1 according to Steinberg et al., (1989), ΔTc and ΔTb 
are related to upstream and downstream temperature gradient from 
heated section of the stem, and Δz is the distance between two 
thermocouple junctions attached above and below the thermal 
sheath. According to Weibel and Vos (1994) and Trejo-Chandia et 
al. (1997) Qs has little contribution to sap flow estimates of ‘Tahiti’ 
lime seedlings, so it can be disregarded without affecting estimates; 
therefore, flow rate of sap (SF) was calculated by Equation 5. 
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where, cp is the specific heat capacity of sap (cp = 4.186 kJ kg-1 K-

1) and dT is the difference in sap temperature between the upper 
and lower limits of the heated section. 

Sensors were installed in four branches of four measurement 
plants of each treatment, in the north, south, east, and west 
quadrants, at an approximate height of 1.5 m from the canopy, as 
recommended by Mars et al. (1994), to measure physiological 
parameters. Daily transpiration was calculated by dividing total sap 
flow by total leaf area of each plant. Total leaf area was estimated 
by multiplying the total number of leaves of each measurement 
plant by the mean leaf surface area. The latter was estimated by 
measuring the length and width of 10% of all leaves (Coelho Filho 
et al., 2005). 

Water extraction by crops and percolation were measured at 
each treatment by soil water balance. Soil content was measured 
with time-domain reflectometry-TDR 100 (Campbell Scientifics) 
operating six multiplexers allowing the reading of 48 sensors 
simultaneously. TDR probes were installed in two trenches two 
months prior to readings. One trench was dug along the plant row 
and the other perpendicular to the row, with a plant in the center. 
Probes were positioned in these trenches so as to form a 0.25 × 
0.25 m grid (profile) reaching radially a maximum distance of 2.5 
and 2.0 m from the plant, longitudinal and perpendicular to plant 
row directions, respectively and at a maximum depth of 1.0 m. Data 
were collected every 10 min. The area occupied by the plant with 
the two trenches was covered with white plastic material to avoid 
soil evaporation. 

Differences between water contents in the profiles one hour after 
irrigation and immediately before the next irrigation event were 
used to calculate, according to Coelho and Or (1996), the extracted 
water in the soil profile. Deep percolated water contents in the 
deepest monitored soil layer below 0.75 m were obtained every 
hour after irrigation up to right before the next irrigation event.  
Since intervals between measurements were the same, deep 
percolation occurring in the two profiles from one hour after 
irrigation up to right before the start of the next irrigation was 
measured by integrating numerically percolated water contents 
(Equation 6) during the time between two irrigation events. 
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where, q is the flow rate (m3 m-3 h-1); t1 is the time immediately after 
irrigation and t2 is the time before the next irrigation event. The flow 
rate q was determined by TDR redings in the deepest layer during 
time t, one-hour period (θj-1 and θj ), where θ is given in m3 m-3 
(Equation 7). 
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                                                                         (7) 
 
Soil samples were collected to assess roots with a soil auger made 
of galvanized iron measuring 0.1 m in diameter and 1.30 m in 
length. Sampling was done where TDR probes were installed in 
three plants at each treatment. Soil was rinsed off the sample with 
the aid of 0.5 and 1.0 mm sieves mesh, so that only roots 
remained. Then, roots were scanned at a resolution of 600 dpi, 
100% scale, and intensity of 100 to 130% for thicker roots; and 43 
to 62% for finer roots. These files were processed with the software 
Rootedge (Kaspar and Ewing, 1997) to determine root lengths and 
diameters. Roots were sorted in six diameter groups as described 
by Santos et al. (2014). Root lengths were added up to obtain total 
root length in the different soil layers. To do so, we used the 
average of three plants per treatments. 

  
 
RESULTS AND DISCUSSION 
 
Figure 1T1a shows that in treatment T1 the highest 
percentage of water extraction by crop (WEC) was within 
the layer 0 - 0.375 m, with more than 70% of the total 
WEC. By adding up the percentage of WEC, we can 
observe that up to 0.625 m, more than 90% of water was 
extracted, both longitudinally (Figure 1T1a) and 
transversally (Figure 1T1b). The larger extraction of water 
in the shallower layer was due mainly because of soil 
water availability that was near 100% within the layer 0 to 
0.375 m and reduced to 80% up to 0.60 m depth. Also 
64% of very fine and fine roots (diamaeter smaller than 2 
mm) were within the same soil layer and 82% within the 
layer 0 to 0.625 m. Figure 1T2b shows that in treatment T2 
the highest percentage of WEC, both longitudinally and 
transversally, was within the layer 0.125 to 0.375 m, 
extracting about 40% of the total. As for the total 
percentage of WEC in relation to depth, we can see that 
more than 85% of water was extracted up to 0.625 m 
deep. In treatment T2, the increase in the percentage of 
WEC in greater depths, compared to the remaining 
treatments, might be related to the distribution of total 
available water for this treatment in these deep layers. 
Soil water availability was about 100% within the layer 
0.125 to 0.375 m and about 90% at 0.625 m depth. Most 
of roots, particularly, very fine and fine (81%) were within 
the layer 0 to 0.625 m.  Both Figures 1T3a and 1T3b

 
show 

that plants of treatment T3 exhibit higher WEC in 
longitudinal and transversal profiles, in 0 to 0.375 m, in 
which 70% of the total is extracted. Adding up the 
percentages  of  WEC  in  relation  to depth, 90% of water  
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Figure 1. Total water loss in the profile, longitudinally (a) and transversally (b) to the plant row, in treatments T1, T2, 
and T3, as a function of depth.  

 
 
 
was extracted up to 0.625 m, in longitudinal and 
transversal profiles. Results of this treatment did not differ 
from those of T1 and T2, mainly because of the root 
distribution, in which very fine and fine roots (80 %) were 
more concentrated within 0 - 0.625 m layer. Soil water 
availability was about 90% up to 0.375 m, but smaller than 
80% below 0.625 m depth. Irrigation water depths were 
applied in order to minimize deep percolation and to keep 
soil water availability at levels above 70% in the 0 - 0.60 
m layer.  Santos et al. (2004) working with Tahiti lemon 
over a five year-old citrumelo swingle rootstock obtained 
most of the water extraction by roots at depths close to 
0.25 m, that is, smaller depth than the ones in this work.  

In treatment T1, the amount of percolated water was 
low both within and between plant rows, which was 
determined by integrating percolation measured hourly 
over the day (Figure 2a). Percolation peaked close to the 
plant and to the micro sprinkler within the row (2.5 m) and 
at 2.0 m from the plant in between plant rows. Figure 2b 
shows that as for T2, the amount of percolated water was 
somewhat higher than that of T1, both within and 
between plant rows. Percolation peaked at 0.25 and 1.0 
m from the stem, within and between plant rows, which is 

possibly due to the higher moisture found in these places 
after irrigation event. The amount of percolated water in 
T3 was also low (Figure 2c), both within and between 
plant rows, peaking close to the stem (0.25 m) as well as 
between 1.25 and 2.0 m from the plant, longitudinally and 
transversally to the plant. In general, these results were 
slightly higher than those found in treatment T1 and 
slightly lower than those of treatment T2, which supports 
the little difference in water distribution between 
treatments. The emitter flow rate of treatment T2 was 
double of the flow rates of other treatments and this 
favored percolation in this treatment mainly longitudinally 
between two plants wher the emitter was located. 

The percentage of roots graded as to diameter (Tables 
1 and 2) in the treatment T1 revealed that very fine roots 
represented 14.77% of root total. The highest 
percentages were in the upper layers of soil: 4.41% 
at0.375 to 0.625 m. At a distance from the stem of 0 to 
0.25 and 2.25 to 2.5 m, 4.78 and 2.55% of roots were 
observed, respectively, as the latter region corresponds 
to the area right below the emitter. Roots with diameter of 
0.05 to 0.2 cm represented the majority of sampled roots, 
that  is, 81.15% of the total. They were more prominent at  
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Figure 2. Daily mean water percolation in the soil profile, longitudinally and transversally to the 
plant row, in treatments T1, T2 and T3.   

 
 
 
0.125 to 0.375 m deep (30.54%) and at 2.25 m from the 
stem (14.81%). Roots with diameter of 0.2 to 0.5 cm 
represented 3.6% of the total, concentrating at 0.375 - 
0.625 m deep and at the distances of 1.0 and 2.5 m from 
the stem. The thickest roots (diameter > 0.5 cm) 
represented only 0.48% of the total, which were more 
abundant at 0.125 to 0.375 m and at a distance of 0.5 m 
away from the stem. In this regard, we observed that 
roots with a diameter below or equal to 0.2 cm were 
mainly found in upper layers of soil. As the diameter 
increases, so does root distribution at the depth to which 
roots can reach, which is evidence of root’s function in 
anchoring and supporting the plant.  

Roots with diameter lower than 0.05 cm represent 
12.94% of root total found in treatment T2 (Table 1 and 
2), concentrating in 0.375 to 0.625 m (7.83%) and at a 
distance of 1.50 m (4.21%) from the stem.  

Roots with diameter of 0.05 - 0.2 cm were found at a 
depth of 0.375 to 0.625 m (7.83%) and  at  a  distance  of 

1.50 m (4.21%) from the stem. Roots with 0.05 to 0.2 cm 
in diameter were the most abundant (83.42% of the total) 
and they were mostly found at a depth of 0 to 0.125 m 
(31.46%) and at a distance of 1.5 m from the plant 
(10.53%). Roots with 0.2 to 0.5 cm in diameter 
represented 3.12% of the total and were more prominent 
in the 0.875 to 1.125 m depth and at a distance of 0.25 m 
away from the stem. Thicker roots (diameter > 0.5 cm) 
represented only 0.53% of root total and were mostly 
found in the 0.125 to 0.375 m depth and 1.25 m away 
from the stem.  

In the treatment T3 (Table 1 and 2), very fine roots 
(<0.05 cm) accounted for 14.70 % of root total. These 
roots were predominately found in the 0.375 to 0.625 m 
soil layer (4.23%) and distributed evenly in the 2.5-m 
range from the stem (1.88%). Roots with 0.05 to 0.2 cm 
diameter composed 81.32 % of root total and were 
predominantly found in 0 to 0.125 depth and at a distance 
of 0.75 m  away  from  the stem. Roots with 0.2 to 0.5 cm  
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Table 1. Percentage of total root length (TRL) as to four diameter groups (< 
0.5; 0.5- to -2.0; 2.0- to -5.0; and > 5.0 mm), at different depths, in the 
treatments T1, T2 and T3. 

 

Treat Depth (m) 
Diameter (mm) 

< 0.5 0.5 – 2.0 2.0 – 5.0 > 5.0 

T1 

0 – 0.125 4.03 25.56 0.14 0.04 

0.125 – 0.375 3.95 30.54 0.61 0.26 

0.375 – 0.625 4.41 14.09 1.20 0.03 

0.625 – 0.875 2.06 7.63 0.93 0.06 

0.875 – 1.125 0.32 3.32 0.72 0.09 

Total 14.77 81.15 3.60 0.48 

      

T2 

0 – 0.125 0.16 31.46 0.66 0.01 

0.125 – 0.375 1.16 27.38 0.70 0.34 

0.375 – 0.625 7.83 12.86 0.27 0.03 

0.625 – 0.875 1.92 7.94 0.66 0.08 

0.875 – 1.125 1.86 3.78 0.86 0.08 

Total 12.94 83.42 3.15 0.53 

      

T3 

0 – 0.125 1.57 35.75 0.41 0.01 

0.125 – 0.375 3.47 25.27 1.06 0.13 

0.375 – 0.625 4.23 9.73 1.09 0.12 

0.625 – 0.875 3.69 6.01 0.60 0.12 

0.875 – 1.125 1.74 4.55 0.33 0.10 

Total 14.70 81.32 3.49 0.48 

 
 
 
diameter accounted for 3.49% of root total and 
concentrated in 0.375 to 0.625 m depth (1.09%) and at a 
distance of 0.5 m away from the stem (0.59%). Roots 
with diameter larger than 0.5 m constitute only 0.48% of 
root total and were mostly found in 0.125 to 0.375 m 
(0.13%) and at a distance of 0.5 m away from the stem 
(0.08%). 

Roots with diameter between 0.05 and 0.2 cm, in the 
three treatments, accounted for more than 81% of the 
total and exhibited higher distribution in 0 to 0.625 m 
depth. There was a trend of a higher length density and 
root redistribution in treatments T2 and T3 possibly due 
to soil water distribution in these treatments. These 
results are consistent with Taiz and Zeiger (2013) who 
reported  that lower soil water content in topsoil reduces 
superficial root development and increases the number of 
deep roots due to the higher water availability in deeper 
soil layers in treatment T2 in which the micro sprinkler 
close to the stem provided higher water percolation. It is 
worth noting that root growth into deeper soil layers 
towards wet soil can be considered a line of defense 
against drying topsoil. Results regarding root system’s 
depth are consistent with those reported by Alves Junior 
et al (2011) who observed an effective rooting depth of 
0.6 m in 30 and 48-month-old drip-irrigated ‘Tahiti’ lime 
grafted onto rootstock ‘Swingle’ citrumelo in Piracicaba, 
SP.  

Average leaf areas of plants were: 184.62 m
2
 (T1), 

182.85 m
2
 (T2) and 185.12 m

2
 (T3). ETo and sap flow 

measurements recorded over the day are in Figure 3. 
Sap flow measurements were consistent over the three 
days on which evaluations took place; nonetheless, there 
is a difference between treatments as to the time at which 
sap flow reduced during the day. In T2, sap flow reduces 
in average after the most water-demanding time of the 
day, followed by a decrease during the afternoon. As for 
T3 and T1, sap flow decreases earlier as a result of low 
water availability in these treatments leading to premature 
stomatal closure, thereby decreasing plant transpiration.  

Average sap flow measurements varied between 
branches with similar results reported by Oliveira et al. 
(2009) in mangoes, and the highest measurement was 
0.686 L m

-2
 day

-1 
(Table 3). These are considered a low 

sap flow rate in comparison with studies carried out with 
lemons by Marin et al. (2008) and Rojas et al. (2007) 
reporting measurements varying from 1.00 to 1.83 L m

2
 

day
-1

 in young plants or plants having less leaf area than 
the plants used in this study. Cotrim et al. (2019) 
observed estimated values of sap flow ranging from 
0.697 to 1.255 L m

-2
 day-1, under conditions that did not 

suffer water deficit during the three phases of 
development of 'Tommy Atkins' mango fruits. A more 
active plant metabolism might explain this lower rate at 
this  early  stage,  as  well  as  other factors mentioned by  
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Table 2. Percentage of total root length (TRL) as to four diameter 
groups (< 0.5; 0.5- to -2.0; 2.0- to -5.0; and > 5.0 mm), in different radial 
distance from the stem, in the treatments T1, T2 and T3. 
  

Treat Distance (m) 
Diameter (mm) 

< 0.5 0.5 – 2.0 2.0 – 5.0 > 5.0 

T1 

0.25 4.78 8.16 0.28 0.10 

0.50 1.89 5.55 0.30 0.13 

0.75 2.29 3.62 0.54 0.03 

1.00 0.37 7.06 0.65 0.03 

1.25 0.08 7.21 0.38 0.06 

1.50 0.09 8.35 0.15 0.03 

1.75 0.10 8.85 0.26 0.01 

2.00 0.57 12.25 0.10 0.01 

2.25 2.06 14.81 0.25 0.03 

2.50 2.55 5.28 0.70 0.05 

Total 14.77 81.15 3.60 0.48 

      

T2 

0.25 1.28 9.23 0.65 0.01 

0.50 1.13 6.17 0.51 0.01 

0.75 1.79 5.00 0.22 0.05 

1.00 0.35 9.77 0.54 0.11 

1.25 1.22 6.31 0.12 0.13 

1.50 4.21 10.53 0.09 0.05 

1.75 1.08 8.79 0.17 0.12 

2.00 0.35 10.08 0.44 0.01 

2.25 0.60 8.39 0.23 0.01 

2.50 0.93 9.16 0.18 0.01 

Total 12.94 83.42 3.15 0.53 

      

T3 

0.25 1.80 10.00 0.63 0.05 

0.50 2.20 7.80 0.67 0.10 

0.75 0.77 9.04 0.40 0.09 

1.00 1.90 7.59 0.30 0.05 

1.25 0.73 7.33 0.22 0.01 

1.50 1.41 7.71 0.21 0.01 

1.75 1.60 7.87 0.25 0.05 

2.00 1.28 8.50 0.45 0.08 

2.25 1.95 7.78 0.18 0.03 

2.50 1.07 7.70 0.18 0.01 

Total 14.70 81.32 3.49 0.48 

 
 
 
Syvertsen (1982), such as lower water loss regulation 
than mature leaves since young leaves lack structural 
rigidity and have lower deposition of cuticular wax than 
mature leaves. Regarding plant size, according to Rojas 
et al. (2007), increasing leaf area may interfere with 
canopy net and lead to a decrease in mean net radiation 
per unit leaf area due to increasing leaf density and self-
shading inside the canopy. When assessing the 
treatments as to averages of either sap flow/solar 
radiation (SF/SR) or SF/ETo, we can observe that 
treatment T2 exhibited the highest values followed  by T3 

and T1. This demonstrates that plants of treatment T2 
are transpiring more than those of T3 and T1 in relation 
to incident radiation (MJ m

-2
 day). 

The above-mentioned difference can also be seen only 
when evaluating sap flow rates on days with similar ETo 
(4.27, 4.21, and 4.25). The same behavior is observed in 
analyses done using the proposed ratios (SF/ETo and 
SF/SR), that is, transpiration of plants in T2 is the 
highest, followed by T3 and T1. 

If we consider the amount of water applied to the three 
treatments the same,  then  the  water  condition  found in 
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Figure 3. Daily variation of sap flow (FS) of ‘Tahiti” lime tree and reference evapotranspiration (ETo) determined 
by Penman Monteith method, of treatment T1, T2, and T3 during the flowering stage. 

 
 
 
treatment T2 resulted, possibly, in a system in which 
water is better stored and used.  
 
 

Conclusion 
 

Micro-sprinkler placements affected root distribution, 
water extraction, and transpiration of ‘Tahiti’ lime. 
Transpiration was higher using one micro-sprinkler of 70 
L h

-1
 flow rate irrigating two plants, located at 2.5 m away 

from the stem, than using one micro-sprinkler per plant, 
either located at 0.3 or 2.5 m away from the stem, along 
the plant row. 

Water extraction by lemon plants were more significant 
within the layer 0 to 0.375 m, but most of it, that is, about 
85 to 90% occurred up to 0.625 m depth. The use of one 
microsprinkler per two plants instead of one plant is 
feasible concerning root water extraction, root 
development and plant transpiration as long as water 
supply be applied according to plant needs. 
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Table 3. Sap flow in each plant (FSp) determined by heat balance method, sap flow in branches (FSb) measured per 
quadrant, reference evapotranspiration (ETo) and solar radiation (RS) and ratio between sap flow and these factors, during 
flowering stage of ‘Tahiti’ lime. 
 

Treatments T1 T2 T3 

ETo mm day
-1

 3.48 4.27 3.82 4.32 4.21 3.6 4.25 4.58 4.36 

SR MJ m
-2 

day
-1

 14.97 19.01 17.95 18.94 18.79 15.20 17.395 19.07 19.85 

           

FSb (L m
-2 

day
1
) 

North branch 0.350 0.328 0.307 0.684 0.658 0.738 0.712 0.625 0.552 

West branch 0.284 0.275 0.252 0.417 0.462 0.501 0.389 0.341 0.314 

East branch 0.627 0.556 0.506 0.808 0.799 0.874 0.762 0.711 0.734 

South branch 0.245 0.221 0.215 0.514 0.577 0.630 0.473 0.415 0.436 

Mean 0.377 0.345 0.320 0.606 0.624 0.686 0.584 0.523 0.509 

           

Ratio (FSb/SR) 

North branch 0.023 0.017 0.017 0.036 0.035 0.048 0.040 0.0327 0.027 

West branch 0.018 0.014 0.014 0.022 0.024 0.032 0.022 0.017 0.015 

East branch 0.041 0.029 0.028 0.042 0.042 0.057 0.043 0.037 0.036 

South branch 0.016 0.011 0.011 0.027 0.030 0.041 0.027 0.021 0.021 

Mean 0.025 0.018 0.017 0.031 0.033 0.045 0.033 0.027 0.025 

           

Ratio (FSb/ETo) 

North branch 0.100 0.076 0.080 0.158 0.156 0.205 0.167 0.136 0.113 

West branch 0.081 0.064 0.065 0.096 0.109 0.139 0.091 0.074 0.064 

East branch 0.180 0.130 0.132 0.187 0.189 0.242 0.179 0.155 0.151 

South branch 0.070 0.051 0.056 0.118 0.137 0.175 0.111 0.090 0.089 

Mean 0.108 0.080 0.083 0.140 0.148 0.190 0.137 0.114 0.104 

FSp L day
-1

 76.39 70.42 65.95 110.75 114.12 125.3 110.10 99.01 97.43 
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