
water

Article

Evaluating Evaporation Methods for Estimating
Small Reservoir Water Surface Evaporation in the
Brazilian Savannah

Daniel Althoff 1,* , Lineu Neiva Rodrigues 2 and Demetrius David da Silva 1

1 Department of Agricultural Engineering, Federal University of Viçosa (UFV), Avenue Peter Henry Rolfs,
Viçosa 36570-900, MG, Brazil

2 Brazilian Agricultural Research Corporation (EMBRAPA—Cerrados), Planaltina 73310-970, DF, Brazil
* Correspondence: daniel_althoff@hotmail.com; Tel.: +55-31-98874-9022

Received: 5 August 2019; Accepted: 16 September 2019; Published: 18 September 2019
����������
�������

Abstract: Small reservoirs play a key role in the Brazilian savannah (Cerrado), making irrigation
feasible and contributing to the economic development and social well-being of the population.
A lack of information on factors, such as evaporative water loss, has an impact on the design and
management of these reservoirs, as well as on regional water safety. Acquiring this information is
crucial for hydrologists to develop more effective water resource management strategies and policies.
This study assesses the performance of a diverse number of methods that are used to estimate
evaporation and provides evaporation probability curves on a fortnightly period for small reservoirs
in the Brazilian savannah region. Evaporation data were collected for a small water reservoir located
in the Buriti Vermelho watershed, a typical dam of the Brazilian savannah region. Among the assessed
methods, those of Kohler et al. (1955) and Linacre (1993) presented the best performances on both
the daily and monthly scales for evaporation estimates. By simulating the evaporation rates for a
timeseries, an increasing trend in evaporation was observed for the transition between the dry and
wet seasons, jeopardizing double cropping in the region. The developed probability curves are an
important tool for improving water resource planning and increasing the local water availability.

Keywords: frequency curves; small dams; climate change; water resource management

1. Introduction

Small reservoirs play a key role in the agricultural development of the Brazilian savannah region
(Cerrado), contributing to increasing water supply during drought periods. However, the impact of
these structures on the hydrological system needs to be better understood, quantified, and considered
in basin management plans [1,2].

The Savannah (Cerrado) is Brazil’s second largest biome, covering 24% of the Brazilian territory.
The biome is one of the country’s most important agricultural regions [3]. In recent years, a large
number of small reservoirs have been built in the region, contributing to the improvement of irrigation,
economic development, and the social well-being of the population [2,4,5].

Despite their strategic relevance for the region, the environmental impacts that are mainly caused
by poorly planned, designed, and built reservoirs have forced the government to develop more
restricted environmental legislations, which has hindered the construction of new dams. Most of the
observed problems are, to some extent, due to a lack of both technical information and knowledge
regarding the environmental conditions in the region [6]. In this context, to help the allocation and
construction of new reservoirs, it is crucial to have a better understanding of the behavior of the
different variables that interfere in small reservoir water dynamics.
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Evaporation represents an effective water loss from the water system and it cannot be neglected.
It directly affects the reservoir storage efficiency, the use of productive water, the economy, and peoples’
livelihoods. Although the physical drivers of evaporation might seem simple at first, the process
for reservoirs relies on hidden drivers, such as time-scale dependent feedbacks and heterogeneous
conditions controlling evaporation rates [7].

The evaporation process becomes more important when considering that the effects of climate
change and rising temperatures threaten to decrease available surface water through increased
evaporation. For instance, a worldwide review by O’Reilly et al. (2015) [8] reported a rapid increase in
surface water temperature, which implies not only increased evaporation rates, but also increases in
algal blooms and methane emissions. Wang et al. (2018) [9] also suggests that the slower adjustment
of water surface temperature in low-latitude water bodies will result in positive feedback that
amplifies evaporation.

Evaporation is one of the main constituents of the water budget for reservoirs under different
climate regimens [7] and it is a sensitive indicator of climate change [9]. Thus, it is essential to
obtain more accurate estimates of evaporation losses to develop effective water resource management
strategies and policies [10,11].

However, achieving a more representative quantification of evaporation for small reservoirs is a
major challenge, since the variability of the air temperature and vapor pressure near the margins may
considerably differ from the internal conditions of the reservoir and influence the magnitude of the
actual evaporation [1].

The pan evaporation method has been widely used in operational reservoir water management,
despite its restrictions and assumptions [12–14]. Pans may be installed on land or inside the reservoir
in order to estimate reservoir evaporation. Land pans are more subject to errors given the extra heat
absorption from the pan’s side, wind effects, and water splashing [7,15,16]. Despite some of these
limitations still standing for floating pans, Masoner et al. (2008) [17] showed that they better simulate
the conditions controlling water evaporation in small free-water surfaces. This better agreement for
floating pans is due to several reasons: (1) less heat absorption from the floating pan’s side; (2) its
heating and cooling cycles result in more similar water temperature to free-water surfaces; and, (3) the
meteorological conditions above floating pans are better matched to those of the reservoir and differ
from conditions on land.

Alternative methods have been used to surpass some of the pan method’s restrictions [18].
The Penman (1948) [19] method is one of the most used and reliable methods for estimating reservoir
evaporation [20], but its application is difficult in many regions due to the lack of climatic data. In the
literature, a great variety of methods are presented as an alternative to the Penman method [21–26].
These methods are usually selected, because they satisfy a certain study or depend on limited data
availability [27].

The great majority of studies worldwide on water evaporation have been performed for large
water surfaces [1]. Hence, only a few studies regarding the assessment of evaporation methods for
small lakes or reservoirs can be found in the literature. For instance, Winter et al. (1995) [27] and
Rosenberry et al. (2007) [1] assessed several equations for determining evaporation for a small lake in
glacial terrane and a small lake in a mountainous setting, respectively. The authors used the energy
budget method as a reference, and found that the Penman, DeBruin-Keijman, and Priestley-Taylor
methods were the ones that most closely agreed with the energy budget. Leão et al. (2013) [28]
assessed six evaporation methods while using the water balance as a reference and found that the
Priestley-Taylor method performed best for a large dam in semiarid Brazil. However, regardless of their
importance for water resource planning and management, no studies on small reservoir evaporation
were found in the conditions of the Brazilian savannah. Therefore, these methods need to be assessed
for such conditions in order to be used in operational water resource management.

Given the environmental and water safety issues and the importance of small dams for the
economic development of the Brazilian savannah region, it is crucial that the new reservoirs are
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properly allocated, constructed, and managed. In this context, it is fundamental to increase the
knowledge about the region, which implies, among other things, the evaluation of the performance of
methods for estimating small reservoir evaporation. The objectives of this study were: (i) to evaluate
the performance of evaporation methods for estimating small reservoir evaporation in the Brazilian
savannah region; and, (ii) to estimate, based on historical data, the fortnightly evaporation probability
in the region.

2. Materials and Methods

2.1. Study Area

The Buriti Vermelho watershed (Figure 1), with a drainage area of approximately 10 km2, has
its main watercourse as a tributary of the right bank of the Estreito River, which, in turn, flows into
the Preto River, which is an important sub-basin of the San Francisco watershed. The average annual
rainfall of the basin is about 1200 mm, of which 85% corresponds to the rainy season [2].

The small dam used in this study (Figure 1) has 2500 m2 of water surface area and a storage
capacity of 3178.7 m3.
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Figure 1. The Buriti Vermelho watershed, Federal District, Brazil, and the small dam used in the study
(red circle).

2.2. Data

The daily data of temperature, relative humidity, wind speed, and solar radiation were obtained
from a meteorological station (EM1) installed near the reservoir (~2 km) for the period from 2010 to
2011. For the same period, the evaporation data were obtained by measurements in a class A pan
(TCA) that was installed inside the reservoir. Class A pans are standardized evaporation pans that are
made of galvanized or stainless steel, 120.7 cm in diameter, and 25.4 cm deep.

The water level readings in the TCA were performed by a limnigraph (precision = ~0.32 mm)
coupled to a datalogger. Whenever the pan water level dropped more than 5 cm, a volume of water
that was equivalent to the evaporated water was poured into the pan. The days on which the data
collected presented problems, either due to the occurrence of rain or reading failures of the datalogger,
were eliminated from the series.
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A second meteorological station (EM2), located at ~40 km from the reservoir, was used to obtain a
historical series of climatic data (1974 to 2017).

2.3. Methods Used to Estimate Reservoir Evaporation

The methods used (Table 1) vary in complexity and input data, ranging from only requiring
maximum and minimum monthly temperature to requiring net radiation, wind speed, and
relative humidity.

Table 1. Methods used in the estimation of evaporation.

Methods (Reference) Equation Applied

Stephens and Stewart (1963)—SS [29] E = (0.0082Ta − 0.19)
(
3.495× 10−2Qs

)
Monthly

Makkink (McGuinness et al. 1972)—MK [30] E =
(
52.6

(
s

s+γ

)Qs
Lρ − 0.12

)
Monthly

Papadakis (1965)—PP [31] E = 0.5625(esmax− (esmin− 2))
(

10
d

)
Monthly

Thornthwaite (1948)—TW [32] E =
(
1.6

(
10Ta

I

)6.75×10−7I2
−7.71×10−5I2+1.79×10−2I+0.49

)(
10
d

)
Monthly

Priestley and Taylor (1972)—PT [33] E = α
(

s
s+γ

)(Qn−Qx
Lρ

)
86.4 >10 days

DeBruin (1978)—dB [34] E = 1.192
(
α
α−1

)( γ
s+γ

)
(2.9+2.1U2)(es−ea)

Lρ 86.4 >10 days

Jensen and Haise (1963)—JH [35] E = (0.014Ta − 0.37)
(
3.523× 10−2Qs

)
>5 days

Penman (1948)—PM [19] E =
(

s
s+γ

)(Qn−Qx
Lρ

)
86.4 +

( γ
s+γ

)
0.26(0.5 + 0.54U2)(es − ea) Daily

Brutsaert and Stricker (1979)—BS [36] E = (2α− 1)
(

s
s+γ

)(Qn−Qx
Lρ

)
86.4−

( γ
s+γ

)
0.26(0.5 + 0.54U2)(es − ea) Daily

DeBruin and Keijman (1979)—dBK [25] E =
(

s
0.85s+0.63γ

)(Qn−Qx
Lρ

)
86.4 Daily

Morton (1983)—CRLE [26] E = 0.0864× 0.408
(
13 + 1.12

(
1 +

0.66 P
Ps

sp

)−1)
RTP Daily

Linacre (1977)—L77 [23] E =
700( Ta+0.06×h

100−Lat )+15(Ta−Td)

(80−Ta)
Daily

Linacre (1993)—L93 [24] E =
(
0.015 + 0.00042Ta + 10−6h

)
(0.8Qs − 40 + 2.5×U2F(Ta − Td)) Daily

Kohler et al. (1955)—KNF [21] E = 0.7
(

sQn+γEa
s+γ

)
Daily

E = evaporation (mm day−1); α = 1.26 = empirical constant of Priestley-Taylor; s = slope of the vapor pressure
curve (Pa ◦C−1); γ = psychrometric constant (Pa ◦C−1); Qn = net radiation (W m−2); Qs = solar radiation (W m−2);
Qx = change in heat stored in the water body (W m−2); L = latent heat of vaporization (MJ kg−1); ρ = water density
(~1000 kg m−3); I = annual heat index (I =

∑
i, i = (Ta/5)1.514); U2 = wind speed at 2 meters from the surface

(m s−1); es = vapor saturation pressure at the air temperature (mb); ea = vapor pressure at the air temperature
(mb); Ta = mean air temperature (◦C) for Thornthwaite and Linacre, and ◦F for Jensen-Haize and Stephens-Stewart;
Td = dew point temperature (◦C); d = day number in the month; esmax and esmin = vapor saturation pressure at
maximum and minimum temperature (mb); h = altitude (m); Lat = latitude (degrees); P = atmospheric pressure
(mb); Ps = atmospheric pressure at sea level (mb); sp = slope of the saturation vapor pressure curve at equilibrium
temperature; RTP = net irradiance at equilibrium temperature (W m−2); F = correction factor due to site altitude;
Ea = evaporation assuming water temperature is equal to air temperature (mm day−1).

Although some of the methods that are presented in Table 1 were developed for the calculation of
potential evapotranspiration, because the reservoirs present open water surfaces, they can also be used
to represent evaporation [1].

The reservoir water temperature, necessary for the energy balance of the water body’s stored
heat (Qx), was neglected. Seasonal and interannual temperature changes in the Cerrado region
are small, which result in close to no alterations in heat storage [37]. Additionally, many authors
have documented heat storage to be insignificant for shallow reservoirs [15,24], and as so it can be
disregarded for small ones.

2.4. Performance Analysis of the Employed Equations

The performance of the methods that were applied on a daily basis was also evaluated on a monthly
scale. For this, the daily values were accumulated monthly and their average daily evaporations
were calculated.

To evaluate the performance of the methods, the Nash-Sutcliffe efficiency index (NSE) [38,39],
mean error (MBE), mean absolute error (MAE), and root mean square error (RMSE) were used [40,41].

MBE values averting from zero indicate a tendency to over or underestimate the observed values
by the methods. The MAE provides an insight into the general error, while RMSE penalizes errors of
higher magnitudes by giving them more weight. In other words, two methods might present the same



Water 2019, 11, 1942 5 of 17

accuracy, but the RMSE will indicate which is the less precise method [40]. The performance of the
method is considered better the closer the MBE, MAE, and RMSE values are to 0.

According to Santhi et al. (2001) [42] and Richter et al. (2011) [41], an NSE value that is above 0.50
indicates a satisfactory performance of the method. For an NSE above 0.54, the authors Saleh et al.
(2000) [39] indicate an adequate performance, and very good when the NSE is greater than 0.65.

2.5. Elaboration of Reservoir Evaporation Frequency Curves

An evaporation frequency curve (EC) is a valuable tool for assessing how often a given evaporation
will occur. ECs are based on the same principle as flow duration curves [43] and they are used to
demonstrate the percentage of time for which evaporation is likely to equal or exceed a given value.
Although the EC is sufficient for understanding the distribution of observed or simulated phenomena,
its parameterization is fundamental for predicting events and in regionalization studies [44].

In order to elaborate ECs for fortnightly periods, daily evaporation was simulated using historical
data from 1974 to 2017 (44 years) and grouped for the desired periods. For example, for the period
from 1 to 15 January (Julian days from 1 to 15), 660 data corresponding to daily evaporation values of
the first fortnight of the 44 years were used in the EC elaboration.

Evaporation was simulated by the method which, among the evaluated ones, presented the
best performance to calculate daily evaporation in small reservoirs in the region. Based on the daily
values of each fortnightly period, the evaporation occurrence frequencies were calculated while using
Kimball’s Equation [45] (Equation (1)).

F =
m

n + 1
, (1)

where F = frequency (%); m = evaporation event order; and, n = number of observations.
The probability curves were generated from a probability distribution that was derived from the

extended Burr XII distribution [44,46] (Equations (2) and (3)).

E = λ


(
1−

(
P
t

)β)
β


α

, for β , 0 (2)

E = λ
[
−ln

(P
t

)]α
, for β = 0, (3)

where λ = scale parameter; α and β = shape parameters; and, t = parameter associated with the
percentage of time in which the event is greater than 0.

The parameterization of the equations was performed while using the Levenberg-Marquardt
algorithm [47], aimed at the adjustment of non-linear methods by minimizing the sum of the squares
of residues.

3. Results

3.1. Evaluation of Observed Data

The monthly averages of mean (Ta), maximum (Tx), and minimum (Tn) air temperature, and of
mean (RHa), maximum (RHx), and minimum (RHn) relative humidity, wind speed (U2), and solar
radiation (Qs) obtained by EM1 (period from 2010 to 2011) and by EM2 (from 1974 to 2017) are shown
in Figures 2 and 3, respectively.



Water 2019, 11, 1942 6 of 17

Water 2018, 10, x FOR PEER REVIEW  6 of 17 

 

The monthly averages of mean (Ta), maximum (Tx), and minimum (Tn) air temperature, and of 
mean (RHa), maximum (RHx), and minimum (RHn) relative humidity, wind speed (U2), and solar 
radiation (Qs) obtained by EM1 (period from 2010 to 2011) and by EM2 (from 1974 to 2017) are shown 
in Figures 2 and 3, respectively. 

 

Figure 2. Monthly average climate variables: meteorological station near the reservoir (EM1) for the 
period from 2010 to 2011. 

 
Figure 3. Monthly average climate variables: meteorological station EM2 for the period from 1974 to 
2017. 

The average temperature showed a small variation over the years (Figures 2 and 3), with the 
monthly average values ranging, for the historical series, between 18.2 °C and 25.4 °C. The 
maximum temperature values were observed in the months of September and October, while the 
minimum values were observed in the months of June and July. Analyzing the same figures, it can 
be seen that the relative humidity decreases from April to August (dry season), with a marked 
increase in the beginning of the rainy season. The solar radiation recorded the highest values in the 
months of February, August, and September, and, for the study period, the station near the reservoir 

0
5

10
15
20
25
30
35

Te
m

pe
ra

tu
re

 (°
C)

Max Avg Min
0

20
40
60
80

100

Re
lat

ive
 h

um
idi

ty
 (

%
)

Max Avg Min

0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
ind

 s
pe

ed
 (m

 s-1
)

180
200
220
240
260
280
300

So
lar

 ra
dia

tio
n 

(W
 m

-2
)

0

10

20

30

Te
m

pe
ra

tu
re

 (°
C)

Max Avg Min
0

20
40
60
80

100

Re
lat

ive
 h

um
idi

ty
 (

%
)

Max Avg Min

0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
ind

 s
pe

ed
 (m

 s-1
)

180
190
200
210
220
230
240

So
lar

 ra
dia

tio
n 

(W
 m

-2
)

Figure 2. Monthly average climate variables: meteorological station near the reservoir (EM1) for the
period from 2010 to 2011.
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Figure 3. Monthly average climate variables: meteorological station EM2 for the period from 1974
to 2017.

The average temperature showed a small variation over the years (Figures 2 and 3), with the
monthly average values ranging, for the historical series, between 18.2 ◦C and 25.4 ◦C. The maximum
temperature values were observed in the months of September and October, while the minimum
values were observed in the months of June and July. Analyzing the same figures, it can be seen
that the relative humidity decreases from April to August (dry season), with a marked increase in
the beginning of the rainy season. The solar radiation recorded the highest values in the months of
February, August, and September, and, for the study period, the station near the reservoir presented
solar radiation values that were slightly higher than the historical average. The average monthly wind
speed, based on historical data, showed its lowest values in the months of February to April, with an
average of 1.6 m s−1, and the highest in the months of July to September, with an average of 2.1 m s−1.

After the elimination of the faults in the series of evaporation data, 312 pairs of data were obtained,
where 220 corresponded to the dry season and 92 to the rainy season. It can be observed in Figure 4



Water 2019, 11, 1942 7 of 17

that the evaporation had its highest values in September, when the relative humidity was low, and the
temperature, wind speed, and radiation were high (Figure 2). The lowest values of evaporation were
recorded in the coldest month, June, which also presented low values of radiation.
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Figure 4. Class A pan evaporation observed for the period from 2010 to 2011.

3.2. Performance of the Methods Used to Estimate Evaporation

Figure 5 presents monthly average evaporation values that were calculated by different methods.
The methods of SS (−0.14 to −2.22 mm) and TW (−0.61 to −2.94 mm) underestimated evaporation in
all 21 simulations (Figure 5a). The methods of MK (0.19 to −1.88 mm) and CRLE (0.75 to −2.41 mm)
underestimated evaporation values in 86% and 81% of the simulations (Figure 5a), respectively.Water 2018, 10, x FOR PEER REVIEW  8 of 17 
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Figure 5. Relationship between estimated and observed reservoir evaporation. SS = Stephens and
Stewart (1963); MK = Makkink (McGuinness et al. 1972); PP = Papadakis (1965); TW = Thornthwaite
(1948); PT = Priestley and Taylor (1972); dB = DeBruin (1978); JH = Jensen and Haise (1963); PM = Penman
(1948); BS = Brutsaert and Stricker (1979); dBK = DeBruin and Keijman (1979); CRLE = Morton (1983);
L77 = Linacre (1977); L93 = Linacre (1993); KNF = Kohler et al. (1955).



Water 2019, 11, 1942 8 of 17

The PM method (2.50 to 0.40 mm) (Figure 5b) overestimated the value of evaporation in all of the
simulations performed; yet the methods of PT (2.64 to −0.14 mm), dBK (2.63 to −0.15 mm) and BS (3.41
to −1.39 mm) (Figure 5b) overestimated the evaporation value in 71%, 71% and 52% of the simulations,
respectively, while the methods of dB (2.57 to −1.84 mm) and L77 (1.16 to −0.92 mm) did so in 62%,
and JH (1.69 to −0.61 mm) in 57% (Figure 5c).

Evaporation was better simulated by the PP, L93, and KNF methods (Figure 5d), which presented
less dispersion in relation to the 1:1 line. The overestimation of evaporation by the methods of PP
(1.02 to −0.88 mm), L93 (1.17 to −0.26 mm) and KNF (1.16 to −0.52 mm) was smaller in magnitude when
compared with the other methods and happened in 67%, 62%, and 43% of the simulations, respectively.

The performance criteria of evaporation methods are presented in Table 2 for the time scale for
which the methods were developed. The method of PM, for example, was applied on a daily scale,
while the PP method was applied on a monthly scale. The performance of the daily methods was also
evaluated on a monthly scale.

Table 2. Performance criteria of the evaporation estimation methods.

Methods
NSE R2 RMSE MAE MBE

Daily Scale

KNF 0.58 0.61 0.68 0.54 −0.18
L93 0.54 0.66 0.71 0.56 0.14
L77 −0.01 0.43 1.06 0.83 0.22
PM −0.09 0.54 1.10 0.89 0.79
dBK −0.19 0.19 1.15 0.85 0.26
BS −1.50 0.01 1.66 1.35 −0.26

CRLE −1.91 0.15 1.79 1.59 −1.44

Methods
NSE R2 RMSE MAE MBE

Monthly Scale

KNF 0.66 0.70 0.38 0.29 0.03
L93 0.55 0.80 0.44 0.34 0.23
PP 0.43 0.75 0.49 0.42 0.19
L77 0.41 0.76 0.50 0.40 0.09
JH −0.56 0.23 0.82 0.63 0.39

MK −1.32 0.26 1.00 0.85 −0.81
dB −2.46 0.64 1.22 1.04 0.33
PM −2.55 0.56 1.23 1.09 1.09
dBK −2.71 0.11 1.26 0.87 0.82
PT −2.80 0.12 1.27 0.88 0.82
SS −3.25 0.23 1.35 1.21 −1.21

CRLE −3.56 0.02 1.40 1.21 −1.00
BS −4.77 0.01 1.57 1.26 0.56
TW −6.88 0.12 1.84 1.71 −1.71

NSE = Nash-Sutcliffe efficiency index; R2 = coefficient of determination; RMSE = root mean square error (mm day−1);
MAE = mean absolute error (mm day−1); and MBE = mean bias error (mm day−1).

It can be noted that, both in the daily and monthly scale simulations, only the methods of
L93 and KNF had adequate performance (NSE ≥ 0.54), according to the classification of Saleh et al.
(2000) [39]. The L93 and KNF methods presented MAE values of 0.56 and 0.54 mm day−1 in the
daily scale simulation and 0.44 and 0.38 mm day−1 on the monthly scale, respectively. In the monthly
scale simulation, only the method of KNF presented very good performance according to the NSE
classification that was presented by Saleh et al. (2000) [39].

In Figure 6, the evaporation values simulated by the methods of KNF and L93 are presented,
which were, amongst all of the methods evaluated, the ones with the best performance. The highest
monthly evaporation value observed is 7.02 mm day−1, and the smallest is 2.16 mm day−1, both by
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the method of L93. Outliers appeared more commonly during the dry period, with a tendency to
concentrate below the lowest value.
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Figure 6. Monthly average evaporation estimated based on the historical series by the best performing
methods—KNF: Kohler et al. (1955) and L93: Linacre (1993). The red line indicates the monthly
average simulated.

The average monthly evaporation data simulated by the methods, as indicated by the red
horizontal line (Figure 6), ranged from 3.56 mm day−1, in May, to 4.99 mm day−1, in September. For
the dry season, the L93 method presented the highest average (4.32 mm day−1) and KNF the lowest
(4.15 mm day−1), while the opposite happened for the rainy season, where KNF presented the highest
average (3.98 mm day−1) and L93 the lowest (3.87 mm day−1).

Figure 7 presents the annual total evaporation values that were simulated by the methods that
presented the best performance (KNF and L93) and the trend line of evaporation (1974 to 2017),
constructed while taking the average evaporation of the two methods. The gray area between the
curves indicates the range of evaporation variation between the two methods.
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Figure 7. Total annual evaporation estimated by the best performing methods (KNF: Kohler et al.
(1955) and L93: Linacre (1993)) based on the historical series and the trend line (dashed line).
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Trends in evaporation were assessed by a linear model [48–50] and their significance by the
Student’s t-test [50]. Evaporation exhibited an increasing trend over the years (Figure 7). For the 44
years analyzed, the slope coefficient of the trend line indicated, with a significance of 5% probability by
the t-test, a 6.12 mm year−1 increase in the evaporation.

The trend of evaporation variation estimated for the historical series was also evaluated on a
monthly basis (Figure 8). Analyzing the trend lines, it was found that all of the angular coefficients of
the regressions were significant at 5% probability by the t-test, except for the months of March and April,
where the coefficients were significant at 10% probability, and November, which was not significant.
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Figure 8. Average monthly evaporation estimated by the average of the best performing methods (KNF:
Kohler et al. (1955) and L93: Linacre (1993)) based on the historical series and trend line (dashed line).

The highest water evaporation values were observed in September (mean = 4.93 mm day−1) and
the lowest values in the month of May (mean = 3.61 mm day−1). In general, the lowest variations in
the evaporation values were observed during the dry season, with the exception of the months of
August and September, a transition period to the rainy season. The lowest monthly values of standard
deviation were observed for the months of May, June, and July (0.32 mm), while the highest were
observed for the months of September and October (0.73 mm).

It can be seen in Figure 8 that there is an increasing tendency of evaporated water in every month,
with angular coefficients that ranged from 0.0083 (November) to 0.0347 mm day−1 year−1 (September).
The months that presented the highest monthly evaporation variation by the tendency were September
(1.53 mm day−1) and October (1.42 mm day−1), and the months with the lowest significant variation
were April (0.42 mm day−1), May (0.42 mm day−1), and June (0.37 mm day−1). For the observed period,
the average monthly evaporation increase tendency represented a variation that ranged from 10% in
June to 32% in October.

3.3. Reservoir Evaporation Frequency Curves

The KNF method presented the best performance among the evaluated methods. For this reason,
it was chosen to simulate the evaporation and construct the ECs (Figure 9) based on historical climatic
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data (44 years). It is noted that the equations presented by Shao et al. (2009) [44] adjusted very well to
the ECs, presenting R2 values that ranged from 0.969 to 0.999.
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During the dry season, from May to September (Julian days 120 to 272), the EC showed a gentle
slope, which indicated that the evaporation value changed very little with the probability. For example,
for Julian days varying from 138 to 152 (May 19 to June 2) and for 20% and 80% probability of being
matched or exceeded, the reservoir evaporation values varied from 3.95 mm day−1 to 3.11 mm day−1,
respectively, with a difference between the values of only 0.84 mm day−1.

During the rainy season (Julian days 1 to 120 and 273 to 365), the EC showed a steeper slope.
For example, for Julian days that ranged from 305 to 319 (November 2 to 16) and for 20% and 80%
probability of being matched or exceeded, the reservoir evaporation values varied from 5.05 mm day−1

to 2.98 mm day−1, respectively, with a difference between the values of 2.07 mm day−1.
The performance indexes (NSE and RMSE), the evaporation values for the 20% and 60% probability

levels and the adjustment parameters (λ, α, and β) of Equations (2) and (3), for each of the fortnightly
periods, are presented in Table 3.
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Table 3. Performance criteria, probable evaporation, and adjusted curve coefficients.

Interval (Julian days)
Performance Criteria Evaporation (mm day−1) Distribution Coefficients

NSE RMSE 20% * 60% * λ β α

1 to 15 0.995 0.08 4.91 3.68 4.358 0.006 0.252
16 to 30 0.995 0.08 5.05 3.82 4.577 0.120 0.258
31 to 46 0.997 0.06 5.13 3.93 4.766 0.252 0.261
47 to 61 0.994 0.07 5.01 3.97 4.644 0.168 0.218
62 to 76 0.997 0.05 4.75 3.73 4.305 0.011 0.211
77 to 91 0.999 0.03 4.55 3.61 4.186 0.110 0.213

92 to 106 0.997 0.04 4.41 3.63 4.116 0.119 0.180
107 to 122 0.993 0.06 4.34 3.65 4.101 0.159 0.164
123 to 137 0.984 0.08 4.18 3.59 4.045 0.351 0.156
138 to 152 0.991 0.05 3.95 3.45 3.802 0.240 0.133
153 to 167 0.969 0.09 3.98 3.51 3.845 0.264 0.123
168 to 182 0.995 0.03 3.98 3.55 3.814 0.086 0.102
183 to 198 0.984 0.06 4.14 3.70 3.925 −0.110 0.094
199 to 213 0.977 0.07 4.43 3.95 4.195 −0.141 0.094
214 to 228 0.991 0.05 4.85 4.30 4.573 −0.151 0.099
229 to 243 0.991 0.07 5.18 4.50 4.966 0.218 0.136
244 to 258 0.991 0.08 5.61 4.78 5.502 0.491 0.177
259 to 274 0.997 0.06 5.67 4.53 5.627 0.602 0.264
275 to 289 0.999 0.04 5.68 4.45 5.386 0.346 0.252
290 to 304 0.999 0.04 5.33 4.05 4.762 0.005 0.240
305 to 319 0.995 0.08 5.05 3.73 4.482 0.040 0.271
320 to 334 0.998 0.05 4.86 3.68 4.269 −0.111 0.229
335 to 350 0.998 0.05 4.74 3.56 4.098 −0.202 0.225
351 to 365 0.997 0.07 4.93 3.64 4.348 −0.001 0.263

* Probability level; NSE = Nash-Sutcliffe efficiency index; RMSE = root mean squared error (mm day−1).

The shape parameters α and β are related to the slope and the shape of the upper tail of the EC,
respectively. The parameter α varied from 0.094 to 0.271. The higher the value of α, the steeper the EC
slope, as can be observed in the Julian days from 259 to 91, representing the months from September to
March, where there is greater variability in the evaporation values (Figure 6).

The value of the parameter β ranged from -0.202 to 0.602. The smaller the value of β, the greater
the slope of the tail at the top of the curve, the higher its value, and the lower the variation of the values
within the low probability range. This behavior can be observed in the Julian days from 335 to 350
(β = −0.202), where the upper part of the EC has a steeper slope when compared, for example, to the
period from 259 to 274 (β = 0.602).

The value of λ ranged between 3.802 and 5.627. This parameter relates to the expected evaporation
magnitude. The highest values of λ are observed in the periods in which a higher evaporative rate is
expected, between Julian days 229 and 289 (August 18 to October 17).

At 20% probability, evaporation in the small dam is predicted to range from 3.95 to 5.68 mm day−1,
and at 60% probability, from 3.45 to 4.78 mm day−1. For the same probabilities (20% and 60%), the
mean evaporation for the dry season is 4.60 and 3.99 mm day−1, respectively, and for the rainy season
is equal to 4.91 and 3.80 mm day−1.

The mean NSE observed for the whole period was equal to 0.993, which indicated a good
adjustment of the probability model. The RMSE values ranged from 0.03 to 0.09 mm day−1, with an
average of 0.06 mm day−1.

4. Discussion

Potential evaporation had its maximum value when radiation, wind speed, and temperature were
high and relative humidity was low, such as in the months from August to October. Even though
the beginning of the year might present high radiation and temperature, higher values of relative
humidity may strongly limit the potential evaporation, especially in low wind speed conditions, when
air moisture accumulates near the air-water interface [51].

Furthermore, the sources of uncertainties in evaporation data collected in pans must be
acknowledged. For example, the vapor pressure in the center of reservoirs can be different from the
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values closer to its shores, which results in microclimate differences between the reservoir and the pan.
As a consequence of this, the evaporation measure in the pan can be different from that observed in
the reservoir.

Warnaka and Pochop (1988) [52] and Kaya et al. (2016) [14], when comparing class A pans’
observations with evaporation equations, also obtained results in which the method of KNF presented
the best performance. In addition, the KNF and L93 methods showed a smaller tendency to
underestimate or overestimate the observed values (Table 2). Cabrera et al. (2016) [53] also found
good results for the L93 method, where the method performed best (NSE = 0.76) to simulate the daily
evaporation of a 20 m2 pan. Although the PM method presented a value of R2 that was close to these
two methods, its performance was poor, based on NSE (−0.09) and MBE (0.79 mm day−1).

On the monthly scale, despite the simplicity of the meteorological data required by the PP method,
it presented positive NSE and RMSE values that were only slightly higher than the methods of KNF and
L93. The PP method was considered by Rosenberry et al. (2007) [1] to be a cost-effective method, since
it presented a good performance when compared to several methods of greater complexity. Despite R2

values higher than many methods, the dB and PM methods performed poorly when compared with
KNF and L93, for they presented errors with large magnitudes, with a RMSE of the order of 1.22 and
1.23 mm day−1, respectively.

In general, for the monthly evaporation that was simulated for the historical period, the L93
method was the one that presented the greatest dispersion in the simulations, and KNF the smallest. The
simulations by both the L93 and KNF methods presented higher dispersion in the months with higher
temperature and solar radiation, which are the major variables in the model. A smaller dispersion
is observed in cold months due to the nature of the vapor pressure dynamics, which exponentially
increases with temperature and it has little difference for lower temperatures.

Based on Figure 7, it is noted that the L93 method, in general, tended to overestimate the
evaporation when compared to the KNF method, which can also be observed in Table 2 by the higher
MBE values. The average of the two methods’ annual evaporation varied between 1153 and 1671 mm,
with a mean equal to 1479 mm. The largest variation (116 mm) between the methods is observed in
1977. For the period from 2002 to 2014, Coelho et al. (2017) [37], evaluating the methods of KNF and
L93 to calculate the average annual evaporation of a large reservoir in the Cerrado, obtained values
that were equal to 1389 and 1685 mm, respectively, whereas in this work L93 (1484 mm) presented an
average only slightly higher than KNF (1474 mm). For Coelho et al. (2017) [37], among the methods
used, KNF was the one that presented the lowest values, while the PM and dBK methods presented
the highest values.

Additionally, based on Figure 7, the increasing tendency of evaporation over the years is even
more relevant when considering that, for the same period, precipitation in the region decreased at a
rate of 12 mm year−1. When considering the tendency for growth of evaporation and reduction of
precipitation, there is an increasing tendency in the average annual water deficit, by 18.12 mm year−1.

The smaller values of monthly increasing tendency were observed in the beginning of the dry
season, when the irrigated crops are highly dependent on stored water. The highest values were
observed in the transition period between the dry and rainy seasons, which impacts a key period
for the Brazilian savannah’s agriculture. Double cropping viability dramatically increases regional
production and it is highly dependent on water supply for early sowing. Climatic changes might
escalate the pressure on irrigation reservoirs even further, for they may shorten the wet period and
reduce precipitation in the months of September and October [54].

A few important observations were made while investigating the major drivers for the observed
tendency increases in evaporation. Daily air mean temperatures were stable during the whole period;
maximum air temperature, however, presented an increasing tendency during the entire period. The
more significant trends were observed in the months from August to October, which meant that
evaporation could present higher peaks along the course of a day. Relative humidity showed a
decreasing tendency at the end of the dry season and beginning of the wet season (July to October),
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which resulted in a higher vapor pressure deficit for the period. Solar and net radiation presented
increasing tendencies from August to March, while wind speed presented a small increasing trend for
all the months. The months from April to June and November presented reduced tendencies in the
meteorological parameters, which resulted in smaller increasing tendencies for evaporation.

Reservoirs are key structures in detecting climate change at the catchment level [55], and their
responsiveness is even higher at lower latitudes [9]. Wang et al. (2018) [9] explains that this effect comes
from lower latitude lakes and reservoir surface temperatures that require longer periods to warm than
air. A water surface at lower temperature results in more long-wave radiation being available for
evaporation, which further enhances the process. The temperature of water bodies was not assessed in
this study, but water warming as a side effect of climate change can also have many biological and
chemical consequences that should be further investigated, such as increased algal and toxic blooms
and methane emissions [8].

Observing such increasing trends in evaporation along with unfavorable climate changes is crucial,
especially when considering that the impacts of climate change on distributed water availability from
small reservoirs are expected to exceed the impacts for large reservoirs [56]. The local social and
economic well-being of many regions in the Cerrado strongly relies on water availability from small
reservoirs, and their increased evaporation can result in substantial economic loss.

Therefore, investigating which methods perform better in the simulation of small reservoir
evaporation is extremely important, especially when these findings give us more confidence in
developing tools for a sustainable water resource management, such as evaporation frequency
curves (Figure 9, Table 3). Evaporation curves are an important quantitative tool for aiding regional
water managers in decision making at desired probabilities and in the planning for higher water
availability in small reservoirs. In addition, the curves also provide crucial information for the design
of new reservoirs.

5. Conclusions

Indirect methods are an alternative frequently used to overcome the difficulties of direct
measurements, and the assessment of such methods for estimating small reservoir evaporation
is fundamental while pursuing adequate water resource management. In this work, fourteen methods
were assessed to estimate evaporation for small reservoirs in the Brazilian savannah region. The methods
that showed the best performance on both daily and monthly time scales were those of Kohler et al.
(1955) [21] and Linacre (1993) [24], with Nash-Sutcliffe efficiency indexes of 0.58 and 0.54 on the daily
scale, and 0.66 and 0.55 on the monthly scale, respectively.

An increasing tendency of evaporation of approximately 6.12 mm year−1 was observed. The highest
monthly increasing tendencies were observed for September and October, which increases the pressure
on irrigation reservoirs and jeopardizes local socio-economic development. This raises awareness
regarding how significant adequate water management strategies and policies are. Probability curves,
which are also presented in this work, are an important quantitative tool for hydrologists and regional
water managers, providing crucial information for reservoir operation and the design of new reservoirs.

Estimating small reservoir evaporation with pans comes with many uncertainties, such as the
oasis effect, microclimate heterogeneity, and equipment precision. Assessing errors through water
balance was not applied in this work, since measurements of water inflow and outflow of the reservoir
were not available. The measurement of water infiltration in earth dams also remains a major challenge,
which makes the aforementioned implementations promising for future research.
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