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A B S T R A C T

Leaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the
largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high
covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and
do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the
Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based
measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models
using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic
photon flux density (PPFD) from above and below the canopy during the periods of 2011–2012 and 2016–2018.
Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To
clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting
a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the
portion of PAI that is actually LAI (LAIC). LAIC can be calculated as follows: =LAI 1 (WAI/PAI)C ). We sub-
tracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ
dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as
the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI
(Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation
Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE
with a minimum of 0.41m2m−2 (PAI) and 0.40m2m−2 (LAI). The SAVI models showed values 20% and 32%
(PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the
other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other
physical processes and components, such as leaves etiolation and increasing protochlorophyll. The developed
models used the near-infrared band, and they varied only in relation to the inclusion of the red, green, and blue
bands. (iii) All previously published models and MODIS-LAI underperformed against our calibrated models. Our
study was able to provide several PAI and LAI models that realistically represent the phenology of the Caatinga.

1. Introduction

The Leaf Area Index (LAI) is a widely adopted parameter in en-
vironmental sciences studies. It represents the one-sided area of leaves
that covers a specific surface area (Fotis et al., 2018; Knote et al., 2009;
Mu et al., 2007; Rodriguez et al., 2009) and is one of the main para-
meters of both global and regional biosphere models (Arnold et al., 1998;

Bieger et al., 2017). LAI is used to scale up from leaf to vegetation
photosynthesis and transpiration, energy balance of terrestrial surfaces,
and many climatological and hydrological attributes such as atmospheric
aerosols, water infiltration, and biogeochemical processes (Bonan, 1995).

There are two main approaches used to estimate LAI: (i) direct
methods, in which the total leaf canopy is obtained by the summation
of direct measurement of all individual leaf areas – this is usually a
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destructive method because it requires the removal of all leaves and,
therefore, is not viable at large scales; and (ii) indirect methods, which
may require active or passive sensors to measure parameters that are
highly correlated with LAI, such as light extinction coefficient
(Jonckheere et al., 2004); or use the litterfall trap method, which is
suitable for estimating LAI of deciduous plants (Almeida et al., 2019).
Active sensors do not depend on solar radiation as they emit their own
electromagnetic signals and capture those reflected, whereas passive
sensors depend on solar radiation and are based on estimating the ex-
tent to which a given amount of leaf area will reduce radiation trans-
mitted through a stratified arrangement of leaf elements within a ca-
nopy (Zheng and Moskal, 2009). This estimation can be determined
using a radiative transfer model such as the PROSPECT and SAIL
models (Jacquemoud et al., 2009; Jacquemoud and Baret, 1990;
Knyazikhin et al., 1998; Verhoef, 1985, 1984) or abstracted by coeffi-
cients of an empirical model (Bastiaanssen, 1998; Galvíncio et al., 2013;
Machado, 2014).

Radiative transfer models are highly accurate, but require specific
inputs, such as pigment concentration, cell diameter, and water content
(Jacquemoud et al., 2009; Jacquemoud and Baret, 1990). These para-
meters can only be obtained with extensive fieldwork, while empirical
models are purely statistical fast retrieval algorithms (Zheng and
Moskal, 2009). To estimate LAI, the empirical models are mainly
composed of regressions that relate LAI values to simple spectral re-
sponses and greenness indices (Almeida et al., 2019; Galvíncio et al.,
2013; Machado, 2014), such as the Soil Adjusted Vegetation Index
(SAVI ) and Normalized Difference Vegetation Index (NDVI )
(Bastiaanssen, 1998; Galvíncio et al., 2013). For LAI estimations at a
regional scale, empirical models are generally reliable (Knote et al.,
2009). However, in Brazil, more specifically in the seasonally dry tro-
pical forest (SDTF) in the semi-arid region, known as the Caatinga,
models that are currently used have not been developed using both
intra- and inter-annual field measurements.

The Caatinga is the largest continuous SDTF in the Americas, with an
open and mostly semi-arid landscape, as seen in many inter-plateau de-
pressions (Ab’Saber, 1974; Silva et al., 2017). The Caatinga covers an
area of approximately 900,000 km2 (Silva et al., 2017), and exhibits at
least 13 different physiognomies ranging from woodlands to sparsely
distributed thorny shrubs (Silva et al., 2017). Its climate is characterized
by high temperatures and low rainfall rates with high intra- and inter-
annual variability both in space and time. The rainfall is normally con-
centrated over 2–4months of the year, with the possibility of over 25% of
the annual precipitation occurring in a single rainfall event (Miranda
et al., 2018). The main landscape units that can be found in the Caatinga
are canyons, ravines, mountains, sandy, and clayey plateaus (Leal et al.,
2007). Their complex soil mosaics are commonly formed by four domi-
nant soil orders (Latosols, Lithosols, Argisols, and Luvisols) (Menezes
et al., 2012). The Caatinga holds over 3,150 species of 930 genera and
152 families of flowering plants (Silva et al., 2017). These plants have
unique adaptations to endure conditions of spatiotemporally irregular
water availability and extended droughts: approximately 85% of the
Caatinga species lose all their leaves during the dry season (Leal et al.,
2003; Silva et al., 2017). Thus, methods that attempt to measure the LAI
by directly relating it to the intercepted radiation do not reflect only the
area of the leaves, but also the surface of the woody area, which is mainly
comprised of stems and branches (Cunha et al., 2019). The influence that
stems and branches have over the LAI estimates can be addressed by
computing the LAI as the difference between Plant Area Index (PAI) and
the Woody Area Index (WAI) (Kalacska et al., 2005).

Current model estimates of LAI in the Caatinga show moderate to
high covariance when compared to in situ data (r2=0.60–0.93), but they
might lack accuracy in the entire spectra of possible values because they
are often developed using observations that do not cover complete intra-
annual LAI variations due to phenology (e.g., Almeida et al., 2019;
Galvíncio et al., 2013; Machado, 2014). In addition, most of these models
applied to the Caatinga have not entirely considered the influence of the

continuous variation of WAI, which is highly significant in the Caatinga
as over 85% of plant’s above-ground biomass is composed of stems and
branches (Silva and Sampaio, 2008). The oversight of this uniqueness of
SDTFs, such as the Caatinga, is likely to cause methodological drawbacks
in estimating LAI. By not considering every all phenological stage, the
intra-annual LAI changes may be reduced, and PAI can be wrongly ad-
dressed as LAI. As a consequence, models may provide unrealistic values
for some periods of the year, especially in the dry season.

In this study, we aimed to create and test new empirical models
using a multi-year and multi-source set of reflectance data. We rely on
the premise that by providing multiple reflectance data combinations as
input and that by accounting for the WAI component of the PAI we will
be able to provide models that are more accurate and better adjusted to
the Caatinga. Our objectives were to evaluate the efficiency of new LAI
models derived from Landsat reflectance using fitted regressions and
field measurements from a typical Caatinga formation area in Brazil,
and to test new empirical approaches using previously published
models currently used for the Caatinga.

1.1. Study area

Data were collected in an area of shrubby hyperxerophytic Caatinga
forest area (Fig. 1) (Kiill, 2017), located at the Embrapa Tropical Semiarid
Research Station in the state of Pernambuco, Brazil (9°2'33"S, 40°19'16"W;
at 350m a.s.l.). The vegetation in this area consists of shrubs, trees, her-
baceous plants, and Cactaceae. The canopy average height is 4.5m. The
plant phenological stages in the Caatinga are usually four: foliar devel-
opment, maturity, senescence, and dormancy (Rankine et al., 2017), and
this cycle follows the rainfall patterns closely (Silva et al., 2017). Most
species in the Caatinga are deciduous, and respond quickly to slight
changes in soil water availability, breaking the dormancy of wood growth;
and that allows the plants to sprout most of their leaves in only a few days
in the beginning of the rainy season (Machado et al., 1997). The dominant
plant species (approximately 90% of the total relative dominance) in our
study area were Commiphora leptophloeos, Schinopsis brasiliensis, Mimosa
tenuiflora, Cenostigma microphyllum, Sapium glandulosum, Cnidosculus
quercifolius, Handroanthus spongiosus, Manihot pseudoglaziovii, Croton con-
duplicatus, and Jatropha mollissima (Kiill, 2017). Although the Cactaceae
(Pilosocereus gounellei and Pilosocereus pachycladus) have a fairly constant
vegetative phenology throughout the year, these plants have a relative
dominance of less than 5% and an insignificant production of leaves;
therefore they were not considered in our LAI estimates. The climate is dry
semi-arid (Alvares et al., 2013), with the rainy season between January
and April and an average annual temperature of 26°C. Although the
average historical annual rainfall is approximately 500mm, the average
rainfall was less than 300mm during our study period, which is the most
severe drought in this region’s recorded history. These conditions were
particularly interesting for our study, allowing a precise assessment of the
WAI influence on the total PAI.

2. Methodology

2.1. Field measurements

LAI was derived from field measurements of photosynthetic photon
flux density (PPFD) taken from above and below the canopy using two
different non-destructive methods. The measurements were conducted
throughout the year in order to cover all plant phenological stages and
covered five years: 2011–2012 and 2016–2018. The first method
measured PPFD using three quantum sensors (one LI-190SA sensor to
measure the above-canopy PPFD, and two LI-191 sensors for the below-
canopy data) installed in a 16-m meteorological tower in the study area.
All sensors were connected to a data acquisition system (CR1000,
Campbell Scientific Inc.), which was programmed to compute averages
of 30-s measurements taken at 30-min intervals from January 2011 to
December 2012. In order to maximize the quality of our measurements,
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we filtered all data, considering only the average of the measurements
between 10 a.m. and 2 p.m. each day (GMT -3), when the zenith angle
is close to zero. The second measurement approach was applied on a
weekly basis (68.97% of the entire dataset) from January 2016 to
November 2018, with the following exceptions: 19.54% (≥ 8 days of
interval between measurements – DBM), 8.05% (≥ 14 DBM) and
3.44% (≥ 21 DBM). The dataset consisted of LAI estimates based on the
transmission of light through the canopy at various angles by using an
AccuPAR ceptometer (AccuPAR® LP-80, Decagon Devices). The
AccuPAR has a linear ceptometer with 80 sensors, capable of measuring
PPFD at the photosynthetically active radiation (PAR) range
(400–700 nm wavelength) from 0 to 2500 μmol m−2. The above-ca-
nopy PPFD and solar zenith angle measurements were obtained in a
nearby (about 10m away) clear area, and the below-canopy PPFD was
acquired by holding the AccuPAR beneath the canopy at approximately
0.4 m above ground. The dataset from this approach was linearly in-
terpolated to produce the daily data required to match the satellite
overpass times. We used the data collected to predict scattered and
transmitted PPFD, as well as to predict light extinction, as proposed by
Norman (1979).

2.2. Plant Area Index (PAI) partitioning

In our study, we defined PAI as the sum of WAI and LAI (Magalhães
et al., 2018), and the WAI as the contribution of woody material such as
stems, branches, and trunks to the light interception of PAI. In order to
carry out this partition of our data, we first took the minimum LAI
(LAIMIN) value of each year as the WAI, which was verified by visual
evaluation of hemispheric photos from a phenological monitoring da-
tabase (Fig. 2); then we fixed this value from the day of the LAIMIN to
the first subsequent day with rainfall over 2.5mm. Based on field ob-
servations, we assumed that low-precipitation (≤ 2.5mm d−1) events
did not cause any significant phenological change in the ecosystem. The

WAI was assumed to change between sequential dry seasons gradually;
we gap-filled the WAI dataset with a linear interpolation between the
fixed-value periods of each year. To avoid small discrepancies in the
extremes of each interpolated series, we smoothed the dataset by fitting
a logarithmic equation (Eq. 1) with the PAI data and the inverse con-
tribution of WAI to PAI, which is the percentage of PAI that is actually
LAI (here called LAIC). LAIC was calculated as follows:

=LAI 1 (WAI/PAI)C . The WAI values were subtracted from the PAI
to develop our in situ LAI dataset, which is used for further analysis.

= × ×WAI {1 [ln(PAI) 0.5]} PAI (1)

2.3. Landsat data processing

We selected the Landsat Surface Reflectance Level-2 products for
the entire study period (total of 110 candidate images). These products
are designed to provide atmospherically and geometrically corrected
reflectance data with 30-m resolution for every 16 days. These data are
generated using the auxiliary climate data from MODIS (e.g., water
vapor, ozone, geopotential height, and aerosol optical thickness) and
two different algorithms: 1) the Second Simulation of a Satellite Signal
in the Solar Spectrum (6S) algorithm to the data derived from Landsat 5
Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) images; and 2) a unique radiative transfer model to the
Landsat 8 Operational Land Imager (OLI) data. The data were extracted
from two sample sites (Fig. 1), and all clear pixels were filtered using
the respective Quality Band (QA band) of each product (L5–7=66, and
L8=322), resulting in a 70-record dataset. The dataset was then sub-
mitted to an iterative model-fitting approach to create new PAI and LAI
models. The Landsat Collection 2 Level-2 products include reflectance
values derived from three sensors (TM/Landsat 5, ETM+/Landsat 7,
and OLI/Landsat 8) with 30-m spatial resolution. The different bands
were matched to create an equivalent dataset of reflectance across all

Fig. 1. Location of the seasonally dry tropical forest experimental area at the Embrapa Semiarid Research Station in the state of Pernambuco (Brazil).
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sensors (Table 1). These products are freely available through the LSDS
Science Research and Development (LSRD) database of the U.S. Geo-
logical Survey (https://espa.cr.usgs.gov/).

2.4. Model calibrations

We developed PAI and LAI models based on the combinations of
bands ( 1 to 7); vegetation indices (NDVI , SAVI and EVI ; Eqs. 2 to 4);
transformation functions, i.e., x , x1/ , xln( ), xlog ( )10 , x , x2, ex ; and basic

mathematical operations. These models were obtained by using an
exhaustive training iteration process (> 106 iterations) that selected
the best results based on the highest coefficient of determination (r2)
with the lowest Root Mean Square Error (RMSE). We used the Percent
Bias (PBIAS) and the concordance correlation coefficient ( c) as aux-
iliary performance indices. In our regression analysis, we used linear,
logarithmic, exponential, and power functions to fit the observed data.
We obtained NDVI , SAVI , and Enhanced Vegetation Index (EVI ) using
Eqs. 2 to 4, where C1 (6) and C2 (7.5) are the coefficients of the aerosol
resistance, G (2.5) is a gain factor, and L is the soil effect constant,
according to Rouse et al. (1974) and Huete (1988). Our L for the EVI
and SAVI were set using a sensitivity analysis, varying the factor L from
-1 to 1 with intervals of 0.01. The best L value occurred when simulated
data achieved the highest r2 with the lowest RMSE. The L values found
were 0.07 (for PAI models) and 0.37 (for the LAI models) for equations
using SAVI ; and 1 for both PAI and LAI models for equations using EVI.
The number of models evaluated can be calculated using Eq. 5, where
nc is the number of parameters entered into the model. All independent
data were previously tested with the Variance Inflation Factor
( =VIF 1/(1 r )2 ) to avoid any significant multicollinearity. We con-
sidered data to be independent when VIF <10. All processing was
performed using an interpreter Python 2.7.15 with only basic modules
installed (freely available at https://github.com/razeayres/correlator).
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2.5. Models verification

To verify the accuracy of all models in this study, we first assessed
the applicability of parametric statistics to all data with the
Shapiro–Wilk (for normality) and Brown–Forsythe (for homo-
scedasticity) tests (Zar, 1996), and then we conducted a comparison
between the remotely sensed data and the estimates from the field
observations using the Monte Carlo cross-validation technique (Xu and
Liang, 2001), considering 91 different sampling sizes varying from 5 to
95% of the total data at 1% intervals. Each sample was evaluated by its
r2 and computed as the mean of 50 random repetitions. The methods of
cross-validation are widely adopted, and they were used to check
whether models tend to over-adjust to the in situ dataset distribution
(Hawkins, 2004). This over-adjustment would mean that excellent re-
sults would be obtained only in calibration (Shao, 1993), while during
verification, the accuracy of the model would drastically drop. This
approach allows for a good calibration (Shao, 1993). In addition, we
used the models proposed by Bastiaanssen (1998) (Eq. 6), Galvíncio
et al. (2013) (Eq. 7), Machado (2014) (Eq. 8), and Almeida et al. (2019)
(Eq. 9), and derived from MODIS data (MCD15A3H/A2H) to produce
independent data required for comparing with our field observations
and for testing our models. Except for the model developed by Bas-
tiaanssen (2018), these other models were specifically developed for
the Caatinga. However, the model of Bastiaanssen (1998) has been
widely used to estimate LAI in this region (e.g., Bezerra et al., 2014;

Fig. 2. Contrast in the Caatinga between its wet (A, C and E) and dry (B, D and
F) conditions. A–B are hemispheric photos taken from below the vegetation in
12/18/2018 and 9/27/2018 respectively; C–D are landscape photos taken
horizontally in 2/5/2016 and 10/20/2017 at the height of 14m; E–F are or-
thophotos taken by drone (unmanned aerial vehicle) at 80m height in 02/16/
2018 and 10/20/2017, respectively.

Table 1
Equivalence table of the bands of the sensors TM/Landsat 5, ETM+/Landsat 7
and OLI/Landsat 8.

OLI/Landsat 8 (nm) ETM+/Landsat 7 and TM/
Landsat 5 (nm)

Equivalent bands for this
study (nm)

– +ETM TM
1

/ =450–520 = +[ , ]OLI ETM TM
1 2 1

/

OLI
2 =452–512 +ETM TM

2
/ =520–600 = +[ , ]OLI ETM TM

2 3 2
/

OLI
3 =533–590 +ETM TM

3
/ =630–690 = +[ , ]OLI ETM TM

3 4 3
/

OLI
4 =636–673 +ETM TM

4
/ =770–900 = +[ , ]OLI ETM TM

4 5 4
/

OLI
5 =851–879 +ETM TM

5
/ =1,550–1,750 = +[ , ]OLI ETM TM

5 6 5
/

OLI
6 =1,566–1,651 – –
OLI
7 =2,107–2,294 +ETM TM

7
/ =2,090–2,350 = +[ , ]OLI ETM TM

7 7 7
/
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Oliveira et al., 2015; Santos et al., 2017).

=LAI
ln

0.91

SAVI(0.69 )
0.59

(6)

= +LAI e NDVI1.426 0.542 (7)

= × ×LAI e0.102 NDVI5.341 (8)

= ×LAI EVI9.555 1.324 (9)

For Eqs. 6 to 9, we used the same Landsat dataset produced for the
models calibrations; for the MODIS MCD15A2H/A3H products, we used
all images for the entire study period (total of 830 candidate images).
These products are designed to provide data with a spatial resolution of
500m every four days (MCD15A3H) or every eight days (MCD15A2H).
They are based on a complex algorithm that uses both the daily surface
reflectance values of the MODIS sensor on one or both of the Terra and
Aqua satellites and the data from a radiative transfer model, which are
stored in a two-dimensional lookup table (Yang et al., 2006). These
reflectance data are already corrected for atmospheric interferences
such as atmospheric gases and aerosols, and they are freely available
through the Earth Explorer online tool of the U.S. Geological Survey
(https://earthexplorer.usgs.gov/). For all products, scale corrections
were performed using the Geospatial Data Abstraction Library and clear
land dry forest pixels were filtered using the Quality Band (QA band,
value 0).

3. Results and discussion

Six of our selected models use NDVI , SAVI and EVI as input (Eqs. 15
to 17, and 23 to 25 in Table 2). These models exhibited r2 values ran-
ging from 0.77 to 0.79 for PAI and 0.78 to 0.81 for LAI, and RMSE with
a minimum of 0.41m2m−2 for PAI and 0.40m2m−2 for LAI. The SAVI
models (Eqs. 15 and 23) showed RMSE values smaller than the ones
found for the models that use EVI and NDVI . We ascribe the better
accuracy with the SAVI models over the other vegetation indices to the
fact that SAVI takes into consideration the effects of soil background,
while not showing high variability as EVI does for sparsely vegetated
areas, which in turn produces infrared reflectance at low levels due to

dry soil background (Lu et al., 2015). In addition, SAVI better reflects
the surface roughness, which affects momentum, heat, and water vapor
fluxes (Bastiaanssen, 1998), and varies according to the phenological
stages of the Caatinga (Teixeira et al., 2008). These models are useful
because they allow easy retrieval of the PAI or LAI from remote sensing
data. For example, many NDVI products, using a large variety of sensor
data, are freely available, and they can be used to acquire physical
information for large forest areas.

Our models presented a better performance when fitted linearly
rather than in any other non-linear form (Table 2). This is the opposite
of what was shown by some NDVI–LAI relationship models (Liu et al.,
2012; Tavakoli et al., 2014). Liu et al. (2012) conducted an experiment
in the Ningxia Hui Autonomous District, in Northwest China, and they
found saturation of NDVI at high LAI values. Tavakoli et al. (2014), in
16 plots of winter wheat (Triticum aestivum L., cv. Cubus) in an ex-
perimental station located in Marquardt in Germany, found the best
NDVI–LAI relation when fitting data logarithmically. In fact, this sa-
turation of LAI as function of NDVI is commonly expressed by a loga-
rithmic relationship. However, NDVI values tend to be poorly asso-
ciated with those from ground observations in SDTFs (Guzmán et al.,
2019). In our study, the vegetation indices did not exhibit saturation
related to the LAI of the Caatinga vegetation, which resulted in a linear
covariance as reflect in Eqs. 23–25. Magalhães et al. (2018) showed that
a linear model simulates better LAI in a SDTF by arguing that NDVI can
only saturate in vegetation types with LAI above 5m2m−2. That sup-
ports our findings since this threshold is above the values we used to
develop LAI models for the Caatinga.

In this study, absolute non-saturated simulated LAI values varied
from 0 to 4.56m2m−2 (0.61 to 5.23m2m−2 for PAI values), while
Bastiaanssen (1998) exhibited values from 0 to ca. 4.45m2m−2 (con-
sidering only the non-saturated values), Galvíncio et al. (2013) from
0.63 to 1.98m2m−2, Machado (2014) from 0.25 to 3.7m2m−2, and
Almeida et al. (2019) from ca. 0 up to 4.26m2m−2 in average. All of
these previously models do not consider the temporal variations due to
the phenological stages of the Caatinga on a continuous multi-year
basis, thus the range of possible simulated values is smaller when
compared to our models. Bastiaanssen (1998) derived LAI using dif-
ferent equations for only seven types of land use cover types (cotton,

Table 2
Calibration of PAI and LAI models created through an iterative process using Landsat reflectance data.

Model r2 1 RMSE 2
c PBIAS 2

PA
I Eq. 10 = × +y 10.1 ( ) 34 3 .1 0.79 0.41 0.88 0.33

Eq. 11 = × +y 13.2 ( ) 32 4 .1 0.77 0.44 0.87 1.84
Eq. 12 = × +( )y 13.5 6.1log10( 4)

ln( 3)
0.77 0.43 0.87 −1.84

Eq. 13 = × +y 20.3 ( ) 33 4
2 0.77 0.43 0.87 −0.83

Eq. 14 = × ×y 3.2 (ln( ) ) 13 4 .4 0.79 0.41 0.88 −0.22
Eq. 15 3 = ×y e3.5 ( ) 2.7SAVI 0.79 0.41 0.88 1.10
Eq. 16 = ×y e4.8 ( ) 3EVI .7 0.77 0.45 0.86 3.72
Eq. 17 = × +y NDVI5 ( ) 1.32 0.79 0.43 0.89 1.04

LA
I Eq. 18 = ( )y 0.142

1
0.79 0.41 0.88 −0.01

Eq. 19
= ×y 9.7 1.2log10( 3) 1

4

0.78 0.42 0.88 −4.84

Eq. 20 = × +y e11.2 ( ) 8.34 3 0.76 0.44 0.86 7.15
Eq. 21 = ×y 12.2 ( ) 14 2 .2 0.76 0.44 0.86 −0.73
Eq. 22 = × +y e19.6 ( ) 21.44

2 3 0.78 0.42 0.87 −3.01
Eq. 23 3 = × +y SAVI11 ( ) 0.22 0.81 0.40 0.89 0.04
Eq. 24 = ×y EVI6.5 ( ) 0.4 0.78 0.42 0.88 −5.71
Eq. 25 = × +y NDVI4.9 ( ) 0.12 0.80 0.41 0.89 4.39

1 Significant at p = 0.05.
2 RMSE is in m2m−2, and PBIAS is showed as percentage.
3 L values in the SAVI calculations were 0.07 (for the PAI) and 0.37 (for the LAI).
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maize, soy, wheat, fruit trees, vegetables, and native forests), none of
which were similar to the dry forest in our study area. The study of
Galvíncio et al. (2013) was based on a comparison of data obtained
using an AccuPAR analyzer with indices created from spectro-
radiometry from a single day of measurements. The model proposed by
Machado (2014) was developed in a Caatinga area of the National Park
of Catimbau using only one Landsat 5 TM image, combined with 54
field-derived LAI measurements acquired three times over 20 days
using simultaneous averages of diffuse light interception at five dif-
ferent zenith angles using sensors with fisheye lens. Almeida et al.
(2019) created LAI models using the litterfall trap method in the Caa-
tinga, and collected data for three representative species. Although the
LAI models of Almeida et al. (2019) show high correlation to their field
measurements, they were not able to consider the entire growth cycle in
their analysis due to limitations of the litterfall fall method such as the
discrete distribution of the measurements over time, and misestimation
of the foliar development because of the appearance of new leaves
between assessments.

The best-performing new models that use different band combina-
tions were Eqs. 10–14, and 18–22 (Table 2). These equations may re-
present other physical processes and components, such as leaf etiolation
and increasing protochlorophyll, which is reported to influence the blue
band of the visible spectrum ( 1 in Eq. 17) (Gates et al., 1965). Medeiros
et al. (2019) suggested the near-infrared (NIR) band may be a good
indicator of leaf radiation reflectance patterns among different species,
which reflect variations in leaf size, form, and type, and even plant
habit. Our models used the NIR band, and they varied only to the in-
clusion of the red, green, and blue bands. The amount of energy re-
flected or absorbed in these bands varies according to the physico-
chemical and biophysical properties of the target (Edwards et al.,
2013). All bodies reflect or emit electromagnetic radiation at different
wavelengths and in different ways, and the result is a reflectance curve
or spectral signature (Schmugge et al., 2002). This set of unique in-
teractions restricts the bands that distinguish certain characteristics of a
target and allows various parameters quantification (e.g., pigment
concentration and plant structure complexity) (Blackburn, 2007;
Dawson et al., 1998; Schmugge et al., 2002). Usually, vegetation re-
flects about half of the incident radiant flux in the NIR band (Zhao
et al., 2007); therefore, this is a band very sensitive to biomass and LAI.
Leaves predominantly absorb energy at the blue–red spectrum and re-
flect the energy in the green and NIR bands because of the interaction
with chlorophyll, carotenoids, and the mesophyll itself (Gates et al.,
1965). Thus, the green and NIR bands are considered bands of high
reflectance (Fan et al., 2018). In comparison to the green band, the NIR
has a relatively higher multiple reflectance through within-canopy

layers, which reduces the canopy light extinction coefficient (Zheng and
Moskal, 2009).

We consider Eqs. 10, 15, and 17 to be optimal solutions for the
estimation of PAI, and Eqs. 18, 23, and 25 for the estimation of LAI in
the Caatinga (Table 2). Although studies have highlighted the dubious
quality of data acquired by remote sensing in the blue band because of
wavelength-dependent atmospheric interference (e.g., Carter et al.,
2009; Motohka et al., 2009), Eq. 18 has performed very well with
r2= 0.79 and RMSE=0.41 m2m−2, with values comparable to Eq. 23
(which does not use the blue band) with r2= 0.81 and RMSE=0.40
m2m−2. The greatest contribution of Eq. 18 is its natural proximity to a
1:1 relation to in situ measurements ( c =0.88, PBIAS = -0.01), which
provides greater ability to simulate values near to zero. Although our
models require observations in the NIR band, many images have NIR
sensors and, if well calibrated, they allow for LAI to be estimated based
on reflectance from spectral mixture or coarse resolution compositions.
These images include those captured by phenological cameras, un-
manned aerial vehicles, and high-resolution monitoring satellites (e.g.,
QuickBird and IKONOS).

The accuracy of our best models can be visualized when plotting
their estimates alongside observed PAI and LAI data (Fig. 3). Our best
performance models were able to emulate the variance of LAI in our
study period (Table 2). Eqs. 10, 15, and 23 are biased towards over-
estimation (PBIAS= 0.33, 1.10 and 0.04 respectively) and Eq. 18
presented a small underestimation bias (PBIAS = -0.01). In general,
based on our findings, models developed with independent bands of a
sensor produced low-magnitude values near-optimal zero, indicating
accurate model simulation, while the models created using vegetation
indices exhibited moderate bias.

In the cross-validation analyses, Eq. 10 produced maximum values
(rmax =0.81) and minimum values (rmin =0.68) similar to Eq. 18
(rmax =0.83 and rmin =0.59). In comparison, the NDVI , SAVI and EVI
models yielded higher maximum and minimum values for both PAI
(rmax =0.83, 0.82, and 0.80, respectively; rmin =0.73 for all models)
and LAI (rmax =0.84, 0.85, and 0.83; rmin =0.71, 0.71, and 0.69, re-
spectively). The other models presented r values ranging from 0.64 to
0.84 (for PAI), and 0.6 to 0.83 (for LAI). The 0.01 standard deviation of
r was the same for all models, indicating that they are reliable. When
varying the amount of data taken for cross-validation from 5 to 95%,
the r values tend to show minimal variations (Figs. 4 and 5). However,
in our verification we did not observe any statistically significant pat-
tern in correlation owing to the removal of data from the calibration of
the models, which confirms that these models are highly robust to es-
timate LAI.

The approaches proposed by Bastiaanssen (1998) (Eq. 6), Galvíncio
et al. (2013) (Eq. 7), Machado (2014) (Eq. 8), and Almeida et al. (2019)
(Eq. 9), as well as the MCD15A3H/A2H data underperformed compared
to our models, when compared to our in situ PAI and LAI data (Table 3),
even though correlations were significant (p<0.05). Eqs. 6 and 7
performed the best in terms of accuracy, while Eqs. 8 and 9 presented
the highest covariances. Although the MODIS products are supposed to
reproduce the LAI seasonality well, we observed that they do not re-
spond well for the Caatinga during the dry season; the lowest values
were around 0.5 m2m−2 when real LAI values were practically zero.
We tested the fitness of MODIS products against our in situ PAI and LAI
datasets. The lower correlation with the MCD15A3H product in com-
parison to the MCD15A2H product indicates that the proportion of
high-quality data for the dry forest area is lower for periods of com-
position of four days than for the eight-day version (Table 3). These
periods of composition are created from the highest value observed in
situ; thus, the greater the number of values available for the determi-
nation of LAI of each pixel, the higher the probability of it being an
accurate value. This is because data obtained by satellites are influ-
enced by a number of different atmospheric factors such as water vapor,
cloud cover, and aerosols, thus any given bit of satellite data may not
yield accurate results (Yang et al., 2006). Our results indicate that

Fig. 3. Comparison of temporal variation of PAI (in the middle) and LAI
(bottom) observed in situ to the best simulated models created through an
iterative process using Landsat reflectance data.
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studies that rely on LAI from MODIS products for vegetation assessment
in SDTFs, such as the Caatinga, are likely to incorporate bias due to
unrealistically high LAI values during the dry season, when plants lose
most of their leaves and the vegetation consist predominantly of non-
photosynthetic biomass (Leal et al., 2003; Silva et al., 2017). The re-
duction of photosynthesis has direct consequences for the evapo-
transpiration and gross primary productivity, affecting the carbon sto-
rage and CO2 exchange capacity (Morais et al., 2017; Nagler et al.,
2003).

The LAI in this study, as seen in all models for the Caatinga, can be
defined as effective LAI, which is the portion of LAI that effectively
intercepts the light, not directly considering grouped foliage. This
grouping of leaves can be quantified by a vegetation dispersion para-
meter (clumping index) (Nilson, 1971), which often can be de-
termined by a random distribution (Chen and Black, 1992). The “true”
LAI is not easy to achieve; it requires intensive fieldwork and systematic
sampling, using all possible allometric relationships (Frazer et al., 1997;
Weiss et al., 2004). Since the approaches of estimating PAI and LAI used
in our study are based on the light extinction, the WAI values as a result
of the difference between PAI and LAI are likely to be underestimated

when LAI is high (Nackaerts et al., 2000; Stenberg, 1996). This is at-
tributed to the fact that when LAI values are very high, the leaves cover
the woody area and reduce the role of light interception of the branches
and stems (Chen et al., 1997), which in turn leaves the PAI and LAI
values very similar (e.g., Feb 2012 in Fig. 3).

Our models are easy-to-use PAI and LAI predictors that can be ap-
plied to estimate these indices for the Caatinga. The models also can be
used to simulate other Caatinga types (such as in transitional areas), but
since they rely on calibration coefficients, minor adjustments might be
required to approximate minimum and maximum LAI. Regional ap-
plicability can be considered as moderate-high, because the phyto-
physiognomy dominated by shrubs is the main and most abundant in
the Caatinga (Silva et al., 2017). However, at a regional scale, our
models may be used as backup models in a physical approach that does
not require calibration to achieve maximum generalization. Further
improvements may include (i) pooling coefficients adjusted for other
areas of Caatinga with different levels of degradation, which could be
similar to what was made by Bastiaanssen (1998) when developing LAI
models; (ii) the adjustment of these equations using field data from
other types of Caatinga vegetation, where some plants, such as Cacta-
ceae and Bromeliaceae, may have a more significant presence, and the
soil exposure may be different; (iii) the removal of the influence of non-
photosynthetic plant material, such as flowers, fruits and petioles, on
LAI measurements; and (iv) approximation of LAI to more realistic
values, developing and introducing a new to more efficiently account
for leaf dispersion directly in the models, instead of abstracting it in
regression coefficients. This could solve systematic problems, such as
misestimation of LAI at a given phenological stage.

4. Conclusions

Our study developed and assessed several PAI and LAI models to be
realistically representative for the phenology of a typical Caatinga
ecosystem. Given the high frequency of our in situ measurements
(mostly measured on a daily or weekly basis), all Caatinga phenological
stages were covered and reproduced in our models. The joint usage of
ground and satellite data presented an efficient way to assess both PAI
and LAI models. The results included parameterizations with the visible

Fig. 4. Cross-validation of the PAI models created through an iterative process
using Landsat reflectance data. Detailed validations of Eqs. 15–17 are on the
right side.

Fig. 5. Cross-validation of the LAI models created through an iterative process
using Landsat reflectance data. Detailed cross-validations of Eqs. 23–25 are on
the right side.

Table 3
Comparison of the previously published models, and the MCD15A3H/A2H
products with in situ data.

Reference Parameter r2 1 RMSE 2
c PBIAS 2

Bastiaanssen (1998) PAI
LAI

0.73
0.75

1.54
0.51

0.35
0.84

−69.44
−26.53

Galvíncio et al. (2013) PAI
LAI

0.73
0.72

1.32
0.52

0.33
0.75

−57.44
2.33

Machado (2014) PAI
LAI

0.76
0.78

1.28
1.01

0.61
0.72

−40.48
43.12

Almeida et al. (2019) PAI
LAI

0.77
0.77

1.66
0.65

0.40
0.81

−73.74
−36.80

MCD15A3H PAI
LAI

0.66
0.65

1.39
0.57

0.29
0.71

−60.08
−4.00

MCD15A2H PAI
LAI

0.77
0.78

1.26
0.46

0.38
0.82

−55.07
8.04

Summary of selected models

Eq. 10 PAI 0.79 0.41 0.88 0.33
Eq. 15 3 PAI 0.79 0.41 0.88 1.10
Eq. 17 PAI 0.79 0.41 0.89 1.04
Eq. 18 LAI 0.79 0.41 0.88 −0.01
Eq. 23 3 LAI 0.81 0.40 0.89 0.04
Eq. 25 LAI 0.80 0.41 0.89 4.39

1 Significant at p = 0.05.
2 RMSE is in m2m-2, and PBIAS is showed as percentage.
3 L values in the SAVI calculations were 0.07 (for the PAI) and 0.37 (for the

LAI).
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and infrared spectral bands, which allowed the use of many currently
available datasets to estimate LAI.

The models produced results with high accuracy (up to r2= 0.81
and RMSE=0.41 m2m−2). The significant improvement of our models
over the others used for the Caatinga is due to the consideration of WAI,
which previously had not been considered in calibrations for the
Caatinga, and the temporal variations of LAI, which allowed us to
create more generalist models that can be used during different phe-
nological stages of the Caatinga vegetation.
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