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Abstract: Soil mapping demands large-scale surveys that are costly and time consuming. It is
necessary to identify strategies with reduced costs to obtain detailed information for soil mapping.
We aimed to compare multispectral satellite image and relief parameters for the quantification and
mapping of clay and sand contents. The Temporal Synthetic Spectral (TESS) reflectance and Synthetic
Soil Image (SYSI) approaches were used to identify and characterize texture spectral signatures at the
image level. Soil samples were collected (0–20 cm depth, 919 points) from an area of 14,614 km2 in
Brazil for reference and model calibration. We compared different prediction approaches: (a) TESS and
SYSI; (b) Relief-Derived Covariates (RDC); and (c) SYSI plus RDC. The TESS method produced highly
similar behavior to the laboratory convolved data. The sandy textural class showed a greater increase
in average spectral reflectance from Band 1 to 7 compared with the clayey class. The prediction
using SYSI produced a better result for clay (R2 = 0.83; RMSE = 65.0 g kg−1) and sand (R2 = 0.86;
RMSE = 79.9 g kg−1). Multispectral satellite images were more stable for the identification of soil
properties than relief parameters.

Keywords: reflectance spectroscopy; digital soil mapping; precision agriculture; bare soil; soil
degradation; satellite imagery

1. Introduction

The characteristics of the topsoil layer are important because they provide fundamental
information for food production. Soil is composed of physical, chemical, mineralogical, and organic
compounds, plus water and air, and these properties have been degraded in many agricultural regions
through poor management actions [1]. An important soil property related to physical structure
is the particle size distribution, which is divided into three main fractions: clay (<0.002 mm), silt
(0.002–0.02 mm), and sand (>0.02 mm). The clay fraction influences several important processes, such
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as water retention and infiltration, nutrient dynamics, and root development. Moreover, particle size
is also directly related to soil compaction, plasticity, consistency, mechanical resistance, air capacity,
pollutants, and herbicide interactions [2].

Pedometric soil mapping uses quantitative information obtained by different methods, ranging
from conventional cartographical surveys (elevation models from which terrain attributes can be
derived) to Proximal Sensing (PS) and Remote Sensing (RS). Ben-Dor and Banin [3] described the
so-called NIRA (Near-Infrared Analysis), which has been the basis for attribute quantification by
spectroscopy. Several other studies have confirmed the potential of PS levels for quantifying soil
attributes, such as clay content [4,5] and textural classes [6]. Based on this strong spectroscopy
background, research has moved towards remote satellite information, as in Coleman et al. [7].
More recently, Mouazen et al. [8] and Morellos et al. [9], in order to offer operational solutions for
systematic coverage of fields, applied on-line sensors at accuracies comparable to laboratory analyses.

Pedologists, pedometricians, and environmental analysts often use continuous information from
the landscape in a flexible and direct manner to describe soil variability through space and time. In fact,
McBratney et al. [10] describe soil variability as “continuous” and without rigid limits. Occasional bare
soil regions can be identified in fragmented areas, but this is not ideal for a spatially continuous map.

Pedologists currently use imagery to assist in understanding the direction of soil variability for its
mapping. This leads soil mappers to use relief information as a basis to map an entire area. At this
point, images may be of assistance because they are able to indicate areas with bare soil; however,
scientific articles tackling this issue are generally limited to detecting point-based information, while
spatially continuous solutions are still lacking.

There is a gap concerning how to use RS to assist digital soil mapping. Some recent publications
in this area have used the relationship between soil particle size, landscape topography, and spectral
reflectance [11], while other studies have targeted the prediction of clay content, applying laboratory
spectral measurements and satellite multispectral data (Table 1). Regarding the statistical quality of
clay prediction, laboratory spectral results have achieved R2 values ranging from 0.61 to 0.9 (Table 1).
Satellite multispectral sensors achieved lower results, with R2 values ranging from 0.26 to 0.83.

Table 1. Literature review concerning prediction of clay content by laboratory spectral data, satellite
multispectral data, and relief-derived covariates.

Source Sensor 1 R2 Range Author(s)

Laboratory

UV-VIS-NIR (20–2500 nm) 0.61–0.80
Islam et al. [12]
Pirie et al. [13]

Veum et al. [14]

VIS-NIR-SWIR (350–2500 nm) 0.75–0.91

Wang and Pan [15]
O’Rourke et al. [16]
Conforti et al. [17]
Pinheiro et al. [18]
Adeline et al. [19]
Dotto et al. [20]

Satellite

TM 0.44–0.67

Henderson et al. [21]
Nanni and Demattê [22]

Fiorio et al. [23]
Shabou et al. [24]

ETM+ 0.26–0.68
Chagas et al. [25]

Diek et al. [26]

Jena-Optronik (RapidEye) 0.24–0.56 Forkuor et al. [27]

EO-1 ALI (Hyperion) 0.51–0.83
Zhang et al. [28]

Castaldi et al. [29]

Relief-Derived
Covariates

Elevation, Slope, Convergence Index, and
Topographic Wetness Index 0.55 Samuel-Rosa et al. [30]

Relative Elevation and Slope 0.07 Sumfleth and Duttman [31]
Slope, Plan Convexity, and Upslope Distance 0.51 Odeh et al. [32]

1 Spectral regions of laboratory sensors: UV: Ultra Violet, VIS: Visible (blue, red, and green), NIR: Near-Infrared,
SWIR: Shortwave Infrared. Spectral sensors of satellites: TM: Thematic Mappers, ETM+: Enhanced Thematic
Mapper Plus, EO-1 ALI: Earth Observing-1 Advanced Land Imager.
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Therefore, literature studies have brought us to important points for evaluation towards the
usefulness of soil image analysis, as follows: (a) Is there room to increase the prediction of clay content
by multispectral sensors, as they have some limitations compared with hyperspectral ones (distance,
spectral, and spatial resolution)? (b) An important paradigm supported by many users is that soils
cannot be evaluated using images since they are usually covered by vegetation; (c) Relief parameters
have been considered to be the best information sources for mapping soil attributes because they are
soil formation factors.

Several hypotheses were formulated to address these questions as follows: (1) A Landsat
multispectral sensor can quantify clay and sand contents since it has key bands distributed along
VIS-NIR-SWIR; (2) Soil spectral libraries can assist in the interpretation and characterization of satellite
information; (3) We also expect that a composite of temporal imagery can achieve the best mapping
of spatially continuous bare soil data since it will fill the gaps where soil was bare in one period and
covered in another; (4) Soil properties are typically determined by classical tacit knowledge, which
makes inferences along landforms or by mathematical procedures and interpolation. Spectra from
pixels are a direct source of information, and should draw a better picture of clay and sand distribution
than reliefs. One technique that can detect even the barest soil over time periods is the Geospatial
Soil Sensing System (GEOS3) [33], which will be evaluated in this study. Thus, the main objective
of this study is to evaluate multispectral satellite images for clay and sand content quantification
and mapping.

2. Materials and Methods

2.1. Study Area

The study area is located in the central region of São Paulo state, Brazil, with a total area of
14,614 km2 (Figure 1). The climate in the region is classified as humid subtropical (Cwa) according
to the Köppen classification, with dry winters and hot summers [34]. The mean annual precipitation
is 1480 mm, while the mean annual maximum and minimum temperatures are 28 ◦C and 15 ◦C,
respectively. The terrain elevation varies between 400 and 1100 m above sea level. The predominant
soils are Ferralsols, Lixisols, Arenosols, and Nitosols, with different particle size distributions [35].
The primary land uses are for sugarcane, silviculture, oranges, and pasture. This area was selected
because it is subject to intense agricultural usage and great soil variation, expressing the characteristics
of a typical tropical region.

2.2. Field Sampling and Soil Analysis

Soil samples were established in catenas to represent variations of relief and geology using a
centimeter-accuracy (RTK) Trimble GPS unit (Figure 1), and were collected at 0–20 cm depth at a total
of 919 locations. All soil samples were ground, dried, and sieved (2 mm), and spectral reflectance
measurements were taken using a Spectroradiometer FieldSpec 3 sensor (ASD, Boulder, CO, USA)
in the 350 to 2500 nm range (Visible, VIS; Near-infrared, NIR; and Shortwave infrared, SWIR) under
laboratory conditions. A white Spectralon plate was used as a reference plate with a 50 W halogen
lamp positioned at 35 cm from the platform with a zenith angle of 30◦. Samples were placed on petri
dishes and the sensor was positioned vertically at 8 cm from the platform. The soil samples were
also analyzed in the laboratory to determine particle size fractions, following the Pipette method [36].
Spectral reflectance information acquired in the laboratory was also convolved to the Landsat TM
bands, assuming a Gaussian response function for the full width at half the maximum spectral response
of the sensor [37].



Remote Sens. 2018, 10, 1555 4 of 21
Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 21 

 

 
Figure 1. Flowchart showing the study area within the São Paulo State, Brazil, and the methodology 
applied. 

  

Figure 1. Flowchart showing the study area within the São Paulo State, Brazil, and the methodology applied.



Remote Sens. 2018, 10, 1555 5 of 21

2.3. A Brief Description of the Geospatial Soil Sensing System (GEOS3)

The GEOS3 was developed by Demattê et al. [33], and is defined as a data mining procedure
to process multitemporal Landsat 5 TM Time Series. A user can define a time series containing only
cloud-free images from the dry season (to avoid moisture interference) and obtain the same from a
database containing legacy data [38]. The method to retrieve topsoil reflectance can be summarized as
follows. The system uses a time series of atmospherically corrected Landsat 5 TM images transformed
into surface reflectance. All images are masked using several approaches, including NDVI and NBR2,
among others, and the pixels that are not soil are extracted. Then, all images containing the remaining
pixels with bare soil are superimposed, and the system averages the reflectance to produce the median
spectral reflectance, resulting in the Temporal Synthetic Spectral (TESS) reflectance. The composite of
all TESS values generates a unique spatially continuous image called the Synthetic Soil Image (SYSI).
The SYSI is based on the availability of remote sensing spectral reflectance measurements at different
times which are used to achieve spatially continuous maps, rather than modelling, interpolating, or
inferencing the soil surface.

2.4. Image and Spectral Information

The Landsat data were selected from orbit 220 and path 75, in the period of 1984 to 2011, totaling
151 images. During the time series, most cropping systems were characterized by a period with bare
soil. In general, mechanical crop operations are carried out during May and October, matched with the
dry season, where the effects of soil moisture can be minimized in the images. In addition, both natural
and anthropogenic locations present bare soil, most of which is plowed. The six spectral bands acquired
by the sensor are suitable for soil characterization, with measurements in the VIS-NIR-SWIR bands.
The atmospherically and geometrically processed higher-level products were acquired from EROS
(Earth Resource Observation and Science Center). These products consist of surface reflectance derived
through the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). The products are
based on Radiative Transfer Modeling performed by the 6S algorithm [39].

GEOS3 was used to construct a single image (SYSI) of the study area (Figure 2a), from which
919 topsoil samples were collected and their laboratory spectra measured. The SYSI indicated that
68% of the pixels were bare soil over the entire study area. More specifically, this corresponded to
92% of the agricultural areas. The spectral signature from the laboratory (convolved to Landsat bands)
was compared with the respective spectra from the image (TESS). A morphological evaluation of
the spectra was carried out between the sources, as indicated by Demattê et al. [40], considering the
intensity and shape. Furthermore, models were constructed to quantify clay and sand content based
on spectral reflectance information both from the laboratory and from the SYSI [41]. The values from
the raster layers at sampling points were extracted using bilinear interpolation, which uses the four
nearest neighbors to find a weighted average for the georeferenced point.

2.5. Preprocessing and Model Calibration

A Digital Elevation Model (DEM) (Figure 2b) derived from Shuttle Radar Topography Mission
(SRTM v.3, 30 m) data was used to derive five ancillary terrain variables (elevation, vertical distance to
channel network, valley depth, relative slope position, and channel network base level). These five
terrain covariates were chosen to represent the variability of the area (Table 2). According to
Moura-Bueno et al. [42], SRTM can represent maps at scales from 1: 25,000 to 1: 50,000. They were
generated using the compound terrain analysis function of SAGA GIS.

RDC values and the reflectance from SYSI were extracted at the same locations as the soil samples
using bilinear interpolation. The SYSI provided reflectance in the six original Landsat 5 TM bands
(VIS-NIR-SWIR): Band (B) 1 (450–520 nm), B2 (520–600 nm), B3 (630–690 nm), B4 (760–900 nm),
B5 (1550–1750 nm), and B7 (2080–2350 nm). Then, the 919 georeferenced samples were divided into
textural classes for stratified random sampling as follows (g kg−1): very sandy (<100), sandy (100–150),
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sandy loam (150–250), clayey loam (250–350), clayey (350–600), and very clayey (> 600). Samples were
randomly divided into calibration (75%, n = 686) and validation (25%, n = 233) sets. The textural classes
are related to the importance of clay and soil management in Brazil, as referenced in Santos et al. [43].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 21 
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Figure 2. The Synthetic Soil Image (SYSI) (a) and Digital Elevation Model (DEM) (b) of the study area.

Table 2. Descriptive statistics of the environmental covariates used for clay and sand mapping.

Covariate Description Unit Min Max Mean SD

B1 Band no. 1 from the SYSI [33] with the
Landsat 5 TM spectral range 450–520 nm

Reflectance
factor 0 0.1 0.05 0.01

B2 Band no. 2 from the SYSI [33] with the
Landsat 5 TM spectral range 520–600 nm

Reflectance
factor 0 0.16 0.08 0.02

B3 Band no. 3 from the SYSI [33] with the
Landsat 5 TM spectral range 630–690 nm

Reflectance
factor 0 0.22 0.12 0.03

B4 Band no. 4 from the SYSI [33] with the
Landsat 5 TM spectral range 760–900 nm

Reflectance
factor 0 0.35 0.18 0.05

B5 Band no. 5 from the SYSI [33] with the
Landsat 5 TM spectral range 1550–1750 nm

Reflectance
factor 0 0.53 0.22 0.08

B7 Band no. 7 from the SYSI [33] with the
Landsat 5 TM spectral range 2080–2350 nm

Reflectance
factor 0 0.49 0.21 0.08

DEM
Elevation from the digital elevation model of
Shuttle Radar Topography Mission (1 arc
second ~30 m) with vertical inaccuracy <16 m

m 450 924 615.45 84.58

CNBL Channel network base level calculated from
SAGA GIS version 2.1.2 [44] m 442.64 883.71 595.75 81.69

RS Relative slope calculated from SAGA GIS
version 2.1.2 [44] fraction 0 1 0.45 0.33

VD Valley depth calculated from SAGA GIS
version 2.1.2 [44] m 0 132.98 31.15 27.37

VDTCN Vertical distance to channel network
calculated from SAGA GIS version 2.1.2 [44] m 0 117.27 19.97 17.19

X X projected coordinate calculated from SAGA
GIS version 2.1.2 [44] m 127,994.66 213,372.23 163,710.79 19,077.86

Y Y projected coordinate calculated from SAGA
GIS version 2.1.2 [44] m 7,534,046.16 7,635,498.16 7,576,885.92 21,724.02

SYSI: Synthetic Soil Image; SD: standard deviation.
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Clay and sand quantification were also carried out using laboratory spectral measurements.
The same dataset was used to convolve to Landsat 5 TM bands. These approaches were used to
compare data sources and spectral resolutions. Only the SYSI, RDC, and the two combined were used
for the topsoil mapping, as these covariates have their spatial representation. The spatial coordinates
were also used as covariates, enabling enhanced spatial stratification by the models. Clay and sand
predictive models were tested using the Cubist and Random Forest (RF) algorithms. The Cubist
algorithm finds the relationships between soil covariates by calculating decision trees and multiple
regressions. It was implemented using the Cubist R package ensemble with 15 to 20 committees trying
to find the best fit model [45]. RF constructs an ensemble of multiple decision trees (ntree = 1000
and mtry = default), returning their mean prediction. The RF algorithm was implemented using the
randomForest R package [46]. The selected models were considered when the Root-Mean-Squared
Error (RMSE) was minimized and stabilized in the calibration. The statistical procedures were carried
out in the programming language R [47].

2.6. Soil Maps and Validation

Soil clay and sand maps were produced by applying the models using the raster R package [48].
Predictions by Cubist and RF models were made for the pixels containing all the covariates stacked.
SYSI had discontinuity gaps (black regions) which generated unmapped areas because they were
related to natural forests or other permanent land uses not assessed by GEOS3. The best validated
models (lowest RMSE) using the different approaches (SYSI, RDC, and SYSI + RDC) were used to
illustrate spatial variations and artifact production between the covariates. Additionally, predictions
did not consider possible spatial dependencies for the properties, i.e., using variogram analysis.

The external validation (25% of samples, n = 233) was performed as a comparison between
predicted values and results from the reference physical laboratory analysis. The parameters used
to evaluate the performance of the models were RMSE, the coefficient of determination (R2), Ratio
of Performance to the Interquartile range (RPIQ) [49], and Ratio of Performance to Deviation (RPD).
Differences observed in the predicted clay and sand distributions were also described by plotting the
model’s outputs in the texture triangle implemented through the soiltexture R package [50].

3. Results and Discussion

3.1. Characterization of Spectral Patterns of Soils from Ground to Space

The characterization of spectral curves from ground to satellite level (Figure 3) provides the
bases for understanding prediction results. The lower intensity for clayey soils is due to energy
absorption by iron oxide minerals (hematite) and other opaque minerals (i.e., magnetite and ilmenite).
Soils with higher iron oxide content are derived from basalt [51]. When these minerals are absent in
the soil, higher quartz content causes a strong increase in reflectance from B3 to B4, with a peak at B5.
The spectral curves of clayey samples present low reflectance intensity across the spectrum, with a
typical flat shape, which is different than sandy soils with an increasing reflectance shape [52].

The main, albeit slight, difference between convolved spectral measurements and TESS is observed
in B1, B5, and B7 (Figure 3). The decrease of intensity from B5 to B7 being stronger in the TESS
information is due to field conditions, since the information came from a pixel [53]. Nevertheless,
spectral shapes from the laboratory and image are very similar, which indicates low moisture influence.
The resampling of satellite data from laboratory measurements removed the absorption features present
in the spectral measurements, preventing the detection of specific features for mineral identification.
It can be observed that from B1 to B5, the clayey signature is almost flat, and as soil becomes sandy,
it demonstrates a strong increase in B5 (due to quartz). These observations are in agreement with those
of Demattê et al. [54] and Franceschini et al. [6]. Moreover, as the laboratory information is measured
under controlled conditions, the similarity with TESS reinforces the robust processing of GEOS3.
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Figure 3. Average spectral reflectance of soil texture classes expressed either by the convolved
laboratory bands (obtained from the laboratory spectral measurements) or the respective Temporal
Synthetic Spectral Reflectance (TESS), acquired from the Synthetic Soil Image (SYSI, satellite).
Bands: B1 (450–520 nm), B2 (520–600 nm), B3 (630–690 nm), B4 (760–900 nm), B5 (1550–1750 nm),
and B7 (2080–2350 nm).

Principal component (PC) analysis yielded similar transformations between laboratory spectral
measurements and TESS data (Figure 4), grouping different particle size distributions along the two
principal components, similar to the results of Lacerda et al. [55]. As the particle size distribution
changes, samples shift slightly to the right, increasing the dispersion of the second component
(Figure 4a). The same behavior occurred for TESS samples (Figure 4b). The increasing dispersion of
the second component expresses the quartz influence in the infrared spectral reflectance. Meanwhile,
clayey soils are related to opaque oxides from the left-hand side of the first principal component
(Figure 4a,b). In the characterization of the textural classes, there was no difference between the
weights for the six bands (see expression in Figure 4) in both spectral measurements resampled to
multispectral satellite data. The loadings of the six factors (Bands 1, 2, 3, 4, 5, and 7) for PC1 were
similar (approximately 0.40), as can be seen in the expression in Figure 4a,b. This shows that all bands
are important for the differentiation of textural classes. Additionally, PC1 presents 92% and 93% of the
proportion of variance for resampled and satellite data (Figure 4), respectively.
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3.2. Performance of Clay and Sand Content Predictions

Comparing the models, the Cubist algorithm was more accurate than RF for clay and sand content
prediction (Table 3). The decrease in error (RMSE) using Cubist was approximately 20 g kg−1 when
using the laboratory spectral reference models, regardless of particle size fraction, while for the SYSI
and the other approaches, the decrease in RMSE was between 2 and 10 g kg−1 (Table 3). Although it
was not our intention to compare the accuracy of Cubist with RF as both are similar machine learning
approaches with superior performance [56,57], the Cubist algorithm was chosen as the best global
predictor (RMSE minimization) to be used as the standard algorithm for clay and sand mapping over
the study area. Predictions were better for clay than for sand content (Table 3). The sand RMSE was
over 100 g kg−1 in some approaches, but was reasonable for clay, although it had been expected that
sand estimates would be better than clay estimates due to the higher representativeness of this fraction
in the area. The best clay prediction was achieved by applying Cubist with the laboratory spectral
reference data (R2 = 0.86, RMSE = 59.02 g kg−1, RPD = 2.73, RPIQ = 1.97), which provided a better
representation of soil variability. The use of laboratory spectral reference data to estimate clay and
sand content was applied to compare the performance of SYSI. Indeed, these results indicated similar
performance, despite the limited resolution of the multispectral data. The use of laboratory spectral
information has been previously demonstrated to be a good alternative for soil characterization and
the prediction of soil properties [58].

A fair comparison between the approaches was made using the laboratory spectral resampled
data (Table 3). The laboratory convolved reflectance produced similar results to SYSI and SYSI plus
RDC. The best accuracies were achieved using Cubist with only the SYSI bands as predictors (Table 3,
RMSE = 65.01 g kg−1 clay and RMSE = 79.99 g kg−1 sand). The accuracies were even close to the
laboratory spectral data for estimating sand (Table 3, RMSE = 79.29 g kg−1). The results from applying
the combination of SYSI with RDC did not differ from those from SYSI itself (R2 of 0.83 and 0.83,
respectively, for clay; R2 of 0.85 and 0.86, respectively, for sand). The prediction using only the RDC
had the lowest R2, RPD, and RPIQ (Table 3). Predicting clay using only terrain covariates resulted in
R2 values of 0.61 and 0.64 with the highest RMSE values of 97.73 and 93.44 g kg−1 for RF and Cubist
models, respectively. Moreover, the prediction of sand was slightly superior, reaching R2 values of
0.63 and 0.65, and RMSE values of 128.52 and 125.69 g kg−1. Henderson et al. [21] reported similar
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results in clay quantification using covariates derived from digital elevation models. The authors
obtained an R2 of 0.44 and Stępień et al. [59] found an R2 of 0.2 using elevation. Landrum et al. [60]
found a strong relationship between relief and clay content for soils in the northeast region of Brazil.
The influence of topography on soil properties is widely discussed in Florinsky et al. [61]. In fact,
the parameters of relief provide a moderate understanding of soil–landscape relationships, while the
satellite images added detailed information representing the study area. Ben-Dor et al. [62] conducted
an extensive literature review on the importance of satellite imagery to evaluating and characterizing
soils. Nanni et al. [63] found a close relationship between satellite and field reference data, highlighting
the importance of spectral reflectance for quantifying soil properties.

Several approaches have been used to map topsoil clay, such as using the vegetation
index [64], airborne hyperspectral soil data of single images [65], terrain attributes, geology-based
stratification [30], and electromagnetic induction techniques [66], among others. Additionally, the
clay fraction has also been quantified using multispectral satellite sensors and laboratory spectral
sensors (Table 1). These results can be discussed with our findings. Ahmed and Iqbal [67] found
a good relationship between Bands 4 and 6 from Landsat 5 TM for clay estimation (R2 = 0.509
and RMSE = 5.02%), but lower than the result found in Table 3 (R2 = 0.83, RMSE = 65.01 g kg−1).
The prediction of clay in the laboratory usually produces better results than other sensors (satellite),
in accordance with the study by Ahmed and Iqbal [67], who found an R2 reaching a maximum
of 0.90. Their result, however, is not far from our findings (R2 = 0.86 and RMSE = 59.02 g kg−1).
Laboratory spectral data have a strong relationship with soil constituents due to improved experimental
conditions [58,68,69], but several bands are used in the models. Despite this, the present study indicates
that only a few bands would be sufficient to quantify clay and sand, which confirms the importance of
this tool for mapping large areas using images [62].

At satellite sensors (i.e., at approximately 800 km distance from the targets), R2 performance
decreases [70]. Indeed, Coleman et al. [7] started with intermediate performances, reaching an R2

of 0.4 for clay mapping using Landsat. Khalil et al. [71] reached an R2 of 0.4 for the same attribute
using a single image. Furthermore, the study by Shabou et al. [24] was based on 100 soil samples
and a dataset of four Landsat TM scenes, reporting an R2 of 0.65 and an RMSE of 100 g kg−1 for clay.
These accuracies were lower than those found in the present study (R2 = 0.83 and RMSE = 65.01 g kg−1)
because here we applied 919 soil samples to 151 Landsat images. Our results can be directly related to
the spectral morphology evaluation (Figure 3), which confirms that moisture from field measurements
did not significantly interfere in the dataset. As stated by Ackerson et al. [72], when soil samples have
differences in moisture, they do not have a linear relationship with the property to be estimated and,
thus, there is no correlation. We could only depict these details because of the descriptive evaluation
of the spectra, which assists in deciding whether the pixel is from soils as a clinical evaluation and not
just a mathematical artifact.

In general, we have observed in previous studies that the R2 values for clay prediction, using
all kinds of sensors, range from approximately 0.2 to 0.9. The spectral sensors with fewer bands,
like IKONOS, have lower results. It is evident that the scientific community emphasizes the use
of hyperspectral data for soil mapping using, for instance, the airborne hyperspectral imaging
spectrometer (HyperSpecTIR) [73] and the airborne hyperspectral sensor 160 (AHS) [74]. However,
it is also evident that the use of multispectral satellite data can achieve good performance similar to
that of laboratory spectral data [65,75]. These results show that despite the higher efficiency expected
for hyperspectral sensors, it is not only the number of bands that matter for estimating clay and sand
content, but also having bands at key wavelengths related to soil properties.
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Table 3. Prediction validation statistics of clay and sand attributes applying Cubist and Random Forest
models using a hyperspectral sensor in the laboratory, multispectral resampling in the laboratory,
relief-derived covariates (RDC), Synthetic Soil Image (SYSI), and SYSI plus RDC.

Attribute Algorithm Parameters R2 * RMSE * RPD * RPIQ *

Clay

Random
Forest

Laboratory spectral measurements 0.79 74.25 2.17 1.56
Resampled to multispectral 0.81 70.29 2.29 1.65
RDC 0.61 97.73 1.61 1.16
SYSI 0.81 67.47 2.33 1.67
SYSI + RDC 0.82 67.04 2.35 1.69

Cubist

Laboratory spectral measurements 0.86 59.02 2.73 1.97
Resampled to multispectral 0.83 65.79 2.45 1.76
RDC 0.64 93.44 1.69 1.21
SYSI 0.83 65.01 2.42 1.74
SYSI + RDC 0.83 65.36 2.41 1.73

Sand

Random
Forest

Laboratory spectral measurements 0.81 94.56 2.30 1.19
Resampled to multispectral 0.83 89.78 2.42 1.25
RDC 0.63 128.52 1.65 0.81
SYSI 0.82 89.21 2.38 1.17
SYSI + RDC 0.82 89.54 2.37 1.16

Cubist

Laboratory spectral measurements 0.87 79.29 2.74 1.42
Resampled to multispectral 0.85 83.33 2.61 1.35
RDC 0.65 125.69 1.69 0.83
SYSI 0.86 79.99 2.65 1.30
SYSI + RDC 0.85 82.66 2.57 1.26

R2: Coefficient of Determination; * RMSE: Root-Mean-Square Error (g kg−1); RPD: Ratio of Performance to Deviation;
RPIQ: Ratio of Performance to Interquartile Range.

3.3. Variable Importance for Mapping Soil Attributes

Using the Cubist model and only the SYSI, B7 was found to be the most important covariate in
the prediction of clay and sand (Figure 5a,b). Bands 5, 4, and 3 were also highly important to both
attribute models. Bands 2 and 1 along with X and Y coordinates provided a slight contribution to
the prediction of both soil attributes. Bands of the visible spectral region participated more in sand
estimation as this soil particle is strongly related to the high albedo of quartz, while clay content is
related to energy absorption by its minerals.

The high dependence of spatial coordinates showed contrasting results for the RDC covariates.
Some parameters of RDC showed high participation in clay and sand estimation (Figure 5c,d).
However, for clay quantification, the highest participation for conditional rules was from the Y (89%)
and X coordinates (41%), indicating strong control from unknown factors, possibly geology. In the
regression models of Cubist trees, the variable with the highest contribution was the DEM with 89%
inclusion, followed by X coordinate, CNBL, valley depth, Y coordinate, and VDTCN. The contributions
for sand models were similar (Figure 5d). The difference was that the relative slope had higher
participation in sand models than in clay models.

For the use of the SYSI plus RDC (Figure 5e,f), B7 was the most important covariate for the Cubist
conditional rules for both clay and sand models. Subsequently, for all other conditional variables, a
low contribution was observed. For the regression part of Cubist, B7 was the most used covariate
(>90%), followed by B5, with 89% and 87% for clay and sand modelling, respectively. These SWIR
bands (B5 and B7) are still most frequently employed in both attribute estimates, indicating the
strong role of this spectral region in the prediction of clay and sand attributes. Although the spectral
resolution of Landsat 5 is coarse, the SWIR spectral region contains a relative contribution from the
clay mineral absorption feature, which may explain why these bands were important for the attribute
estimation [76].
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In both datasets, most soil samples present high sand content and low silt (Figure 6a). Clay 
distribution is highly concentrated between 100 and 300 g kg−1. Regarding all samples, 37% were 
classified as very sandy and sandy, 43% were loamy in texture, and 20% were classified as clayey. 
The variability of the particle size content is due to geological influences, as the soils of the region are 
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Figure 5. Variable contributions for clay and sand Cubist models using three approaches: only the
Synthetic Soil Image (SYSI) (a,b), only the Relief-Derived Covariates (RDC) (c,d), and SYSI plus RDC
(e,f). DEM: Elevation from Digital Elevation Model; CNBL: Distance from Channel Network to Base
Level; VDTCN: Vertical Distance To Channel Network; X: Easting geographical Cartesian coordinate
related to WGS84 UTM zone 23S; Y: Northing geographical Cartesian coordinate related to WGS
84 UTM zone 23S. Spectral reflectance from the Synthetic Soil Image (SYSI), equivalent to Landsat 5
Thematic Mapper spectral bands ranges (B1 to B7).

3.4. Clay and Sand Content Maps

In both datasets, most soil samples present high sand content and low silt (Figure 6a).
Clay distribution is highly concentrated between 100 and 300 g kg−1. Regarding all samples, 37%
were classified as very sandy and sandy, 43% were loamy in texture, and 20% were classified as clayey.
The variability of the particle size content is due to geological influences, as the soils of the region
are formed by different parent materials, from igneous (basalt) to sedimentary rocks (sandstones and
other mixes). The prediction of soil particle size distribution had different performances, although the
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samples were uniformly represented in the validation dataset (Figure 6a). Comparing the predictions,
all the strategies had a slight tendency to underestimate the clayey samples (Figure 6b,c), except for
the use of SYSI plus RDC, which improved representativeness of clayey-textured soils (Figure 6d).
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Figure 6. Soil texture triangle of calibration and validation datasets (a), comparing the observed and
predicted clay and sand contents from the three mapping approaches: only the Synthetic Soil Image
(SYSI) (b), only the Relief-Derived Covariates (RDC) (c), and SYSI plus RDC (d). The silt percent was
estimated by the difference of 100% − (sand% + clay%).

The clay and sand content maps were produced using the Cubist model. This model performed
better than did the RF based on the validation parameters (Table 3). It is important to note that the
maps were produced using global predictors instead of spatial prediction functions, which did not
consider spatial dependence for the estimations. Because the Cubist algorithm combines the use of
decision rules and multiple linear regression to calibrate a model, only the maps that used SYSI had
better visual continuity. Spatial continuity is the ability to represent surface variations at finer scales
(Figure 7a,b,e,f). The maps with only RDC (Figure 7c,d) provided satisfactory performance, albeit with
poor visual continuity due to the presence of large artifacts created by Cubist computation [77].
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Image (SYSI) (a,b), only the Relief-Derived Covariates (RDC) (c,d), and SYSI plus RDC (e,f). The maps
refer to the models built using the Cubist algorithm. Black color represents unmapped areas.

Terrain inference has usually been used to map soils because most of the surface is covered
by vegetation and DEMs are globally available to users. However, the use of relief landforms is
insufficient when it comes to explaining variations in soils along the landscape. Thus, spectral features
related to mineralogical characteristics of soils may improve predictions in digital soil mapping.
Reflectance factors derived from the SYSI and laboratory data show high linear relationships with clay
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and sand content for the full VIS-NIR-SWIR spectral bands (Figure 8). Spectral reflectance reached
correlations of at least 0.45 and 0.57 with sand and clay content, respectively, with a maximum of
0.78 for clay. The RDC covariates had poor to intermediate associations. Nevertheless, the integration
of RDCs with other kinds of data has been demonstrated to be a useful strategy for soil mapping [78].
It is unusual that satellite data achieve similar results to laboratory results. Considering our results,
the use of the SYSI shows great potential for soil mapping, and the spatial trends from the images can
increase the prediction accuracy of unmapped regions.
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Figure 8. Pearson’s correlation between covariates and clay and sand contents. RDC: relief-derived
covariates; DEM: digital elevation model; CNBL: distance from channel network to base level; RS:
relative slope; VD: valley depth; VDTCN: vertical distance to channel network; X: Easting coordinate;
Y: Northing coordinate. B1 to B7: spectral reflectance from the Synthetic Soil Image (SYSI) bands
with the Landsat 5 TM spectral ranges. The suffix “lab” indicates the laboratory spectra convolved to
Landsat 5 TM spectral bands.

It is worth mentioning that the predicted maps using SYSI have consistency in the field. Figure 9a
shows a study case illustrating the variation of clay within a relief landform, which could not be
estimated using only the relief parameters. The laboratory (Figure 9b) and SYSI (Figure 9c) spectral
patterns confirm that the two locations have different soils, with 160 and 650 g kg−1 of clay estimated
from the physical laboratory analysis. The illustration shows an example in which the relief would not
be able to detect this variation when the region has the same relief parameters (elevation, slope, and
others). In this study we provided a system to process multitemporal and multispectral satellite images
to aid soil mapping. However, using satellite platforms (e.g., using Landsat) is a challenging task,
as the sensor is located 800 km away from the surface with coarse spatial resolution (where spectral
reflectance mixtures represent different materials within the pixel) and limited spectral resolution.
Additionally, several factors can impact soil reflectance, such as atmospheric attenuation, ground
surface roughness, presence of topographic shade, rocks, tree stumps, crops, and crop stubble or debris.

It is important to state that the key points of GEOS3 are based on image selection, the evaluation
of the spectral signature, and validation indicators. The foremost contribution of SYSI to digital soil
mapping is based on the empirical quantitative description of soil formation factors in the scorpan
model [10]. As we have shown, SYSI is innovative and can play an important role in predicting topsoil
attributes. Thus, SYSI can be considered as a new source of s for scorpan for predicting soil classes
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and/or attributes. In fact, McBratney et al. [10] pointed out that the s factor is expected to increase in
importance for soil predictions as technology enhances.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 21 
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B4 (760–900 nm), B5 (1550–1750 nm), and B7 (2080–2350 nm).
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4. Conclusions

The spectral signature obtained from the Synthetic Soil Image (SYSI) presented very similar
patterns to the equivalent spectral signature of the laboratory data. From clayey to sandy texture,
the spectral signature moved from flat low reflectance to a strong increase after Band 4, respectively.
The quantification of clay and sand contents using Temporal Synthetic Spectral Reflectance (TESS)
well matched the respective georeferenced location of the laboratory spectral samples. This supported
the robustness of the TESS collected along the time series.

The topsoil prediction of clay and sand fractions using the SYSI presented higher-accuracy results
than using Relief-Derived Covariates (RDC) alone. The attribute maps originating from the RDC
approach presented spatial artifacts, despite their significance for the soil–landscape relationship.
The integrated approach of the SYSI + RDC also produced accurate predictions, albeit ones that
were similar to the SYSI alone. Relief is important, but it uses inferential, empirical, or mathematical
approaches to estimate a soil attribute, while the SYSI is based on the availability of remote sensing
spectral reflectance measurements at different times which are then used to achieve spatially continuous
results rather than modeling, interpolating, or inferencing its reflectance. Furthermore, the SYSI
performance was quite similar to the laboratory reference modelling results, demonstrating its strong
capability for soil mapping.

TESS has provided novel information because it gives the user the capacity to evaluate the
morphology of the object’s spectral signature, as information from specific points, to make an
adequate decision. In addition, TESS provides a first impression of soil texture through spectral
signature evaluation and SYSI supports this with the precise variation of the soil characteristics along
the landscape.

The paradigm asserted by many users that soils cannot be evaluated from images because they
are usually covered by vegetation is partially true. The GEOS3 method depicts images from different
periods and could fill gaps that were covered with vegetation in other periods with bare soil, thus
producing continuous spatial attribute maps. In forestry areas, this technique will certainly have more
limitations and its usefulness will be situationally dependent.

Looking towards the future, the technique can be applied to optimizing other digital mapping
projects of soils all over the world. The results are promising because they may assist in mapping
large areas with bare soils occurring due to agriculture and/or anthropogenic action, degradation, and
climate processes.
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