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A B S T R A C T

The development of cassava (Manihot esculenta Crantz) varieties with greater tolerance of water deficit depends
on optimized phenotyping tools. The objective of this work was to develop early prediction models of final root
yield (12 months after planting - MAP) using physiological and agronomic data obtained at 4 MAP under two
water regimes. Nine genotypes of cassava were evaluated under two treatments (irrigated and with water def-
icit), using a complete randomized block design, in a factorial scheme of 2 harvest periods (at 4 and 12 MAP) ×
9 genotypes, with four replications. Both treatment groups were irrigated until 3 MAP. After this period, irri-
gation was interrupted for the water deficit treatment group. Fourteen physiological and agronomic traits were
evaluated in all harvest periods. Four prediction models were evaluated: linear regression with stepwise selec-
tion (LRSS), linear regression with backward selection (LRBS), Bayesian ridge regression (BRR), and partial least
squares (PLS). Most of the models presented a high predictive ability for final root yield (R2 ranging from 0.83 to
0.91). However, in all prediction scenarios, the PLS model presented a high R2 (0.84 to 0.91) associated with the
lowest root-mean-square error (RMSE) (0.82 to 1.60). Differences in the predictive ability of the models may
have occurred due to the relative importance of the early traits. In the case of PLS, the most important traits for
the model were stomatal conductance, root yield at 4 MAP, leaf area index and number of roots. Regardless of
the water condition, the physiological and agronomic data collected at an early stage could successfully be used
to predict the final root yield with great efficiency. This strategy can reduce the cost of phenotyping, increasing
the capacity for analysis and optimization of genetic gains for tolerance to drought in cassava.

1. Introduction

Climate change has triggered several abiotic stresses that can have
negative impacts on agricultural production and food security in major
food crops, including cassava. Among the abiotic stresses, water deficit
promotes morphological, physiological, biochemical and molecular
changes in plants that negatively affect growth and productivity in
several species. The reduction of the agronomic performance of cassava
under water deficit conditions depends on the traits evaluated. In
general, the loss estimates are on the order of 26% for dry matter
content in the roots, 33–47% for plant height, 37–55% for shoot yield,
31% for harvest index, and 38–87% for fresh root yield (Aina et al.,
2007; Okogbenin et al., 2013; Adjebeng-Danquah et al., 2016; Oliveira
et al., 2017).

The future challenges to production of cassava as a highly important
species to global food security will be shaped by the ability to maintain
or even increase cassava’s production potential and root quality for

diverse consumer markets while tolerating multiple biotic and abiotic
stresses. Overall, the cassava root yield growth rate in the last 10 years
was negative (-0.35%), although there were significant increases in
South America (3.74%) and in Asia (16.07%). On the other hand, as one
of the main cassava-producing regions (56% of global production), the
African continent has faced strong reductions in fresh root yield
(-4.10%), thus contributing to the worldwide yield reduction (FAO,
2019).

Reductions in cassava yield caused by biotic and abiotic stresses
may further hamper the growing demand for cassava roots for various
industrial uses (Jerumeh and Omonona, 2018). Therefore, the devel-
opment of cassava varieties that are tolerant of water deficit is an im-
portant mitigation measure for this abiotic stress to satisfy the growing
demand for cassava.

Although water deficit tolerance is a quantitative trait with complex
phenotyping (because it is a multigenic trait with low heritability and
high genotype× environment interaction), breeding programs have
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made important contributions to identifying genotypes that are more
responsive to water stress (Oliveira et al., 2017). This has been possible
in part because cassava has wide natural variability and a remarkable
ability to tolerate and recover from biotic and abiotic stresses
(Okogbenin et al., 2013). The main mechanisms associated with the
adaptation of cassava to drought combine multiple strategies to avoid
dehydration, such as stomatal closure, reduction of the production of
several photosynthetic proteins, and foliar abscission (Zhao et al.,
2015).

In addition to the understanding of resistance mechanisms and en-
vironmental variants, any research program aiming to increase water
deficit tolerance should consider plant phenology. Generally, between 3
and 4 months after planting (MAP), intense development of the pho-
tosynthetic apparatus and aerial part of the cassava plants is observed.
Consequently, a water deficit in this phase causes the greatest losses
due to the decrease in the cassava shoots with consequent loss of stand
and reductions in number and root yield (, 2007). On the other hand, in
terms of phenotyping for drought tolerance, most studies have at-
tempted to correlate morphological and physiological data with the
productive potential of the genotypes at the end of the crop cycle. This
requires the experiments to be maintained for long periods (12–18
months) in field conditions, leading to high maintenance costs and long
cycles for selection and validation of the potential sources of water
deficit tolerance.

The search for early selection methods has been a priority in cassava
research programs. Therefore, several groups have sought different al-
ternatives to shorten the selection cycle and lower the costs associated
with the phenotyping of characteristics that are complex and difficult to
measure in the field. Some recent examples in the literature are i) the
understanding of the inheritance of some traits for early and indirect
selection and the breeding value of the parents (Ojulong et al., 2010;
Ceballos et al., 2016; Nduwumuremyi et al., 2018); ii) use of genome-
wide association studies and genomic selection (Oliveira et al., 2012;
Wolfe et al., 2017; Elias et al., 2018; Kayondo et al., 2018); and iii) use
of ground-penetration radar to predict root growth rates by detecting
the total biomass of the roots during the growth cycle (Delgado et al.,
2017).

Even with the implementation of these methodologies, few studies
have been devoted to the creation of yield prediction models based on
phenotypic data obtained in the early stages of cassava development.
Prediction methods generally allow for an early assessment of crop
yield to improve agricultural planning and management, as well as
adequate allocation of resources in the field. In breeding programs, the
establishment of accurate prediction models can allow the early selec-
tion of only the most interesting genotypes, allowing the optimization
of resources.

In other crops, the development of prediction models based on
morphological traits using artificial neural networks (ANNs) was able to
predict forage palm yield with high precision (R2=0.87) (Guimarães
et al., 2018). Azevedo et al. (2015) also reported a high R2 (0.92 to
0.96) when evaluating the potential use of prediction models for in-
direct selection against flowering using six predictors. In maize, Soares
et al. (2015) evaluated the performance of artificial neural networks in
yield prediction based on morphological variables of the crop. Ac-
cording to these authors, there was a high predictive ability
(R2= 1.00), evidencing the strong correlation between the estimated
values and the actual grain yield data obtained in the field experiments.

Prediction models can contribute to better experimental planning
and management decision making as well as to optimizing the time
required for field evaluation and the resources allocated to research
programs. However, according to our knowledge, there are no pre-
dictive models of cassava root yield under water deficit conditions.
Therefore, the objective of this work was to use agronomic evaluations
from early harvests of different genotypes of cassava cultivated under
two water conditions in the semiarid region of the Brazilian Northeast
for the construction of prediction models for root yield.

2. Material and methods

2.1. Characterization of the experimental area and plant material

The experiments were carried out in the experimental area of
Embrapa Semiarido, located in the irrigated perimeter of Bebedouro,
Petrolina, Pernambuco State, Brazil (09°09′ S, 40°29′ W and 365m al-
titude). The climate of the region is characterized by low rainfall and
great thermal amplitude, being classified by the Köppen-Geiger climate
classification system as a hot semi-arid climate (BSh). The time frame of
the experiments was 12 months (2015–2016), during which a total
precipitation of 281.51mm was registered, with 215mm distributed in
the first three months after planting and 66.51mm in the following 9
months. The mean temperature ranged from 25.0 to 29.5 °C and the
relative air humidity from 46.3 to 72.6%.

Nine genotypes were evaluated, including four landraces
(BGM0163, BGM0785, BGM0815, and BGM0279) and five improved
varieties (GCP001, 9624-09, Cacau, BRS Formosa, and BRS Dourada).
The choice of these genotypes was based on their contrast for water
deficit tolerance, considering their productive attributes and tolerance
indices (Oliveira et al., 2015, 2017) (Supplement - Table S1).

Cassava genotypes were evaluated using two treatments, i.e., irri-
gated and water deficit conditions. The treatment groups were har-
vested twice, the first four months after planting (MAP) and the second,
at 12 MAP. The experiment was carried out in three-factor factorial
experiment with four replications in a randomized complete block de-
sign. The factors were two treatments (irrigated and water deficit
conditions), two harvest times (4 and 12 MAP), and nine cassava gen-
otypes. The experimental plots were composed of two lines of five
plants, with spacing of 0.90m between rows and 0.80m between
plants.

The two treatments were set up on the same day and irrigated for
the first 3 MAP. After this period, irrigation ceased for the water deficit
treatment, and no irrigation was applied until harvest. In the other
treatment, the irrigation levels were maintained throughout crop de-
velopment until the harvest. A drip irrigation system localized with one
lateral line per row of plants at intervals of 0.20m with a flow rate of
approximately (0.86 L h−1) was used based on the crop’s evapo-
transpiration. During the experiments, climatic variations were mon-
itored by means of a meteorological station installed near the experi-
mental area. Daily data on rainfall, temperature, air humidity and
evapotranspiration were obtained, considering precipitation and eva-
potranspiration measurements from previous days.

2.2. Evaluations of physiological traits

The following physiological traits were evaluated at each harvesting
period. 1) Leaf temperature (TempoPo) and stomatal conductance
(StoCond - mmol kg−1) were determined using the SC-1 leaf porometer.
The evaluations were carried out on completely expanded leaves, lo-
cated in the apical part of the plant and exposed to solar radiation,
between 10:00 am and 12:00 pm. Three random plants were evaluated
in each plot. 2) Foliar temperature was measured with an infrared
camera E6, FLIR (TempInfr - °C), in completely expanded leaves. 3) Leaf
area index (LAI) was evaluated using an Accupar Sphygmometer, which
measures the photosynthetically active radiation (PAR) under and
above the plant canopy. This assessment was carried out in all plots on
the same day between 9:00 am and 12:00 pm. 4) Leaf osmotic potential
(LOP - mmol kg−1) was measured by collecting the first fully expanded
leaf with an east orientation and then storing it at - 80 °C. Then, small
leaf segments (5 cm) were dry macerated, and the leaf sap was cen-
trifuged at 10,000 x g for 10min at 4 °C. The resulting supernatant was
used to determine osmolality (c) using a vapor pressure osmometer
(Vapro 5600). The osmotic potential was obtained from the osmolality
(mmol kg−1) of leaf tissue sap based on the Van’t Hoff equation (Souza
et al., 2012), = −Ψ RxTxC , whereΨ= osmotic potential of the solution
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(kPa), R= universal gas constant (8.2 L.kPa.ºK−1. mol−1), T= abso-
lute solution temperature (°K), and C= concentration of solutes in the
solution (mol L−1).

2.3. Evaluation of agronomic traits

Trials were planted during the rainy season, and harvesting took
place in two rounds, namely 4 and 12 months after planting (MAP). In
both harvest time, the storage roots were hand-uprooted by carefully
removing the top soil, and the roots were then pulled out and used for
the agronomic evaluations. Data for both treatments and both har-
vesting times, for the following traits, were collected from each plot: 1)
plant height (PH, in m), measured from the soil level to the first apical
leaf; 2) shoot yield (ShY, in t ha−1), obtained by weighing the aerial
parts of all plants of the plot, after root removal, and therefore in-
cluding leaves and stems; 3) stem diameter (DiSt, in mm), measured
using a digital caliper 0.20m above the ground; 4) number of roots per
plant (NRP), determined from the average obtained by counting the
roots of five plants per plot; 5) fresh root yield (FRY, in t ha−1), ob-
tained by weighing all roots of the plot using a suspended digital scale;
6) length of roots (RoLe, in cm); 7) root diameter (RoDi, in mm),
measured using a digital caliper. For these two traits, we used five
marketable roots selected for each plot; and 8) dry matter content of
roots (DMC, in%), measured by drying a homogeneous sample with
500 g of roots in a greenhouse with forced air circulation at 65 °C until
reaching constant weight.

Leaf retention (LeRet) was measured using a scale considering the
presence and distribution of leaves throughout the plant: 1 = leaves
present basically on the top, covering less than 10% of the plant height;
2 = leaves present at the top and middle, covering between 11 and
25% of the plant height; 3 = leaves present at the top and middle,
covering between 26 and 50% of the plant height; 4 = leaves present at
the top, middle and bottom, covering between 51 and 75% of the plant
height; 5 = leaves present on almost the entire plant, covering more
than 75% of the plant height.

2.4. Data analysis

The physiological and agronomic variables were submitted to ana-
lysis of variance (ANOVA) using the easyanova (Arnhold, 2013) and
lattice (Sarkar, 2008) packages from R software v.3.3 (R Core Team,
2017). The best linear unbiased prediction (BLUP) for each trait was
performed using the linear mixed models approach. The effects of re-
plicates, harvest times and genotypes were assumed random, whereas
water treatment was considered as a fixed effect. The mathematical
model used was = + +y Xr Zg ε, in which y is the vector of the data; r
is the repeating effect vector (assumed to be corrected) added to the
overall mean; g is the vector of genotypic effects (assumed to be
random); ε is a vector of errors and residues (random); X is the in-
cidence matrix for fixed effects; and Z is the incidence matrix for
random effects.

2.5. Prediction models

Morphological and physiological data from the harvest at 4 MAP
were used to predict the fresh root yield at 12 MAP. The physiological
and morphological data from the harvest at 4 MAP from the irrigated
treatment were used in the prediction of FRY in the irrigated (IT_FI) and
water deficit (IT_WD) experiments. Likewise, the 4 MAP data from the
experiments under water deficit were used for the prediction of FRY in
the irrigated (WDT_FI) and water deficit (WDT_WD) conditions. Six
prediction models were tested to verify the accuracy of prediction of
FRY in treatment groups submitted to different water stresses.

2.5.1. Linear regression with stepwise selection (LRSS)
LRSS consists of iteratively adding and removing predictors in the

predictive model to find the subset of variables in the dataset that re-
sults in the best performance model, that is, the model with the lowest
prediction error (Gareth et al., 2014). In stepwise selection, variables
are added sequentially, and those with the highest contribution are
retained in the model. Then the variables that are not able to improve
the fit of the model are discarded.

2.5.2. Linear regression with backward selection (LRBS)
In backward selection, the model starts with all of the predictors

(complete model), and at each stage, the variables that contribute least
to the model are iteratively removed. Discarding of variables ends when
all remaining variables are statistically significant. The LRSS and LRBS
models were implemented in the caret package of R software v.3.3 (R
Core Team, 2017), having as an adjustment parameter the nvmax
function that specifies the maximum number of predictors to be in-
corporated into the model. The train function provides an easy work-
flow for performing stepwise and backward selections using the leaps
and MASS packages from R software v.3.3 (R Core Team, 2017).

2.5.3. Bayesian ridge regression (BRR)
Bayesian regression techniques are used to include regularization

parameters when obtaining estimates, which are defined based on
available data. This can be done by introducing non-informative priors
in the hyper parameters of the model. The L2 regularization used in the
ridge regression finds a maximum a posteriori estimate under a
Gaussian prior for the parameters ω with precision λ−1, estimated from
the data as a random variable. The complete probabilistic model is as
follows: =p y X ω α y Xω α( | , , ) ( | , )Ɲ , assuming y to have a Gaussian
distribution around Xω, while α is treated as a random variable that
must be estimated from the data. Bayesian ridge regression estimates a
probabilistic regression model in which the priori of the parameter ω is
given by a spherical Gaussian: = −p ω λ ω λ I( | ) ( |0, )p

1Ɲ . The priors for α
and ω are chosen to be gamma distributions.

2.5.4. Partial least squares (PLS)
The least squares solution for multiple linear regression,

= +Y XB ε, is given by = −B X X X Y( )T T1 . However, the problems in
this case are that 1) X XT is singular because the number of variables
(columns) in X exceeds the number of objects (lines) and 2) there is
multicollinearity in the model. In this case, PLS bypasses these pro-
blems by decomposing X into orthogonal T-scores and P-loads, being

=X TP, in addition to regressing Y not on X itself but on the first a
column of the T-scores. The PLS aims to incorporate information about
X and Y in the definition of scores and loads (Wehrens and Mevik,
2007).

2.6. Evaluation of models

The train function of the caret package (Kuhn, 2008) from R soft-
ware v. 3.4.3 (R Core Team, 2017) was used to evaluate the effect of
model tuning parameters on performance using resampling methods; to
choose the optimal model across these parameters and; to estimate
model performance from a training set. The prediction models and the
values of the method argument, as well as the complexity parameters
used by train function were: 1) Linear Regression with Backwards Se-
lection (LRBS), using leapBackward method with maximum number of
predictors (nvmax) as tuning parameters; 2) Neural Network (NeNet),
using neuralnet method with tuning parameters of number of Hidden
Units in Layer 1, 2, and 3; 3) Partial Least Squares (PLS), using kernelpls
method with number of components (ncomp) as tuning parameters; 4)
Bayesian Ridge Regression (BRR) using bridge method with no tuning
parameters; 5) Support Vector Machines with Radial Basis Function
Kernel (SVM) using svmRadial method with sigma and cost as tuning
parameters; 6) Linear Regression with Stepwise Selection (LRSS) with
leapSeq method and maximum number of predictors (nvmax) as tuning
parameters.
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To define the tuning parameter values and to validate the quality of
the model fits, a cross-validation with 10 folds was performed in four
replicates. The efficiency of the models was evaluated by 1) root-mean-
square error (RMSE), which is the measure of the mean magnitude of
the estimated errors, i.e., = ∑ −

=
RMSE y y( ˆ ) ,n i

n
i i

1
1

2 where ŷi and yi are
the estimated and observed (measured) values, respectively, and n is
the number of observations, and 2) coefficient of determination (R2),
which describes the proportion of the total variance in the data ob-
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corresponds to the explained variation, and ∑ −
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y y( ¯)i
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i1
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to the variation not explained by the model.
The function varImp of the caret package (Kuhn, 2008) was used as a

generic method for calculating variable importance for objects pro-
duced by train methods. All the prediction models used have a built-in
variable importance score. The functions have an ancillary method that
returns a vector indicating which predictors were used in the final
model. This built–in feature selection typically fit the outcome and the
predictor, and a parameter estimation are used to optimize the error
rates. Usually, the varImp function automatically scales the importance
scores to be between 0 and 100.

3. Results

3.1. Variation of physiological and agronomic traits

There were significant differences in the physiological traits be-
tween treatments (irrigated and water deficit) except for leaf osmotic
potential (LOP) and foliar temperature measured by infrared
(TempInfr). There were also significant differences among cassava
genotypes for all traits except leaf temperature measured by the po-
rometer (TempPo) (Table 1). In addition, there were some interactions
between water treatment× genotype for TempPo, TempInfr and leaf
area index (LAI); between water treatment× harvest period for all
traits except LOP; and between genotype× harvest period for all traits
except TempPo. These significant interactions indicate that the effects
of these factors on these physiological traits cannot be analyzed in-
dividually.

In general, greater variation in stomatal conductance and leaf area
index were observed between the two water treatments and the two

harvest periods (Supplement – Figure S1). In general, stomatal con-
ductance was higher in irrigated compared to water deficit treatment
samples. Another important observation is the greater discrepancy of
stomatal conductance between irrigated and water deficit experiments
at 12 MAP. At 4 MAP, the cassava genotypes under water deficit pre-
sented stomatal conductance between 100 and 800mmol kg−1, while
at 12 MAP in the same treatment, the values did not exceed 375mmol
kg−1 (Supplement – Figure S1). The same trend was observed for the
leaf area index, in which plants at 4 MAP under water deficit presented
values above 3.00, while at 12 MAP, the plants in the same treatment
presented values below 1.00, possibly as a result of severe water stress.

The foliar temperature was higher at 12 MAP in comparison to 4
MAP regardless of the measurement method. Possibly, this result is
related to a higher environment temperature and lower leaf area index
at the end of the crop cycle. Another important observation refers to the
greater variation of leaf temperature evaluated by the infrared camera
in comparison to the porometer (Supplement – Figure S1). In relation to
the leaf osmotic potential, there was a great variation within the cas-
sava genotypes evaluated at the different harvest periods, although at
12 MAP, the within-genotype differences between the irrigated and the
water deficit experiments were not pronounced except for the
BGM0279 and Cacau genotypes.

Regarding the ANOVA of the agronomic data (Table 2), except for
number of roots per plant (NRP), all traits differed significantly be-
tween treatments (irrigated and water deficit). The effects of cassava
genotypes and harvest period were also significant for all agronomic
traits, indicating the presence of genetic variability in these genotypes
for productive performance under water deficit conditions, besides the
effect of water stress in these genotypes as a function of the time of the
plants in the field. There were also significant interactions between
water treatment× genotype for plant height (PH), shoot yield (ShY),
fresh root yield (FRY), and dry matter content in roots (DMC); between
water treatment× harvest period for PH, ShY, stem diameter (DiSt),
FRY, root length (RoLe) and root diameter (RoDi), and DMC; and be-
tween genotype×harvest period for ShY, leaf retention (LeRet), FRY,
RoLe, RoDi, and DMC. As observed for the physiological traits, with the
exception of NRP, the understanding of the effect of the variables under
analysis must be carried out jointly to verify the effects of the inter-
actions on the productive performance of the cassava varieties in the
northeastern semi-arid region.

For the agronomic traits of the above-ground part of the plant, the
greatest variation between the water treatments occurred at 12 MAP,
when the genotypes exhibited maximum productive and growth capa-
city, especially in the irrigated treatment, for all traits except foliar
retention (Supplement – Figure S2). In general, the low difference in
leaf retention at the genotypic level at 12 MAP between irrigated and
water deficit experiments is due to the natural fall of cassava leaves
after reaching physiological maturity.

Of all of the agronomic traits of the root, the highest variations at 12
MAP occurred for yield, diameter and dry matter content (Supplement –
Figure S3). Independently of the water regime, a higher number of roots
was counted at 4 MAP in comparison with 12 MAP, which can be ex-
plained by the fact that many of the roots that form in the initial phase
of cassava development are not tuberized to become reserve roots.

Regarding the fresh root yield, there was not a great increase from 4
to 12 MAP, due to the growth and physiological maturation of the
plants in the experiments with water deficit. Indeed, this also generally
occurred in the irrigated experiment for most genotypes (except
BGM0785) (Supplement – Figure S3). Another important observation is
that the root length remained practically unchanged from 4 to 12 MAP.
The opposite was observed for the root diameter. These results are
consistent with the fact that at 4 MAP, the roots are practically formed
and from this phase onward, the main changes are related to root tu-
berization.

Table 1
Summary of the analysis of variance for five physiological traits obtained from
the evaluation of nine cassava genotypes in irrigated and water deficit condi-
tions, harvested at 4 and 12 months after planting (MAP). Petrolina,
Pernambuco State, Brazil (2017).

Source of
variation

DF1 Mean square

StoCond TempPo TempInfr LAI LOP

Water treatment
(WT)

1 572.65** 28.28** 8.38 475.11** 0.39

Genotype (G) 8 4.79** 1.22 10.02** 5.00** 3.45**
Harvest period

(HP)
1 162.16** 374.99** 232.68** 219.62** 31.70**

Block (B) 3 2.67 12.14** 8.15** 1.13 2.14
WT x G 8 2.60 1.22** 5.85** 8.10** 1.60
WT x HP 1 49.26** 51.66** 57.76** 31.02** 0.37
G x HP 8 15.18** 1.87 6.33** 5.76** 2.84**
WT x G x HP 8 5.00** 2.14 1.57 2.01 4.17
Residue 103 14696.03 4158.37 19.87 10.18 4158.37
Coefficiente of

variation (%)
20.75% 2.41% 3.82% 22.59% 10.75%

General mean 526.30 37.50 37.00 4.50 599.80

1DF: degree of freedom; **, *: Significant at 1 and 5% of probability by the F
test, respectively; StoCond: stomatal conductance; TempPo: Leaf temperature
measured by porometer (oC); TempInfr: leaf temperature measured by infrared
camera (oC); LAI: leaf area index; LOP: osmotic leaf potential (mmol kg−1).
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3.2. Efficiency of prediction models

When the physiological and agronomic data from the irrigated
treatment group harvested at 4 MAP were used as training data to
predict the FRY at 12 MAP under the same conditions (IT_FI), we found
a very high predictive ability with R2 ranging from 0.85 (LRSS) to 0.90
(LRBS), whereas the RMSE ranged from 1.52 (PLS) to 2.12 (LRSS)
(Fig. 1). The LRBS and PLS models exhibited the highest R2 (0.90 and
0.87, respectively) and lower RMSE (1.98 and 1.52, respectively) when
the FRY predictions were performed in the irrigated experiments at 12
MAP. In this prediction condition, the LRSS method presented a greater
variation of R2 and RMSE in the cross-validation.

Similarly, when the physiological and agronomic data from the
water deficit treatment group harvested at 4 MAP were used as training
data to predict the FRY at 12 MAP under water deficit conditions
(WDT_WD), a high predictive ability was also verified, especially for
BRR and PLS models, based on the high R2 (0.90 and 0.86, respectively)
and lower RMSE (0.96 and 0.82, respectively) (Fig. 1). Therefore, re-
gardless of water treatment, the physiological and agronomic data
collected early could be used to predict the final FRY with great effi-
ciency. Although all prediction models resulted in high R2, the cross-
validation information for the LRSS model indicated a greater variation
in its prediction.

The predictive ability was still quite high for most of the models in
the cross predictions, that is, when using the physiological and agro-
nomic data from the irrigated treatment harvested at 4 MAP for FRY
predictions at 12 MAP in the water deficit treatment (IT_WD) and vice
versa (WDT_FI). However, in these cases, the variation in R2 was higher

(0.83 to 0.88) for some models, such as LRSS and LRBS (Fig. 1). The
BRR and PLS models showed high R2 (0.84 and 0.85, respectively) and
lower RMSE (1.01 and 0.82, respectively) in the IT_WD scheme. In the
WDT_FI scheme, the BRR and PLS models was also quite efficient for the
predictions and yielded low RMSE.

Although the LRBS, BRR and PLS models presented high predictive
abilities in the IT_FI scheme, it was verified that the PLS model was
more reliable compared to other prediction models due to its low
RMSE, regardless the scenario of prediction (Supplement – Figure S4).
Similarly, for the WDT_WD scheme, the PLS and BRR model yielded a
better prediction accuracy compared to LRBS and LRSS.

In the IT_WD cross-prediction, again, PLS was accurate for FRY
prediction (similarly to LRSS, LRBS, and BRR models); however, with
the lowest RMSE. For the other cross-prediction (WDT_FI), we also
found a higher accuracy of PLS compared to LRSS and BRR models as
well as the low RMSE values (Supplement – Figure S4). Regarding the
predicted and observed values (Fig. 2), the BRR, and PLS models had
low standard deviation of the residuals in comparison with the set of
validations performed for all training conditions. This differed from the
LRSS and LRBS models, which presented high data variation in all
prediction scenarios.

3.3. Key predictive traits

Regardless of the water regime, the most important traits (relative
importance over 80%) for the FRY predictions at 12 MAP were
StoCond, FRY and LAI when the PLS model was applied using the
physiological and agronomic data from the irrigated treatment (4 MAP)

Table 2
Summary of the analysis of variance for nine agronomic traits obtained from the evaluation of nine cassava genotypes under irrigated and water deficit conditions,
harvested at 4 and 12 months after planting (MAP). Petrolina, Pernambuco State, Brazil (2017).

Source of variation DF1 Mean square

PH ShY LeRet DiSt NRP FRY RoLe RoDi DMC

Water treatment (WT) 1 407.57** 1207.35** 26.84** 184.71** 10.85 667.15** 1115.61** 6907.81** 349.19**
Genotype (G) 8 21.79** 62.40** 6.64** 14.25** 24.56** 110.02** 189.76** 508.75** 62.85**
Harvest period (HP) 1 1478.19** 64.89** 977.69** 191.96** 243.83** 491.64** 23.07 18821.56** 518.13**
Block (B) 3 3.23 2.17 0.63 3.32 1.08 1.87 6.20 25.81 1.57
WT x G 8 4.96** 15.60** 3.57 0.63 1.27 35.02** 19.19 34.48 25.72**
WT x HP 1 53.72** 82.79** 2.58 48.97** 0.005 375.79** 222.63** 5232.55** 882.01**
G x HP 8 3.16 10.85** 7.83** 2.87 2.75 42.28** 32.74** 135.32** 30.52**
WT x G x HP 8 4.88** 5.78** 0.72 0.49 3.63 33.03** 25.27* 44.24 11.23**
Residue 103 0.16 9.58 0.21 5.07 0.24 2.10 7.47 15.54 1.75
Coefficiente of variation (%) 6.97% 13.11% 14.96% 8.78% 18.15% 26.25% 11.80% 15.54% 4.72%
General mean 1.8 23.6 3.1 25.7 8.18 5.5 23.15 29.14 27.76

1DF: degree of freedom; **, *: significant at 1 and 5% probability by the F test, respectively; PH: plant height; ShY: shoot yield; LeRet: leaf retention; DiSt: stem
diameter; NRP: number of roots per plant; FRY: fresh root yield; RoLe: root length; RoDi: root diameter; DMC: dry matter content.

Fig. 1. Performance of the prediction models:
linear regression with stepwise selection
(LRSS), linear regression with backward se-
lection (LRBS), neural network (NeNet), vector
support (SVM), bayesian ridge regression
(BRR), and partial least squares (PLS), eval-
uated by the coefficient of determination (R2)
and root-mean square error (RMSE). IT_FI and
IT_WD schemes: models trained using physio-
logical and agronomic data obtained from the
irrigated treatment group harvested at 4 MAP
for prediction of the fresh root yield of the ir-
rigated and water deficit groups at 12 MAP,
respectively. WDT_FI and WDT_WD: trained
using the physiological and agronomic data
obtained from the water deficit treatment
group harvested at 4 MAP for prediction of the
fresh root yield of the irrigated and water
deficit groups at 12 MAP, respectively.

A.B. Vitor, et al. Field Crops Research 239 (2019) 149–158

153



for training (Fig. 3). In addition to the StoCond, FRY and LAI, the other
prediction models indicated TempPo, NRP, RoDi, DMC, and TempInfr
as traits of high importance under these conditions of prediction
(Fig. 3).

The traits FRY, RoDi, and StoCond presented high relative im-
portance in the PLS model, independent of the water regime used for
validation, when the predictions of FRY at 12 MAP used the physiolo-
gical and agronomic data obtained from the water deficit treatment (4
MAP) as the training set. However, NRP was also important in the PLS
model in the FRY predictions for the irrigated treatment. Similar to
when the irrigated treatment data were used for training, the StoCond
and FRY traits kept their relative importance in the other prediction
models, while the NRP trait presented greater relative importance in
the water deficit treatment used for training (Fig. 3).

Regardless of the water regime used for validation, and considering
the model of higher predictive ability (PLS), the StoCond, FRY, and NRP
traits collected at 4 MAP were the most important for predicting the
fresh root yield at 12 MAP. On the other hand, the LAI and NRP traits
presented high relative importance in the validation of the FRY in the
irrigated and water deficit treatments, respectively. Therefore, in ad-
dition to its high predictive ability, the PLS model indicated that of the
14 traits evaluated, four of them (StoCond, FRY, LAI, and NRP) were
most important in the early evaluations to predict future FRY.

For the remaining prediction models, independent of the water re-
gime used for validation, the LAI, StoCond, RoDi, and DMC traits were

common for the different FRY predictions at 12 MAP. On the other
hand, TempPo and NRP were unique to the prediction models using the
irrigated treatment group as the training population, whereas FRY and
TempInfr were exclusive to the models based on the water deficit
treatment group (Fig. 3). Thus, for the LRSS, LRBS, NeNet, SVM, and
BRR prediction models, seven of the 14 physiological and agronomic
traits (StoCond, LAI, RoDi, DMC, NRP, FRY, TempInfr, and TempPo)
were the most important.

In general, regardless of the prediction model, or the training and
validation populations used, the ShY, DiSt, LOP, PH, and LeRet traits
presented the lowest relative importance for FRY prediction at 12 MAP
in both the irrigated and water deficit treatments.

4. Discussion

4.1. Variation of physiological and agronomic traits

Cassava plants subjected to water stress tend to decrease their
physiological activity, culminating with root and shoot yield reductions
(El-Sharkawy, 2006). In general, a water deficit for 30 days did not
drastically influence the traits TempPo, TempIfr, or LOP. However,
there was a greater within-genotype variation in StoCond and LAI be-
tween the water regimes. At 12 MAP, the same trend was observed in
comparison with the 4 MAP data. This shows that even in the first
month of water stress, the plants display physiological responses that

Fig. 2. Relationship between observed and predicted for fresh root yield at 12 months after planting (MAP. The prediction was performed based on six different
models using cross-validation. IT_FI and IT_WD schemes: models trained using physiological and agronomic data obtained from the irrigated treatment harvested at 4
MAP used to predict the fresh root yield of the irrigated and water deficit groups at 12 MAP, respectively. WDT_FI and WDT_WD: models trained using the
physiological and agronomic data obtained from the water deficit treatment harvested at 4 MAP used to predict the fresh root yield of the irrigated and water deficit
groups at 12 MAP, respectively. Different colors represent each fold of the cross-validation. The numeric data included in the graphs represent: linear equations (y),
coefficient of determination (R2), and root mean square error (RMSE). The line represents the 1:1 isoline.
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will be maintained throughout the period of water restriction. In the
first months of stress, cassava can reduce the StoCond by up to 43%, as
this mechanism allows the retention of water for maintenance of basic
cellular activities up to 12 MAP (El-Sharkawy, 2006). However, the
reduction of the stomatal opening may decrease the amount of CO2 in
the leaf, with direct effects on photosynthesis and growth (Alves, 2002;
El-Sharkawy, 2007).

With respect to the shoot traits, the imposition of water stress on the
plants affected the data at 4 MAP, except for leaf retention, which was
not influenced. Water is needed to promote nutrient transport in re-
gions of cell growth and multiplication (Payvandi et al., 2014).
Therefore, reduced plant growth is a short-term consequence of water
deficit. On the other hand, leaf abscission caused by stress occurs when
water stress continues for more than 150 days, explaining the low
variation in this trait between the two water treatments at 4 MAP. At 12
MAP, leaf retention was also similar between the two treatments due to
the natural fall of leaves of cassava plants at this age. According to
Alves (2002), foliar abscission occurs from 40 to 210 days depending on

the severity of the water stress and the susceptibility of the genotype.
The low variation of the traits related to the roots at 4 MAP is

possibly due to the fact that, independently of the genotype, the de-
velopment of cassava roots occurs in the first 3–4 months, with intense
production of fibrous roots for water and nutrient extraction for growth
(Alves, 2006). In contrast, at 12 MAP, the plant response to water
deficit is genotype-dependent, resulting in large variations in root yield
and other related traits.

4.2. Prediction of fresh root yield in semi-arid regions

The production capacity of cassava in marginal and unfavorable
environments makes this species very important as a food security crop
in areas where cassava is a staple food, as in Sub-Saharan Africa and
some regions of the Brazilian northeast (Okogbenin et al., 2013;
Oliveira et al., 2017). Therefore, evaluation of cassava root yield is a
key feature for their cultivation in semi-arid regions, although con-
ventional procedures for estimating cassava root yield are time-

Fig. 3. Relative importance of some physiological and agronomic traits in the prediction models: linear regression with stepwise selection (LRSS), linear regression
with backward selection (LRBS), neural network (NeNet), vector support (SVM), bayesian ridge regression (BRR), and partial least squares (PLS). IT_FI and IT_WD
schemes: models trained using physiological and agronomic data obtained from the irrigated treatment group harvested at 4 MAP for prediction of the fresh root
yield of the irrigated and water deficit groups at 12 MAP, respectively. WDT_FI and WDT_WD: trained using the physiological and agronomic data obtained from the
water deficit treatment group harvested at 4 MAP for prediction of the fresh root yield of the irrigated and water deficit groups at 12 MAP, respectively. StoCond:
stomatal conductance; TempPo: foliar temperature measured by porometer (°C); TempInfr: foliar temperature measured by infrared camera (°C); LAI: leaf area index;
LOP: leaf osmotic potential (mmol kg−1); PH: plant height; ShY: shoot yield; LeRet: leaf retention; DiSt: stem diameter; NRP: number of roots per plant; FRY: fresh
root yield; RoLe: root length; RoDi: root diameter; DMC: dry matter content of the roots.
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consuming and expensive, especially when field experiments are con-
ducted until the end of the crop cycle.

In this work, physiological and agronomic data were collected at an
early stage (4 MAP) from treatment groups kept under irrigated and
water deficit conditions for the prediction of FRY at the end of the
production cycle (12 MAP). Most of the prediction models presented
high predictive ability (R2 ranging from 0.83 to 0.91, and RMSE ran-
ging from 0.82 to 2.12).

Among the models, PLS exhibited the highest predictive ability and
the lowest RMSE in all prediction scenarios for FRY (R2 ranging from
0.85 to 0.91 and RMSE ranging from 0.82 to 1.60). Similar results have
also been observed in other species; the PLS model presented high
prediction of maize grain yield (R2= 0.99 and RMSE=17.73) using
phenological traits (Shaibu et al., 2015). According to these authors, the
high ability of the PLS model, using phenological traits evaluated before
harvest, to predict the grain yield of maize may reduce the time re-
quired for the development of maize varieties tolerant to water deficit.

Even using other data types (i.e., hyperspectral fluorescence ima-
ging), the PLS model has been very accurate in the prediction of the
effects of water stress on soybean cultivars (Mo et al., 2015). The results
of the cross-validation of PLS showed high predictive ability
(R2= 0.973 and 0.969 when hyperspectral images were taken at in-
tervals between 8 and 6 days, respectively) in the development phase of
the plants. In contrast, there is usually no consensus on the best pre-
diction method for application in all situations (species, phenotypic
data type, growing environment, etc.). For example, Zaefizadeh et al.
(2011) evaluated the impact of different barley genotypes and geno-
type× environment interactions on crop yield and found that the
neural network model presented higher predictive ability compared to
linear regression methods.

The evaluation of physiological and agronomic data collected in the
early stages of cassava development for prediction of FRY at the end of
the cycle can be a very useful tool for the breeder because it greatly
reduces the effort required to obtain the phenotypic data. In this case,
even if the estimate of root yield is not highly accurate, the ranking and
separation of the genotypes by best and worst performance already has
a great impact on reducing the work and costs associated with pheno-
typing for tolerance to drought. In addition, with the screening of
germplasm and segregation of populations performed every four
months, it will be possible to triple the annual genotype evaluation
capacity in field conditions and obviously contribute to a reduction in
the breeding cycle of the species.

In wheat, Garriga et al. (2017) carried out the phenotyping of sev-
eral wheat genotypes, using remote and proximal sensing techniques,
for various agronomic and physiological traits associated with grain
yield and drought adaptation. Those authors demonstrated that 1) the
traits with the greatest predictive ability were grain yield and isotopic
carbon discrimination (Δ13C), in both irrigated and rainfed experi-
ments, and 2) for these traits, the partial least squares discriminant
analysis (PLS-DA) method presented excellent performance in the
classification of wheat genotypes into two classes, i.e., lower (80%) and
higher agronomic performance (20% elite). Therefore, this study cor-
roborates the possibility of using predictive models of phenotypic data
(physiological and agronomic) evaluated in early stages to predict and
classify the behavior and ranking of cassava genotypes based on pro-
ductive attributes under water deficit conditions.

Overall, although the prediction of fresh root yield in cassava at the
end of the cycle still remains a high-cost process, there are certainly
several advantages compared to the traditional harvests and annual
assessments. In addition, the risk of errors in selecting the best geno-
types is minimized by the fact that screening of the genetic material
occurs in its adaptation environment itself.

4.3. Contributions of physiological and agronomic traits to the prediction of
fresh root yield

Some of the differences in the predictive ability may have occurred
due to the relative importance of the different physiological and agro-
nomic traits included in the early evaluation. For example, in the case
of PLS, the StoCond and FRY traits evaluated at 4 MAP were the most
important for the prediction of FRY at 12 MAP, independent of the
water regime (irrigated or water deficit). On the other hand, the LAI
trait presented high relative importance in the validation of predicted
FRY in the irrigated treatment, while NRP was important for prediction
in the water deficit treatment. Thus, in the PLS model, only four traits
(StoCond, FRY, LAI and NRP) explained most of the data variance in the
early assessments for FRY predictions.

Indeed, stomatal conductance and CO2 photosynthetic assimilation
are physiological attributes of extreme importance when cassava plants
are submitted to water stress. Strong reductions occur in these char-
acteristics, leading to carbon depletion, which is an additional chal-
lenge to the survival of cassava plants during long periods of drought
(Duque, 2012). However, other mechanisms help cassava to survive in
these situations. The carbohydrate reserves stored in the stem and pe-
tioles are remobilized during water stress, providing a source of car-
bohydrates for continuing metabolic activity (Duque and Setter, 2005).
Although stomatal closure during water stress may result in higher
plant canopy temperatures, the TempPo and TempInfr traits were less
significant in the PLS model. However, cassava presents great sensi-
tivity in stomatal responses, since stomatal closure may occur under
high evaporative requirements, even under irrigated conditions, and at
moderate levels of water scarcity (El-Sharkawy, 2006).

The other two agronomic traits identified by the PLS model as of
high relative importance for prediction were FRY and NRP at 4 MAP.
Root productivity at early stages of development is expected to reflect
the productive potential in the final cycle of the crop, especially in the
cassava, because root formation and the onset of tuberization occur up
to four months after planting (Alves, 2006). From this period onward,
basically only the filling of the roots takes place. Therefore, the pro-
ductive potential is defined by the 4 MAP stage in the development of
cassava plants. Additionally, several authors have demonstrated that
the number of roots in cassava has a positive correlation with root yield
(Silva et al., 2016), and therefore has a high potential for indirect se-
lection of root yield.

For the prediction models LRSS, LRBS, and BRR, the LAI, StoCond,
RoDi, and DMC traits presented greater relative importance (> 80%) in
both treatments. In addition, TempPo and NRP were more important in
the irrigated treatment training data, while FRY and TempInfr pre-
sented high importance when using the water deficit treatment group as
the training population. According to , 2012Duque (2012), the canopy
temperature is the result of evaporative cooling of the leaves due to the
opening of the stomata. Thus, the temperature differences in the leaves
of plants subjected to drought stress provide an idea of the genotypic
differences in stomatal conductance. In general, lower canopy tem-
peratures in plants subjected to water stress may indicate that soil
moisture is still available. Therefore, the differences in leaf temperature
captured by the TempPo and TempInfr measurements, as a result of
water stress, explained a lot of the data variation in the prediction
models LRSS, LRBS, and BRR.

In our study, the ShY, DiSt, LOP, PH, and LeRet traits presented the
lowest relative importance for FRY prediction for both the irrigated and
water deficit treatments. These observations contradict several reports
in the literature that demonstrate that the first responses to water
deficit are reductions in the growth and expansion of leaves and shoots
associated with stomatal closure and foliar abscission. This causes the
plants to conserve available water and limit the respiratory and car-
bohydrate demand during stress (El-Sharkawy, 2006; Setter and
Fregene, 2007).

Another trait affected by water stress was plant height, whose

A.B. Vitor, et al. Field Crops Research 239 (2019) 149–158

156



negative correlation with fresh root yield under water stress conditions
can be an advantage for favoring root growth at the expense of above-
ground development (Duke, 2012). On the other hand, according to the
latter author, leaf retention was not significantly associated with root
yield, whereas Lenis et al. (2006) have reported that leaf retention is a
key to achieving high root yield. In view of these reports, it is possible
to speculate that the low genetic variability of the cassava genotypes
used in this study may have contributed to the low relative importance
of ShY, DiSt, LOP, PH, and LeRet traits for FRY predictions at 12 MAP.
Also, after a month of severe water stress (third to fourth MAP), all
genotypes under water stress maintained a small number of leaves in
the shoot apex, which probably provided a sufficient photosynthetic
rate for plant survival under these conditions.

4.4. Perspectives for selecting cassava genotypes with water stress tolerance

The effects of climate change on climate patterns and the occurrence
of unexpected events are affecting productivity gains in several plant
species (Hernández-Barrera et al., 2017). This relatively recent scenario
has challenged cassava breeders to accelerate the development and
recommendation of new varieties with high yield and root quality as
well as tolerance of more complex cropping environment conditions
involving high temperatures and long drought periods, especially in
semi-arid regions.

Genomic research has produced a lot of information on the genetics
of various plant species, with increasingly important developments in
the generation of large amounts of low-cost molecular information as-
sociated with large platforms for data storage and analysis. However,
this molecular information far outweighs the current capacity of plant
phenotyping (Yang et al., 2014), especially under field conditions. This
"bottleneck of phenotyping" has limited the ability to understand how
expressed phenotypes correlate with genetic and environmental factors,
restricting progress in understanding complex traits such as drought
tolerance in genetic breeding programs (Großkinsky et al., 2019;
Ubbens and Stavness, 2017). Therefore, constant improvements in
methodologies for phenotyping and plant selection under water stress
should be pursued to keep pace with genomic evolution and, at the
same time, continue to yield practical results in increasing crop yield.

It is agreed in the literature that cassava tolerance of water deficit is
due to several physiological mechanisms that allow the species to
withstand long periods of drought. In general, the main mechanisms
involve 1) stomatal closure of the leaves to avoid damage to the pho-
tosynthetic system and maintain photosynthetic activity when water is
supplied; 2) drastic reduction in leaf growth; 3) abscission of older
leaves and maintenance of leaves at the apex of the plant to retain a
minimum of active photosynthesis; and 4) root development in deeper
soil areas for water and nutrient extraction (El-Sharkawy, 2004; Lenis
et al., 2006; Duke, 2012; Okogbenin et al., 2013; Mulualem and
Bekeko, 2015).

Considering the mechanisms mentioned above, several physiolo-
gical and agronomic traits have been used in the evaluation of germ-
plasm for water deficit tolerance. However, the adoption of varieties
that are tolerant of water stress depends on the interest and willingness
of farmers to test and continue to use these varieties. Thus, the selection
criteria for new varieties should take into account characteristics that
effectively meet the farmer’s needs and expectations. This is necessary
because the adoption of improved varieties increases when differences
in yield or even in root quality between improved varieties and land-
races (traditionally cultivated) are perceived by farmers. Therefore, the
traits used in the present work are those considered most important for
future recommendations of new varieties for semi-arid cultivation
conditions, since they involve productive attributes of both roots and
shoots that are sought by farmers when adopting cassava varieties.

Although our data come from only one year of cultivation, the re-
sults of this proof of concept were sufficient to determine the potential
utility of this approach for early prediction of FRY in breeding programs

or even research programs that simply aim to select landraces with high
water deficit tolerance. In other species, such as maize, even using
smaller numbers of genotypes (6), there was a high grain yield pre-
diction (R2=0.99) using phenological traits as predictors (Shaibu
et al., 2015). Therefore, even though further studies with a greater
number of cassava genotypes and additional years of cultivation are
required for methodology validation, our results suggest the possibility
of identifying elite genotypes with higher yield potential under water
deficit conditions by using phenotypic data collected at 4 MAP. In ad-
dition, the evaluation of physiological and agronomic traits of major
relative importance, such as StoCond, FRY, LAI, and NRP, may con-
tribute to greater efficiency of the breeding programs by accelerating
the selection and release of elite varieties with better adaptation to
environmental conditions in areas prone to drought.

The strategy proposed in this study can reduce the cost of pheno-
typing for tolerance of water deficits in cassava, considering several
aspects: 1) the amount of biomass (shoot and roots) produced at 4 MAP
is much lower than that produced at 12 MAP. Therefore, the time re-
quired for phenotyping is much lower. 2) Phenotyping for tolerance of
water deficits at 4 MAP would allow at least three annual evaluation
cycles in the same area, contributing to the optimization of the area
used and to the rapid screening of germplasm and segregant popula-
tions. 3) The costs for setting up and managing the field trials would be
lower because trials require only 4 months instead of 12 months. 4) The
cassava breeding cycle for tolerance of water deficits would be shor-
tened. 5) The chances of adoption of new cassava varieties would be
maximized due to the fact that the selection for tolerance of water
deficits is being carried out at the adaptation site itself.

In addition, although the proposed methodology does not involve
high-performance phenotyping strategies, it is possible to associate a
wide range of technologies to obtain non-destructive biometric in-
formation. For example, thermal, colored, fluorescence, near infrared,
and hyperspectral images can be utilized to increase the capacity for
analysis and optimization of phenotype processes for tolerance to
drought in cassava (Rousseau et al., 2019; Mo et al., 2015).
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