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Abstract
Key message Weighted outperformed unweighted genomic prediction using an unbalanced dataset representative of 
a commercial breeding program. Moreover, the use of the two cycles preceding predictions as training set achieved 
optimal prediction ability.
Abstract Predicting the performance of untested single-cross hybrids through genomic prediction (GP) is highly desirable 
to increase genetic gain. Here, we evaluate the predictive ability (PA) of novel genomic strategies to predict single-cross 
maize hybrids using an unbalanced historical dataset of a tropical breeding program. Field data comprised 949 single-cross 
hybrids evaluated from 2006 to 2013, representing eight breeding cycles. Hybrid genotypes were inferred based on their 
parents’ genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. 
GP analyses were fitted using genomic best linear unbiased prediction via a stage-wise approach, considering two distinct 
cross-validation schemes. Results highlight the importance of taking into account the uncertainty regarding the adjusted 
means at each step of a stage-wise analysis, due to the highly unbalanced data structure and the expected heterogeneity of 
variances across years and locations of a commercial breeding program. Further, an increase in the size of the training set 
was not always advantageous even in the same breeding program. The use of the two cycles preceding predictions achieved 
optimal PA of untested single-cross hybrids in a forward prediction scenario, which could be used to replace the first step 
of field screening. Finally, in addition to the practical and theoretical results applied to maize hybrid breeding programs, the 
stage-wise analysis performed in this study may be applied to any crop historical unbalanced data.
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Introduction

Single-cross hybrids (Shull 1908) have been widely used to 
explore heterosis in selfing and outcrossing species. In order 

to explore the benefits of heterosis in maize (Zea mays L.), 
single-cross hybrids are obtained by crossing inbred lines 
from genetically distinct heterotic groups (e.g., Dent × Flint). 
Therefore, the challenge faced by breeders is to find a promis-
ing combination among many possible single-cross hybrids 
between pairs of inbred lines (Bernardo 1994; Schrag et al. 
2010). Because it is unfeasible to obtain and to evaluate all 
possible pairwise inbred combinations, predicting the perfor-
mance of untested single-cross hybrids prior to field trials is 
highly desirable.

Early prediction of single-cross hybrids based on inbred 
line per se performance (Smith 1986) or using genetic diver-
sity between parents had very poor predictive accuracy for 
complex traits due to dominance effects and to dependence 
on the germplasm source (Charcosset et al. 1991; Garcia 
et al. 2004). Hybrid prediction based on best linear unbiased 
prediction (BLUP) has boosted PA and has become a bench-
mark in hybrid breeding. BLUP predictions make use of the 
covariance between untested and tested hybrids estimated 
either from pedigree or molecular markers (Bernardo 1994; 
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Piepho 2009). Some advantages of the BLUP approach are 
as follows: (1) computational efficiency and flexibility to be 
extended to complex scenarios (Piepho 2009; Crossa et al. 
2017), (2) connectivity with quantitative genetics theory 
(Gianola et al. 2009; Vitezica et al. 2013) and (3) straight-
forward genetic interpretation (de los Campos et al. 2013).

Genomic prediction (GP) was initially proposed as a 
marker-based strategy to predict yet-to-be-seen genetic 
responses for quantitative traits, based on regressing pheno-
types on all marker information simultaneously (Meuwissen 
et al. 2001). Thus, increased genetic gain is expected by using 
GP, once it is possible to perform selection in early breeding 
stages, reducing the number of field-tested hybrids and breed-
ing cycles. In addition, given the availability of high den-
sity markers, it is expected that each quantitative trait locus 
(QTL) is linked with at least one marker, such that under the 
assumption of Fisher’s infinitesimal model this approach may 
capitalize most on the heritable fraction of genetic variance.

The benefits of applying GP models to predict grain 
yield for single-cross hybrids have been reported in simu-
lated (Marulanda et al. 2016; dos Santos et al. 2016) and 
empirical data (Fritsche-Neto et al. 2010; Technow et al. 
2014). Recently, the GP process has been extended to 
predict genotype-by-environment interaction (Burgueño 
et al. 2012; Dias et al. 2018), also for considering omics 
data (Westhues et al. 2017) and non-additive effects (Dias 
et al. 2018; Vieira et al. 2017; Viana et al. 2018). GP has 
also been boosted by novel optimization techniques to 
build representative training sets for predictions (Rincent 
et al. 2012; Fristche-Neto et al. 2018; Guo et al. 2019). 
Regardless of these valuable contributions, only a few 
studies have demonstrated the integration of the GP pro-
cess into realistic scenarios observed in commercial maize 
breeding programs.

In commercial plant breeding, thousands of individuals 
are tested in many locations, breeding zones and years, in 
trials often laid out as incomplete block designs. Many 
plant breeders have been using several small lattice trials 
side-by-side (henceforth referred to as multiple lattice) to 
accommodate a large number of genotypes in early genera-
tions (Piepho et al. 2006). By using multiple lattices, the 
comparison between two adjusted means across lattices 
is based only on the performance of the common checks 
(Piepho et al. 2006). In the present study, breeders modi-
fied the design from a single lattice to a multiple lattice 
designs after three years of evaluation. This fact raised 
the question if the efficiency of comparisons between two 
adjusted means has increased or decreased.

Although a single-stage analysis is considered as the 
gold standard (Smith et al. 2001), due to the complex-
ity of the data structure in plant breeding programs, GP 
has been routinely used in two stages. In the first stage, 
adjusted genotype means are obtained, and in the second 

stage adjusted means are regressed on marker covariates. 
Although theoretical and empirical studies have shown the 
advantages of using weights in prediction models (Welham 
et al. 2010; Piepho et al. 2012; Schulz-Streeck et al. 2013; 
Gezan et al. 2017), GP studies often assume independ-
ent and homoscedastic errors for the adjusted means. In 
this context, stage-wise analysis, which takes into account 
the heterogeneity of variances and covariances between 
adjusted means, and carries this information forward in 
all stages, should be used to obtain reliable predictions.

Highly unbalanced historical data, with limited connec-
tivity of hybrids evaluated across multiple years, is a key 
feature of many commercial breeding programs. In many 
cases, the only connection across years is the degree of 
genetic relatedness between hybrids. Proper modeling of 
the historical data is one of the greatest challenges faced by 
plant breeders. In addition, if genotype-by-year effects are 
not properly accounted for, GP can divert part of the molecu-
lar marker information to predict these effects rather than 
to estimate breeding values (Bernal-Vasquez et al. 2017). 
Benefits of GP using multiple breeding cycles of a historical 
dataset as training set have been reported in simulated (Cros 
et al. 2018) and empirical data (Auinger et al. 2016; Schrag 
et al. 2018). Therefore, in commercial breeding programs, 
it is expected that using many breeding cycles should be 
advantageous in GP. It is an open question, however, how 
many breeding cycles should be used as a training set for 
GP models.

In this context, our main goals were to (1) compare the 
statistical efficiency of a single lattice to multiple lattice 
designs; (2) compare the predictive ability of untested sin-
gle-cross hybrids of weighted vs unweighted models using 
additive plus dominance effects in stage-wise analyses; 
(3) evaluate different scenarios of training set composi-
tion using historical unbalanced data to predict untested 
single-cross hybrids of subsequent breeding cycles; and 
(4) evaluate the predictive abilities when the model bor-
rowed information across breeding zones or seasons.

Materials and methods

Plant material

We used hybrids from the ongoing Embrapa maize breed-
ing program located in Brazil. Hybrids are derived from 
crosses of testers and inbred lines from opposite heterotic 
groups. In the initial trials of hybrid testing, F3 or F4 prog-
enies from different families (mainly biparental within each 
genetic pool) were crossed with testers and evaluated in 
three different locations (data not available for this study). 
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In general, more than one tester was used for each heterotic 
group (Fig. 1). Then, successive cycles of inbreeding were 
performed only for the parents selected in the first step of 
hybrid testing.

In the second step of hybrid testing (henceforth inter-
mediate trials; IT), approximately 120 selected hybrids (F4 
progenies × testers) plus four checks were evaluated at an 
average of eight locations per year. Then, in the next step 
(henceforth elite trials; ET), 24 hybrids (F6 progenies × test-
ers) from IT and 8 hybrids (F8 progenies × testers) selected 
in the previous year of ET plus four common checks were 
evaluated at an average of 25 locations per year.

Field data used in this study comprise 949 maize hybrids 
from IT and ET, evaluated from 2006 to 2013 represent-
ing eight breeding cycles of the same maize breeding pro-
gram. Among the total number of hybrids, 659 hybrids have 
genomic information for both parents. A total of 545 inbred 
lines (234 Dent and 311 Flint) were used as parents, with an 
average of 1.21 cross per parent. The numbers of T2, T1 and 
T0 hybrids were 190, 460 and 9, respectively. T2 hybrids 
are defined as single-cross hybrids where both parents were 
evaluated in other hybrid combinations, while T1 and T0 
hybrids have one or none of the parents in common with 
tested hybrids.

It is well known that PAs are different across T2, T1 and 
T0 hybrids (Technow et al. 2014). However, our main point 
was to explore the use of historical data in a commercial 
breeding program. Under such a realistic complex scenario, 

there is not enough balance of such groups of hybrids to 
make a fair comparison. In this context, we chose to build 
a training set composed by all the three types of hybrids, 
which might be a better practical representation of breeding 
programs.

Genotypic data

Young leaves of inbred lines were used for DNA extraction 
via the cetyl trimethyl ammonium bromide (CTAB) method 
(Saghai-Maroof et al. 1984). DNA samples were quantified 
using the Fluorometer Qubit 2.0, following the manufac-
turer’s instructions (Life Technologies TM, USA). Samples 
were also evaluated on 1% agarose gel in Tris-acetate-EDTA 
buffer, stained with  GelRedTM (Biotium, USA) and recorded 
under UV light in the Imager Gel Doc L-PIX (Loccus Bio-
tecnologia, Brazil).

Inbred lines were genotyped using genotyping-by-
sequencing (GBS) based on the GBS standard protocol 
(Elshire et al. 2011). Libraries were created by digesting the 
DNA with the ApeKI restriction enzyme and adding unique 
bar-coded adapters to each DNA sample. Seven libraries of 
96 samples and one library of 384 samples were multiplexed 
per Illumina flow cell for sequencing. Libraries of 96 and 
384 samples were sequenced by HiSeq2500 (1 × 100 bp) 
and NextSeq500 (1 × 90 bp) equipments, respectively.

The GBS discovery pipeline was implemented using 
the software TASSEL v.5. (Glaubitz et al. 2014). First, raw 
data from Illumina was trimmed to remove reads that did 
not match a bar code and the cut site from ApeKI, leav-
ing the good tags with at least 64pb. Second, sequenced 
tags were aligned to the B73 reference genome (AGPv3) 
using the Burrows-wheeler alignment tool (Li and Durbin 
2009). Then, single-nucleotide polymorphisms (SNPs) were 
defined for every sample based on a binomial distribution 
from the aligned unique tags (Crossa et al. 2013) and saved 
in a variant call format (VCF file).

SNPs were obtained for all libraries simultaneously, and 
the parental lines of maize hybrids evaluated across the eight 
different breeding cycles were selected. The classification 
of inbred lines across heterotic groups is shown in Fig. 
S1. SNPs were discarded if: (1) the minor allele frequency 
was smaller than 5 % ; (2) more than 25% of missing geno-
types were found; and/or (3) there were more than 5% of 
heterozygous genotypes. After filtering, missing data were 
imputed using Beagle 4.1 (Browning and Browning 2016). 
Nei’s genetic diversity for the inbred lines within each of the 
eight breeding cycles (Fig. S2) was estimated using the R 
package snpReady (Granato et al. 2018). Linkage disequi-
librium (LD) was estimated on a per-chromosome basis for 
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Fig. 1  Schematic representation of single-cross hybrids obtained by 
crossing flint (311) with dent (234) inbred lines. Each square repre-
sents a single-cross hybrid. F1 to F14 and D1 to D19 represent flint 
and dent lines used as male
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each breeding cycles, using r2 pairwise measures and the R 
package LDcorSV (Desrousseaux et al. 2017).

For each SNP, the in silico genotypes of the single-cross 
hybrids were inferred based on the genotype of their parents 
(inbred lines). After quality control, a total of 21.475 SNPs 
were obtained across the 10 maize chromosomes, with an 
average of 10.44 SNP per Mb (Fig. S3).

Experimental design

In IT, from 2006 to 2008, 100 hybrids were evaluated using 
a 10× 10 square lattice design in each year with two repli-
cates. From 2009 to 2013, a total of 124 hybrids were evalu-
ated in each year side-by-side in two trials. In each trial, 60 
hybrids plus four common checks were evaluated using an 
8 × 8 square lattice design with two replicates. Hybrids of ET 
along with four checks were evaluated using an 6 × 6 square 
lattice design with two replicates.

Due to the elimination of low-performing hybrids and 
the inclusion of newly developed hybrids, the experiments 
are unbalanced over the years (Table 1 and Fig. S4). The 
connection across years is based on ET and common checks 
(Table S1).

A total of 21 locations were evaluated in IT, and those 
same 21 locations plus 40 different locations were evaluated 
in ET. These locations belong to five breeding zones repre-
senting a gradient between tropical and subtropical areas, 
on which the Embrapa’s maize breeding program is focused 
(Fig. 2). The tropical region includes areas in almost all Bra-
zilian states and is divided in tropical lowland (TB, areas 
with altitudes lower than 700 m) and tropical highland (TA, 
areas with altitudes higher than 700 m) zones. The transition 
region (TR) includes areas in the Northern and Northwest 
of Paraná state, Southern of Mato Grosso do Sul state and 
Southern of São Paulo state. The breeding zones MN and 
NE represent the north and the northeast geographic regions 
of Brazil, respectively.

For the breeding zones TA, TB and TR there are two main 
maize growing seasons: the first season, when sowing is done 
during the spring, which normally coincides with the begin-
ning of the rainy season; and the second season, when sowing 
occurs during the summer, after soybeans harvesting, which is 
usually cultivated in the first season. Locations and number of 
locations were not constant over seasons, breeding zones and 
years (Table 2 and Fig. S5).

Grain yield was determined by weighing all the grains in 
each plot, adjusted to 13% of grain moisture and converted 
to tons per hectare (t/ha). All agronomic practices were per-
formed as recommended for maize production for each loca-
tion of Brazil.

Table 1  Number of common 
hybrids evaluated across years 
(off-diagonal) and number of 
hybrids tested in each year 
(diagonal). Above and below the 
diagonal results are from IT and 
IT+ET, respectively

Year 2006 2007 2008 2009 2010 2011 2012 2013

2006 136 7 3 0 1 1 1 1
2007 23 136 5 2 1 1 1 1
2008 13 30 136 4 2 2 2 1
2009 8 15 21 160 9 4 2 1
2010 3 4 7 35 160 8 5 2
2011 1 1 4 11 36 160 5 3
2012 1 1 3 8 14 35 160 4
2013 2 1 3 3 6 13 23 160

Fig. 2  Geographic map of locations for intermediate trials (red dots) 
and elite trials (yellow dots). The light-blue background represents 
the elevations up to 700 m and the dark-blue background corresponds 
to those above 700 m
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Phenotypic analysis

Due to the complexity of the data structure as outlined above, 
a stage-wise analysis was considered.

First‑stage analysis

In the first stage, the following model was fitted within each 
location, season and year combination, from 2006 to 2008 for 
IT, and for ET. We used the notation described in Piepho et al. 
(2003):

where � is the vector of phenotype, G represents the hybrids, 
R the replicates, B the incomplete blocks nested within rep-
licates, and � the error for each plot. The colon (:) is used 
to separate fixed from random effects. The dot operator (.) 
defines crossed effects.

For years 2009 to 2013, there were two 8 × 8 square lattice 
designs laid out side-by-side for IT, the following model was 
used:

where T is the factor for trials, and the effects of blocks and 
replicates are nested within trials. Replicates were fitted as 
fixed and blocks as random effects to recover inter-block 
information (See Möhring et al. (2015) for details). Random 
effects were assumed to follow a normal distribution with 
mean zero and constant variance for models (1 and 2).

To ensure a Gaussian distribution for the residuals, outli-
ers were detected and removed based on studentized residu-
als using Bonferroni–Holm test ( � = 0.05) as described in 
Bernal-Vasquez et al. (2016). Among 33,440 plots, 61 were 
considered outliers, in addition to 3 missing plots at the field 
trials, which represent 0.1913% of the total.

(1)� = G + R ∶ R.B + �

(2)� = G + T + T .R ∶ T .R.B + �

Heritability

Heritability ( H2

P
 ) as proposed by Piepho and Möhring (2007) 

was estimated in each location using the first-stage model:

where �2

g
 is the genetic variance of hybrids and v̄d are the 

average pairwise variance of differences among two adjusted 
means.

Models (1) and (2) were fitted considering hybrids as ran-
dom to estimate genetic variance. To estimate v̄d , the same 
model was fitted with genotypes as fixed. In this analysis, 
variance components of block and residuals were fixed at 
values obtained with the random hybrids model (Schmidt 
et al. 2019).

Second‑stage analysis

In the second stage, models were fitted across locations, 
seasons, breeding zones and years using the adjusted means 
from the first stage ( ̄𝐲1 ) and associated weights:

where S represents the seasons, M the breeding zones, Y the 
years, L the locations within seasons and breeding zones. 
�1 is the residual, with �1 ∼ MVN(0,Σ1) . Σ1 is the vari-
ance matrix for �1 assumed to be known from the previous 
stage. As proposed by Smith et al. (2001), Σ is a diagonal 
matrix with diagonal elements equal to the reciprocals of 
the inverse of the variance-covariance of adjusted means in 
each location.

An unweighted model was fitted dropping the highest-
order interaction as follows:

where � ∼ MVN(0, I�2

�
) comprised both the residual error 

and the highest-order interaction effect G.Y.S.M.L. The 
other terms were as previously described. Random effects 
were assumed to follow a normal distribution with mean 
zero and constant variance for models (4 and 5).

Variance components were estimated using the residual 
maximum likelihood method with the average information 

(3)H2

P
=

𝜎2

g

𝜎2
g
+ v̄d∕2

(4)

�̄1 = G ∶ Y + S +M + S.M + S.M.L + Y .S + Y .M + Y .S.M.L

+ Y .S.M + G.Y + G.S + G.M + G.S.M.L + G.S.M

+ G.Y .S + G.Y .M + G.Y .S.M + G.Y .S.M.L + 𝜖1

(5)

�̄�1 = G ∶ Y + S +M + S.M + S.M.L + Y .S + Y .M + Y .S.M.L

+ Y .S.M + G.Y + G.S + G.M + G.S.M.L + G.S.M

+ G.Y .S + G.Y .M + G.Y .S.M + �

Table 2  Grain yield means (t/ha), number of locations and hybrids 
evaluated across the Brazilian breeding zones and seasons

Breeding zone Season Number of 
locations

Number 
of hybrids

Mean Standard 
deviation

TB First 18 950 7.00 2.42
Second 8 785 5.22 1.59

TA First 15 950 9.16 2.50
Second 3 166 7.39 2.12

TR First 5 950 9.19 2.14
Second 8 950 6.06 2.07

MN First 5 621 8.30 1.99
Second – – – –

NE First 6 462 7.71 2.12
Second – – – –
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algorithm (Gilmour et al. 1995). Asymptotic correlations 
between variance component estimates were estimated based 
on the model (4) considering all the effects as random.

Experimental design comparison

Trials with single and multiple lattice designs were compared 
via the average pairwise variance of difference of two adjusted 
means for each location as described in Piepho et al. (2006).

Plot data were simulated as done in Möhring et al. (2015) 
using the model (1) for a single lattice and model (2) for 
multiple lattice designs.

As block size, the block and error variances varied between 
years, a comparison of designs based only on the empirical data 
could be biased. Thus, four simulated scenarios to accommodate 
the IT were used (Table 3). For each of the four simulated designs, 
two different block variances were considered. First, the ratio of 
block-to-error variance was set to 0.13, which is the average value 
from the first-stage analysis. Second, the ratio was set to 5.

Datasets were simulated assuming a normal distribution for 
block and residual effects and with homogeneous variances. 
Replicate, trial and treatment effects were set to zero as done 
in Möhring et al. (2015). The average variance of a difference 
( ̄vd ) for each scenario was computed using the equation

where Vm is a variance-covariance matrix of adjusted means, 
and n is the number of columns of Vm.

For each scenario, 500 simulations were done and v̄d was 
estimated as described above. Designs were generated using 
the R package “agricolae” (Mendiburu 2017) and analyzed 
using Asreml-R (Butler et al. 2009).

(6)v̄d =
n

n(n − 1)
[n × trace(Vm) − 1

T
n
Vm1n]

Genomic prediction models

Single-cross hybrids across multiple breeding cycles were used 
to train a GP model to predict the performance of untested 
hybrids in subsequent cycles. To this end, genomic best linear 
unbiased predictions (GBLUP) were obtained using additive 
and additive plus dominance effects based on the adjusted 
means of the second stage.

where �̄�2 is the vector of adjusted means from the second 
stage, � is the intercept, a is the vector of random additive 
effects of genotypes, a ∼ N(0,�) ; d is the vector of random 
dominance effects of genotypes, d ∼ N(0,�) ; �2 is the vector 
of residuals, with �2 ∼ MVN(0,Σ2) . Σ2 is a diagonal matrix 
with diagonal elements equal to reciprocals of those of the 
inverse of variance-covariance matrix from the second stage. 
The matrix Σ2 accounts for the information on main and 
interaction effects fitted in the models of the second stage. 
Z1 and Z2 represent incidence matrices for their respective 
effects. � and � are additive and dominance relationship 
matrices estimated as described in VanRaden (2008) and 
Vitezica et al. (2013), respectively. � and � were not posi-
tive definite, and their inverses were obtained by iterative 
bending methods as described in dos Santos et al. (2016). 
This GP model is equivalent to a single-stage model that 
accounts for all the genotype-by-environment interactions 
effects and considers the genomic relationship matrix only 
for the hybrid main effect.

The model presented in Eq. (7) corresponds to the additive 
plus dominance (AD) model, which contains both additive 
and dominance effects. An alternative model including only 
additive effects (A) was also fitted by dropping the term d.

In order to investigate if models that borrowed informa-
tion across breeding zones or seasons can increase PAs, a 

(7)�̄2 = 1𝜇 + Z1a + Z2d + 𝜖2

Table 3  Simulated 
scenarios of experimental 
designs, considering different 
block sizes (k), number of 
trials (t), number of blocks (b), 
number of genotypes (v) and 
number of replicates (r), and 
their respective block variance 
( �2

b
 ) and error variance ( �2

e
 ). 

For each scenario, simulations 
were repeated 500 times

a 4C represents the four common checks across trials
b – represents that the effect of blocks was considered as fixed

Scenario k t b va r Plots �2

b

b �2

e

A 8 2 32 120 + 4C 2 256 0.13 1
8 2 32 120 + 4C 2 256 5 1

B 8 1 32 128 2 256 0.13 1
8 1 32 128 2 256 5 1

C 10 1 20 100 2 200 0.13 1
10 1 20 100 2 200 5 1

D 10 1 26 130 2 260 0.13 1
10 1 26 130 2 260 5 1

A 8 2 32 120 + 4C 2 256 – 1
B 8 1 32 128 2 256 – 1
C 10 1 20 100 2 200 – 1
D 10 1 26 130 2 260 – 1
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compound symmetry model was fitted for additive effects of 
the same genotype in different zones. Adjusted means and 
weights for this GP model were obtained from the second 
stage analysis considering genotype nested within seasons 
or breeding zones.

Genomic estimated breeding values (GEBV) were pre-
dicted as GEBV = �̂� + Z1â or GEBV = �̂� + Z1â + Z2d̂ based 
on the models described above.

Cross‑validation

The PA of the A and AD models with and without consid-
ering the weights were assessed through cross-validation. 
Two different scenarios were evaluated. In the first scenario, 
forward and backward PA was estimated using each breed-
ing cycle as separate training sets to predict subsequent (for-
ward) or previous (backward) breeding cycles. In the second 
scenario, i.e., across breeding cycles, PAs were estimated 
using hybrids from multiple preceding cycles as training 
sets to predict hybrids in the subsequent breeding cycle, 
i.e., in the validation set. In order to investigate how many 
breeding cycles should be used as a training set, different 
combinations of cycles preceding predictions were used. 
PAs were estimated as the Pearson correlation between the 
adjusted means �̄�2 and the GEBV. In addition, the mean 
squared prediction error (MSPE, 1

v

∑v

i=1
(yi − ŷi)

2 ) was 
computed.

All analyses were performed using the mixed model 
package ASReml-R version 3.0 (Butler et al. 2009) in the 
R Statistical Computing Environment v.3.4 (R Core Team 
2018).

Results

Estimates of genetic parameters 
and evaluation of experimental design

The values of heritabilities for grain yield from single envi-
ronment analyses ranged from 0.21 to 0.83, with an aver-
age of 0.55 across eight breeding cycles (Fig. 3). Variance 
component estimates for each season and across seasons, 
expressed as a proportion of total variance all genotype-
by-environment interactions, are presented in Table 4. In 
general, the major source of variation was the highest-order 
interaction. The values for the non-static variance compo-
nents (i.e., those involving years) were always higher than 
those of the static components (those not involving years), 
which ranged from 47.29 to 50.89%. Similar results were 
found considering each season individually or both seasons 
simultaneously. Asymptotic correlations between variances 

component estimates are reported as supplementary infor-
mation (Table S2 and S3). 

The AIC and BIC values showed that the weighted 
model improved the goodness-of-fit measures compared 
with the unweighted model (Table 5). The same trend was 
observed for the AD model when compared to the additive 
model. Based on the best model, the additive and domi-
nance variances were 0.1758 and 0.0251, respectively. 
This dominance variance represents 14% of the additive 
variance in the target population.

The average pairwise variance of a difference of two 
adjusted means varied considerably between single and 
multiple lattice designs (Fig. 4). In all the cases, based on 
empirical and simulated data, the average variance of a dif-
ference was smaller when using a single lattice design. As 
the number and size of blocks were different across years, 
we included scenarios of block sizes 8 and 10 (scenarios 
B and D) to allow a fair comparison. Scenario B has the 
same size and number as blocks of scenario A. Comparing 
scenarios A and B, results show a loss of information for 
phenotypic data obtained when multiple lattice designs 
are used.

Genomic prediction

Forward and backward prediction between breeding cycles 
showed that closer breeding cycles have more prediction 
power to predict subsequent cycles than more distant ones 
(Table 6). The first three cycles have little power to pre-
dict the C4. The reason for this is the introduction of new 
sources of variability to produce inbred lines into C4. This 
will be further considered in the discussion.

Fig. 3  Estimated heritabilities for grain yield from single environ-
ment analysis based on model (3) for the intermediate trials of the 
eight breeding cycles (C)
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In order to check the impact of genotype-by-season 
and genotype-by-breeding zone interaction, a compound 
symmetry variance-covariance model was fitted for these 
effects (Table 7). Results showed that the interaction terms 
were of lower magnitude. The genetic correlation across 
first and second season was 0.91. For breeding zones TA 
and TB, the genetic correlation was 0.89. These values 
of genetic correlation show that it is possible to borrow 
information across seasons or breeding zones in order 
to increase PA. A compound symmetry was used only 
to compare the PAs across TA and TB breeding zones, 
which are the main focus for breeding recommendations 
in Brazil.

PA varied across the different training sets of the cross-
validation procedure (Table 8 and Table S4). The use of 

the two cycles preceding predictions provided the highest 
PA, which decreased in the majority of cases when other 
past cycles were added.

In the majority of cases, the use of weights increased 
PA. In addition, the use of weights showed lower MSPE 
than the unweighted model. Further, the use of the AD-GP 
model was always advantageous compared to the A-GP 
model. On average, PA considering the two cycles pre-
ceding predictions increased up to 15% when dominance 
was included.

Discussion

In this study, we applied a stage-wise analysis for GP of 
single-cross hybrids using unbalanced historical data from 
an active maize breeding program. The data set covered 
different crop seasons, locations, years and tropical breed-
ing zones. Our results suggest that increasing the training 
set even from a single breeding program is not always 
advantageous in a multiple background population. For-
ward prediction using multiple breeding cycles achieved 
optimal PA using the two cycles preceding predictions. In 
addition, the PA of the weighted models outperformed the 
unweighted models.

The maize growing areas of Brazil can be subdivided 
into target breeding zones widely explored by breeders for 
hybrids recommendation. Information from these breed-
ing zones and seasons are important to decide if breeders 
should perform selection for global or specific adaptation. 
The main source of genotype-by-environment interaction 
was due to the non-static effects. Our finding suggests that 
non-static effects are the major source of genotype-by-
environment interaction replicates the findings of Cullis 
et al. (2000) using a crop variety data at Australia and 
of Kleinknecht et al. (2013) using simulated data based 
on maize trials. Further, according to a study performed 
by Windhausen et al. (2012), maize hybrids were broadly 
adapted for different agroecological conditions across 
Africa, rendering selection for local adaptation not neces-
sary. In our study, the hybrid by breeding zone interac-
tion effect was not significant. One possible explanation is 
that Embrapa’s maize breeding program has been selected 
for global adaptation over more than 10 years. However, 
the decision of breeders for global or specific adaptation 
depends on other factors beyond grain yield, such as mar-
ket needs, disease resistance, among others. Novel stud-
ies are necessary to better explore the breeding zones in 
Brazil.

Table 4  Estimates of the variance components via individual analyses 
per season  (first or second) and joint analysis for both  seasons. The 
multi-season model considered the effect of location nested within 
season and breeding zone. Values are expressed as the correspoding 
proportion of the genotype-by-environment interaction variance

Variance Effect Season

First Second Both

Static G 22.76 19.87 16.80
G.M 2.14 0.00 0.00
G.L 7.01 7.71 8.35
G.S – – 4.00
G.S.M – – 1.58

Non-Static G.Y 16.06 21.53 17.36
G.Y.S – – 0.28
G.Y.M 4.37 0.00 3.29
G.Y.S.M – – 1.05
G.Y.M.L 47.64 50.89 47.29

Table 5  Estimates of the genetic parameters and the goodness-of-fit 
measures obtained via model (7)

A: additive model; AD: additive plus dominance model;
�2

A
  and σD

2: additive and  dominance genetic variance components, 
respectively

Stage-wise analysis

Weighted Unweighted

A AD A AD

�2

A
0.2918 0.1758 0.3566 0.2334

�2

D
– 0.0251 – 0.0436

Log L 97.9397 109.8383 77.127 91.5494
AIC −193.8795 −215.6765 −150.2540 −177.0990
BIC −189.3903 −206.6981 −141.2756 −163.6314
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From the historical dataset of Embrapa’s maize breed-
ing program, we observed that locations were not con-
stant over the years (Fig. S5). The impact of this choice 
on the variance of a difference ( vd ) among adjusted 
means can be studied by considering a balanced sce-
nario of the same J locations in each of K years, in which 
case the variance of a difference can be expressed as 
vd = 2 × (�2

GL
∕J + �2

GY
∕K + �2

GLY
∕JK) . By contrast, when 

a different set of J locations is used each year, we have 
vd = 2 × (�2

GL
∕JK + �2

GY
∕K + �2

GLY
∕JK) .  Thus, vd  will 

be smaller if locations are modified over the years, and 
more precise comparison between adjusted means can be 
obtained. It should be stressed that �2

GL
 and �2

GLY
 will be 

confounded in this scenario, meaning that one of the two 
effects needs to be dropped from the model.

Accurate phenotypic data are required to calibrate GP 
models and for the successful use of any breeding tool. We 
showed in this study through empirical and simulated data 
that the use of a single lattice is statistically more efficient 
than multiple lattice designs (Fig. 4). The main reason of 
using multiple lattices is the smaller number of plots per 
replication. However, according to Piepho et al. (2006), it 
is necessary to use a high number of checks for multiple 
lattices in order to reach the same accuracy of single lattice 
designs. Moreover, as the number of checks becomes smaller 
across multiple lattices, an efficiency reduction is expected. 
Furthermore, to estimate the genotype-by-trial interac-
tion, there is a strong assumption of variance homogeneity 
between checks and entries, but this variance is estimated 
based only on the check’s performance (Piepho et al. 2006). 
In summary, we would like to reinforce the importance of 
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Fig. 4  Variances of differences ( v
d
 ) among entries real data (left) and 

simulated (right) scenarios. v represents the number of genotypes, b 
is the number of blocks, k is the block size, VB is the block variance 
and VE is the error variance. A, B, C, D and the ratio VB/VE cor-

respond to the scenarios previously described in Table 3. Orange and 
blue colors represent single and multiple lattice designs, respectively. 
Simulation were done 500 times for each scenario

Table 6  Forward (above 
diagonal) and backward (below 
diagonal) predictive ability 
obtained via additive genomic 
prediction model (7). Diagonal 
represents  the breeding cycle 
used as  training set

C1 C2 C3 C4 C5 C6 C7 C8

C8 0.38 0.29 0.41 − 0.22 0.35 0.43 0.39 –
C7 0.15 0.16 0.17 0.13 0.03 0.23 – 0.10
C6 0.32 0.21 0.17 0.35 0.29 – 0.20 0.15
C5 0.23 0.04 0.03 0.36 – 0.44 0.03 0.13
C4 0.07 0.00 − 0.16 – 0.37 0.43 0.21 − 0.11
C3 0.55 0.45 – − 0.33 0.22 0.49 0.59 0.62
C2 0.57 – 0.35 − 0.05 0.20 0.57 0.39 0.37
C1 – 0.33 0.33 0.12 0.35 0.47 0.26 0.37

Table 7  Estimates of the variance components using a compound 
symmetry model and additive genomic relationship matrix for breed-
ing zone (M) and season (S)

Breeding zone Season

Effect Component Effect Component

G 0.4281 G 0.3815
G.M 0.0478 G.S 0.0368
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using a single design, such as alpha-lattice or resolvable row-
column designs, in place of multiple lattice designs.

In agreement with theoretical expectation, the inclusion 
of weights increased goodness-of-fit measures and PAs, and 
reduced MSPE for untested single-cross hybrids (Tables  5 
and 8). Similar conclusion was already reported in simu-
lated and empirical studies (Welham et al. 2010; Piepho 
et al. 2012; Schulz-Streeck et al. 2013; Damesa et al. 2017). 
Likewise, the use of unbalanced historical data and expected 
heterogeneity of variances in commercial breeding programs 
highlight the importance of taking into account the uncer-
tainty regarding adjusted means. A single-stage analysis is 
preferable when feasible, but in a historical multi-year unbal-
anced data could be either unfeasible or too time consuming, 
making a stage-wise approach a more attractive option. In 
a stage-wise analysis, genotypes should be taken as fixed 
in all stages except the last. If this is done, BLUP of geno-
typic effects will be identical in single-stage and stage-wise 
analysis if the same variance component values are used in 
both strategies and the full variance-covariance matrix of 
adjusted means is carried forward to the next stage (Piepho 
et al. 2012). It should be stressed that the use of genotypes 
as random in multiple stages needs to be avoided due to the 
associated problem of double shrinkage (Smith et al. 2001; 
Garrick et al. 2009).

An increase in the size of the training set was not always 
advantageous even in the same breeding program. The use 
of the two cycles preceding predictions achieved optimal 

PA of untested single-cross hybrids in a forward prediction 
scenario (Table 8). It is well known that GP exploits coseg-
regation, LD between markers and QTL and the genetic rela-
tionship between training and validation set (Habier et al. 
2007, 2013; Schopp et al. 2017). In the same breeding pro-
gram, where there is a genetic relationship across cycles, it 
is expected that including past cycles would increase PA. In 
contrast, each cycle has generations of independent intermat-
ing, leading to a reduction in the LD extension and conse-
quently in the size of parental haplotype blocks, which can 
decrease PA. Based on our investigations, the LD pattern per 
chromosome varied across cycles (Fig. S6 to S15). There-
fore, we believe that using the two cycles preceding predic-
tions resulted in a more similar LD pattern between train-
ing and validation set, preventing the breakage of important 
parental haplotype blocks containing grain yield adaptive 
loci physically linked to SNP markers.

The inclusion of genetic diversity, as done for C4, is a 
common activity in plant breeding programs and can lead to 
genetic substructures in the selection cycle (Albrecht et al. 
2014). Using the first three cycles to predict the C4, the PA 
was zero (Table 6 and Table S4). Here, it is important to 
state how the introgression of genetic diversity in C4 was 
performed. From C4, breeders started using elite genotypes/
individuals from different sources to introduce genetic vari-
ability and favorable alleles. Those introduced individuals 
were crossed, and sometimes backcrossed with well-known 
lines in each genetic pool to generate new inbreed lines to be 

Table 8  Predictive ability (PA) and mean squared prediction error (MSPE) of additive (A) and additive plus dominance (AD) models, using 
weighted and unweighted approaches across breeding cycles (C)

Number of cycles 
preceding prediction

Size of 
training 
set

Training set Validation set Stage-wise analysis

Weighted Unweighted

A AD A AD

PA MSPE PA MSPE PA MSPE PA MSPE

1 113 C7 C8 0.185 0.317 0.315 0.305 0.128 0.387 0.317 0.351
1 92 C6 C7 0.240 0.810 0.366 0.834 0.174 0.884 0.181 0.973
1 105 C5 C6 0.405 0.489 0.483 0.436 0.437 0.513 0.512 0.449
1 91 C4 C5 0.468 0.558 0.468 0.558 0.492 0.674 0.492 0.674
1 33 C3 C4 − 0.192 0.556 0.065 0.434 − 0.262 0.587 − 0.235 0.408
2 205 C6:C7 C8 0.262 0.305 0.348 0.300 0.227 0.371 0.350 0.350
2 197 C5:C6 C7 0.312 0.477 0.411 0.463 0.347 0.483 0.447 0.454
2 196 C4:C5 C6 0.461 0.371 0.461 0.371 0.445 0.394 0.445 0.394
2 124 C3:C4 C5 0.539 0.536 0.539 0.536 0.526 0.673 0.526 0.673
2 98 C2:C3 C4 − 0.072 0.441 − 0.143 0.409 − 0.068 0.499 − 0.142 0.484
3 310 C5:C7 C8 0.240 0.310 0.266 0.305 0.229 0.372 0.240 0.370
3 288 C4:C6 C7 0.312 0.435 0.312 0.435 0.307 0.459 0.360 0.436
3 229 C3:C5 C6 0.466 0.372 0.466 0.372 0.449 0.404 0.449 0.404
3 189 C2:C4 C5 0.537 0.361 0.537 0.361 0.542 0.463 0.542 0.463
3 164 C1:C3 C4 -0.429 0.542 -0.378 0.457 − 0.444 0.602 − 0.418 0.567
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included as part of the new breeding cycle. Looking forward, 
strategies of optimal cross selection to balance selection and 
exploitation of genetic diversity should be used to increase 
long-term genetic gains through GP (Gorjanc et al. 2018).

The use of historical unbalanced data from IT and ET 
enables estimating genotype-by-year interaction (Table S2). 
This result is consistent with what has been found in pre-
viously reported results using multiple breeding cycles in 
rye (Bernal-Vasquez et al. 2017). There are two main fac-
tors that limit the GP of future cycles. First, genotype-by-
year interaction is unpredictable, and the use of multiple 
breeding cycles is necessary to obtain more precise adjusted 
means. Second, in practical routines of maize breeding, 90% 
of the lines are untested and about 81% of the hybrids are 
T0 hybrids, when neither of the parents was already evalu-
ated in other hybrids combinations (Westhues et al. 2017). 
This scenario leads to lower PA when compared to T1 and 
T2 hybrids (one or both parents were tested in other hybrid 
combinations, respectively) (Technow et al. 2014). Strate-
gies to increase PA of T0 hybrids deserve the attention of 
future studies.

The exploration of heterosis using inter-pool crosses is a 
benchmark in commercial maize breeding. In hybrid predic-
tion, the use of dominance effects has been recently used in 
empirical and in silico studies and was reported to increase 
PA, as happened in our study (dos Santos et al. 2016; Dias 
et al. 2018; Viana et al. 2018). Moreover, the best training 
set composition for hybrid prediction was investigated by 
Fristche-Neto et al. (2018). The results showed that using 
top-crosses is the worst scenario of a training set to predict 
untested single-cross hybrids compared to a North Carolina 
Design II and a full diallel. One of the reasons is that the 
dominance effect can not be estimated in test-crosses when 
only one tester is considered (Albrecht et al. 2014). Fur-
thermore, given a high number of inbreds in each genetic 
group, the use of Design II or full diallel could be unfea-
sible to be exploited in practical situations. Normally in 
breeding programs, more than one tester is used for each 
heterotic group. Then, groups of lines are crossed with dif-
ferent testers depending on the target breeding region or the 
germplasm maturity cycle. Loosely speaking this structure 
is close to North Carolina Design I, in which it is possible to 
estimate additive and dominance effects based on orthogonal 
contrasts. However, these breeding schemes deserve further 
study.

There are three limitations of this study that deserve to 
be mentioned. First, part of the test-cross hybrids was phe-
notyped in early selfing generation and the genotypic data 
assumed that hybrids are from completely homozygous 
lines. We here follow Bernardo (1991), who suggested that 
there is a high expected correlation between the early and 
late selfing generation of test-crosses. Second, the number of 
hybrids and testers are not constant across breeding cycles, 

which could have an impact on the cycle effect. On the other 
hand, we argue that this scenario represents the dynamic 
of a commercial breeding program where different sets of 
hybrids and testers are included and discarded every year. 
Third, this study did not use all the data employed in the 
selection steps since the dataset from the first step of test-
crossing was not available. The use of data from all steps is 
recommended to avoid selection bias (Piepho and Möhring 
2006).

Finally, in addition to the practical and theoretical results 
applied to the maize hybrid breeding program, the stage-
wise analysis performed in this study may be applied for any 
crop when historical unbalanced data are available. Like-
wise, this approach has the potential to reduce costs and 
accelerate the release of new hybrids. By means of predic-
tion of hybrids, using unbalanced historical data of previous 
breeding cycles could replace the first step of field screening. 
Moreover, the available breeding germplasm can be better 
explored through the prediction of in silico genotypes, test-
ing in the field only the genotypes with high GEBVs.

Conclusion

In this study, we showed that the use of a single lattice is 
statistically more efficient than multiple lattices per location. 
In agreement with Piepho et al. (2006), this finding suggests 
an advantage of a single lattice over multiple lattice designs. 
We also showed the superiority of weighted genomic predic-
tion models compared to the unweighted formulation. The 
highly unbalanced data structure and expected heterogeneity 
of variance in commercial breeding programs highlight the 
importance of taking into account the uncertainty regard-
ing adjusted means at each step of a stage-wise analysis. 
Moreover, the training set design considering variable train-
ing set sizes indicates the importance of evaluating different 
sample sizes representative of the plant breeding germplasm 
across different breeding cycles. Finally, our findings suggest 
that the evaluation of the two cycles preceding predictions 
achieved optimal prediction ability of untested single-cross 
hybrids in maize of Embrapa’s maize breeding program.
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