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A B S T R A C T

In high biodiversity areas, such as the Amazon, forest inventory is a challenge due to large variations in vege-
tation structure and inaccessibility. Capturing the full gradient of variability requires the acquisition of a large
number of sample plots. Pre-stratified inventory is an efficient strategy that reduces sampling effort and cost.
Low-cost remote sensing techniques may significantly expand pre-stratification capacity; however, the simplest
option, satellite optical imagery, cannot detect small variations in primary forests. Alternatively, three-dimen-
sional information obtained from airborne laser scanning (ALS, a.k.a. airborne lidar) has been successfully used
to estimate structural parameters in tropical forests. Our objective was to assess to what extent forest plot
sampling effort could be reduced, while accurately estimating mean vegetation characteristics in the landscape,
by stratifying with ALS structural properties, relative to a random, uniformed conventional approach. The study
was developed in an 800-ha area of wet Amazonian forest (Acre, Brazil), including portions of palms, bamboo
and dense forest. We estimated relevant structural attributes from ALS: canopy height, openness, rugosity and
fractions of leaf area index (LAI) along the vertical profile. We clustered vegetation to define heterogeneity into
structural types, employing the Ward method and Euclidean distance. Also, principal component analysis was
employed to characterize the groups using field and ALS-derived structural attributes. We simulated sampling
intensities to estimate the gain in reducing the field efforts based on pre-stratified and non-stratified forest
inventory scenarios. The resulting stratification clearly distinguished the forest’s structural variation gradient
and the vegetation density profile. For a fixed uncertainty of 10% in basal area estimation, the ALS-aided
stratified inventory reduced the necessary number of field plots by 41%, relative to simple random sampling. The
resulting reduction in sampling effort can offset the cost of ALS data collection, significantly enhancing its
financial feasibility. In addition, ALS provides broad-coverage quantifications of basal area (or aboveground
carbon stock), canopy structure, and accurate terrain characterization, which have an added value for forest
management.

1. Introduction

Forest inventories obtain estimates of fundamental variables in-
cluding basal area, volume, and aboveground woody biomass based on
population sampling methods (Næsset et al., 2013). Reliable forest es-
timates can be key to diagnosing conservation needs and potential for
the sustainable use of resources (Bustamante et al., 2016). Due to the
high structural variation of tropical rainforests, such as in the Amazon,

sample inventories require great efforts to accurately quantify funda-
mental forest variables and their variation at landscape scales (Lu et al.,
2003).

Simple random sampling is typically used in small areas with minor
variations in terrain and vegetation (Cochran, 1977). Other sampling
methods may be adopted depending on the objectives of the inventory,
conditions to access the forest, topography, hydrography, forest ty-
pology and the size of the area to be inventoried (Kangas and Maltamo,
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2006). In private forestry schemes and public forest concessions the
management areas are large (thousands of hectares), with variations in
the tree community as well as topographic and hydrographic condi-
tions, which makes them difficult and expensive to characterize using a
limited number of samples. Inappropriate or suboptimal choices in
sampling method, or insufficient intensity and spatial coverage of field
plots can generate biases or uncertainties in the estimation of the forest
parameters (Moerman and Estabrook, 2006; Junttila et al., 2013;
Marvin et al., 2014; Mauro et al., 2016). One option that may improve
the accuracy of an inventory is to increase sampling intensity. However,
in some cases this may be infeasible due to unaffordable costs and lo-
gistics. It is also challenging to evaluate the sampling intensity required
to achieve a given target accuracy. The best alternative is to rely on
detailed prior information of forest structural heterogeneity to adap-
tively optimize the sampling effort, with the intention of balancing the
accuracy with the associated costs. This approach captures the max-
imum environmental variation using a minimum sampling effort
(Maltamo et al., 2011; Niemi and Vauhkonen, 2016).

Stratified sampling consists of a subdivision of the forest into
homogeneous groups prior to carrying out simple random sampling
within each stratum (or forest-type group). This is known as pre-stra-
tification, and it attains a variance within each stratum smaller than the
total global variance of the whole population (Cochran, 1977; Tipton,
2013). It provides an opportunity for reducing sampling intensity, be-
cause part of the overall variance is explained by the strata. However,
stratification of tropical forests is a major challenge due to their high
complexity and density of vegetation (Asner et al., 2010; Alexander
et al., 2017; Torresan et al., 2016). The combination of climatic en-
vironmental factors, topographic variation, edaphic characteristics, and
forest dynamics represents a range of drivers with the potential to im-
pact the diversity and variation of tropical forests (Clark and Clark,
1996; Condé and Tonini, 2013; Figueiredo et al., 2015; Nijland et al.,
2015; Tang and Dubayah, 2017).

With the advent of orbital remote sensing, the variations of forest
structure began to be classified and mapped with precision, especially
those related to landscape macrostructures such as topographic varia-
tion and soil use (IBGE, 2012). However, passive orbital sensors have
limited capacity to classify the ecologically significant variation of ve-
getation structure over the landscape (Lefsky et al., 2002; Asner et al.,
2012; Ponzoni et al., 2012). In general, passive optical sensors are
sensitive to changes in the biomass of young and homogeneous forests,
with satisfactory efficiency in estimating biomass and leaf area index
(LAI) for some biomes (Drake et al., 2002; Lefsky et al., 2002). How-
ever, in mature and heterogeneous rainforests, the spectral response is
not sufficient to predict changes in biomass and volume, because ve-
getation indices saturate in areas with high LAI (~4m2m−2) (Turner
et al., 1999; McRoberts et al., 2017), and provide no information about
the understory (Manzanera et al., 2016), causing uncertainty in forest
typology differentiation (Lu, 2005; Ponzoni et al., 2012). Alternatively,
airborne laser scanning (ALS, a.k.a. airborne lidar) stands out as an
active remote sensor thanks to its ability to capture vegetation height
information, and to penetrate vegetation vertical profiles, allowing the
estimation of forest structural variation over forest landscapes with
greater ecological, management, and carbon accounting relevance
(Lefsky et al., 2002; Vastaranta, 2012; Junttila et al., 2013; Wulder
et al., 2013; Manzanera et al., 2016).

An increasing number of studies have confirmed the use of ALS to
estimate, model and characterize structural and ecological variables of
forest cover, such as: tree identification and quantification of tree
density (Yu et al., 2011; Gorgens et al., 2015; Ferraz et al., 2016; Silva
et al., 2016), crown shape (Barnes et al., 2017; Figueiredo, 2014), LAI
and vertical profile of vegetation (Stark et al., 2012; Detto et al., 2015;
Almeida et al., 2016), carbon and biomass (D’Oliveira et al., 2012;
Mascaro et al., 2011; Næsset and Gobakken, 2008; Silva et al., 2015,
2018), diameter distributions of the tree population (Maltamo et al.,
2018), and demographic characterization of tree populations (Stark

et al., 2015). ALS has also been successfully employed to stratify forest
areas into structural types with shared characteristics (Jaskierniak
et al., 2011; Valbuena et al., 2013, 2016, 2017; Niemi and Vauhkonen,
2016; Fedrigo et al., 2018), with some classifications validated across
landscapes (Hansen et al., 2014; Moran et al., 2018; Adnan et al.,
2019). For these reasons, ALS is being incorporated into the manage-
ment and planning of forest activities in native and planted forest areas
(Garabedian et al., 2017; Sanz et al., 2018; Almeida et al., 2019a). The
potential of ALS to provide detailed structural characterization has been
shown to offer advantages over field sampling, including plot allocation
strategies according to the characteristics of each forest type (or forest
stratum), or promoting cost reduction (Maltamo et al., 2011; Junttila
et al., 2013; Dash et al., 2015; McRoberts et al., 2017). However, no
prior studies of this kind have targeted structurally complex rainforests.
Thus, there is a need to quantify the potential for adaptive forest
sampling pre-stratification based on information on the distribution and
extent of forest structural types offered by ALS remote sensing in
Amazonian rainforests (Wulder et al., 2012).

Here we use ALS data to classify 800 ha of primary forest in western
Amazonia according to variations in canopy structure. Then, we use the
resulting classification to quantify the expected savings made in field
sampling effort from an adaptive pre-stratified sampling strategy. This
will allow us to balance the field effort essential to monitor larger areas
of intact tropical forest.

2. Materials and methods

2.1. Area of study

The research was developed in the experimental forest of the
Brazilian Agricultural Research Company (Embrapa), in the munici-
pality of Rio Branco, Acre state, North-Western Brazil (10° 01′ 22″ S, 67°
40′ 3″W) (Fig. 1). The total area of the Embrapa Acre forest is 960 ha,
800 ha of which were included in the census. The hydrography is
characterized by a vast drainage network derived from the Liberdade
creek (Fig. 1e), which divides the property from the middle in a south-
to-north direction (Rodrigues et al., 2001). Terrain altitude above sea
level ranges from 147 to 210m (Fig. 1d). Topographic relief varies from
planar to corrugated, and soils have high concentrations of low-per-
meability clays (Rodrigues et al., 2001). The climatic classification of
the region, according to Koppen, is Aw, hot and humid equatorial
(Alvares et al., 2013), with an annual average temperature of 24.3 °C
and an annual average rainfall of 1950mm (Acre, 2010).

2.2. Characterization of vegetation

Previous studies in the area describe the occurrence of three main
vegetation types: dense forest, secondary forest and open forest
(D'Oliveira, 1994; Rodrigues et al., 2001). The dense forest type is
characterized by an upper closed canopy of large trees, including spe-
cies like the Brazil nut tree – Bertholletia excelsa (Bonpl.) –, Cumaru –
Dipteryx odorata (Aubl.), Wild –, and garapa – Apuleia leiocarpa (Vogel)
JF Macbr –, which allows low light penetration, and thus vegetation
density in the understory is sparse. In the secondary forest areas, the
authors report vegetation of medium to large stature, with discontinuity
in the canopy and indirect light penetration in the understory, in which
palms, lianas and bamboos (Guadua weberbaueri Pilger) occupy separate
forest vertical strata. Open areas are characterized by a greater vertical
distance between dominant arboreal individuals and the dominant
understory elements, bamboo and lianas, which are widespread and
preclude the regeneration of trees and palms (south-central region of
the area of study – Fig. 1g) (Rodrigues et al., 2001). Photos of vegeta-
tion can be seen in the supplementary material (Figs. S1–S13).

There are approximately 235 tree species from 65 different bota-
nical families, with an average volume of 130m3·ha−1, an average tree
density of 32 individuals·ha−1, and an average basal area of 10m2·ha−1
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– considering only individuals with DBH (diameter at breast height;
1.30m) >40 cm, see next section – (Fig. 1f). These studies corroborate
the classification given by the Ecological Economic Zoning (EEZ) to the
vegetation of the macro-region in the surroundings where the study
area is located, which is of the open forest type, with palm, bamboo,
and dense forest (Acre, 2010).

2.3. Data collection

Data collection was performed in two steps: field census forest in-
ventory and ALS surveying. The field forest inventory was carried out
on 800 ha between June 2014 and January 2015. The census collected
the DBH of 22,957 woody plants (trees, palms, and lianas) with
DBH≥ 40 cm (for multi-trunk individuals, each trunk was recorded).
Each tree received a reference number plate and its location was
georeferenced with a GNSS navigation receiver (Garmin 76 CSx). Basal
areas were calculated as the sums of individual stems contained in the
100×100m sampling grid cells (Fig. 1c, g).

2.4. ALS data collection

The ALS flyover was conducted in 2015, shortly after the end of the
field census. A CESSNA model 206 aircraft was used, equipped with
Trimble's lidar Harrier 68i sensor. This ALS system was operated at
300 kHz, with a maximum scan angle of± 11° from nadir view, and a
footprint diameter of 30 cm. The average density of returns was
14 pts·m−2 (Fig. S14). There were more than 4 pts·m2 in 98.8% of the
area, with an average aircraft speed of 200 km·h−1, a height of 600m,
and a swath-width of approximately 490m.

2.5. ALS data processing

The ALS generated 169 million points, of which 37 million were

classified as ground points via an interpolation algorithm using the
linear prediction method SCOP (Trimble and Geo, 2014). The Digital
Terrain Model (DTM) was produced from the ground points (average
density of 0.43 pts·m2) with 1-m spatial resolution, using an inverse
distance-weighted nearest neighbor interpolation method, as im-
plemented in the package “lidR” (Roussel and Auty, 2018) in R en-
vironment (R Core Team, 2017). We then calculated the heights above
ground by subtracting the elevation of the DTM from the height of each
ALS point (Roussel and Auty, 2018). Spurious values, e.g. negative
height returns and artifacts not representing the vegetation, were
eliminated using a filtering algorithm. A 50×50m moving window
was used to eliminate the upper outliers (returns with values greater
than the third quartile plus 1.5 times the interquartile range), and also
maximum returns 0.5 m higher than the fifth highest return.

The canopy height model (CHM) was calculated from the highest
points of the normalized cloud within 2-m grid cells. The CHM was used
to generate the following structural attributes of the canopy, at the 1-ha
spatial resolution of the field plots (Almeida et al., 2019b): (i) canopy
height (average of CHM); (ii) rugosity (standard deviation of CHM); and
(iii) canopy openness (fraction of CHM cells lower than a 15-m height
threshold). The height threshold was selected to define gaps and other
openings because closure in tropical forests usually occurs below 15m
in height (Asner et al., 2012), and for consistency with other work in
the region (Almeida et al., 2016).

The number of ALS returns in the forest height gradient was also
used to determine leaf area density (LAD) and leaf area index (LAI)
metrics. From the cloud of ALS points within each horizontal cell, three-
dimensional (voxel) cells were created with horizontal (x and y) re-
solution of 2m and vertical resolution (z) of 1m. In these cells we es-
timated the volumetric variation in leaf area density (LAD) of the ve-
getation, using the equation of MacArthur and Horn (1969) (Stark
et al., 2012; Almeida et al., 2016, 2019a,b). This method for estimating
vegetation closure is based on calculating optical density as the ratio

Fig. 1. (a) Location of Acre and Rio Branco; (b) region around the study area; (c) experimental field of Embrapa Acre with cell grid; (d) 1-m resolution digital terrain
model; (e) hydrographic network; (f) census forest inventory of 25,957 individual trees; (g) basal area distribution of individuals with diameter at breast height
DBH≥ 40 cm; (h) 2-m resolution canopy height model (CHM).
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between the number of returns that arrive in a voxel and the number of
returns that come out from it, which is then attributed to leaf area with
a scaling constant. Two attributes associated with vegetation density
were calculated: (iv) LAI (sum of LAD profile), and (v) LADunderstory

(sum of LAD between 5 and 12m above the ground). We excluded LAD
estimates below 5m, which were more uncertain because of limited
pulse penetration low in the canopy and possible influence of ground
returns (Stark et al., 2012; Almeida et al., 2019b).

2.6. Data analysis

The data analysis consisted of five steps: (i) creation of two- and
three-dimensional grid cells and associated estimation of structural
attributes derived from the field inventory and the ALS return cloud; (ii)
the correlation of canopy attributes (ALS-derived) and field inventory
basal area attribute; (iii) cluster analysis for formation of strata (forest
structural types); (iv) validation and characterization of forest struc-
tural types; and finally, (v) estimation of reduction of the sampling
effort. The steps are described below in more detail.

The study area was divided into 723 cells sizing 100×100m
(1 ha), 1504 cells sizing 70×70m (0.5 ha), and 3013 cells sizing
50×50m (0.25 ha). For each cell, the field attribute (basal area) and
the structural attributes of the forest canopy from ALS (described in the
previous section) were calculated. Subsequently, a Pearson correlation
analysis was carried out to select the best canopy structural attribute to
utilize as a basis for the cluster analysis. To maximize our capacity to
group cells with a single variable, we performed a hierarchical cluster
analysis using Euclidean distance and Ward clustering method and by
dist() and hclust() functions of “stats” R package (R Core Team, 2018).
The cluster analysis creates forest-type groups that were later used for
sub-sampling the field census via pre-stratification. The number of
groups was established by the Elbow method (Tipton, 2013), which
define the appropriate number of groups (k) from a scree plot which
depicts the variation in the total sum of residuals for an increasing
number of clusters. The consistency of the groups was verified by the
scree plot and dendrogram (Fig. 2). Also, the defined groups were va-
lidated with an ANOVA posthoc Tukey test (R Core Team, 2018), with
group id as predictor and basal area as response variables. Groups were
characterized with Principal Component Analysis (PCA) and Biplot
graph (Kassambara and Mundt, 2017) of the ALS-derived structural
attributes.

Finally, a computational simulation was done emulating forest in-
ventory sampling. We compared a stratified sampling design against a
completely randomized design with three different plot sizes: 1, 0.5 and
0.25 ha. Grid cells were subdivided according to these resolutions, and
they were selected as if they were field plots. The stratified sampling

was simulated by using weighting distributed by strata, so that each
segment was the same sample size, whereas no weighting was used for
the simulation in the case of the simple random sampling.

For each level of sampling size (number of plots in the inventory),
1000 iterations were performed, and their mean and standard deviation
were summarized in order to produce a graph of relative uncertainty
(standard error/global mean) as a function of sample intensity (pro-
portion of total area sampled, in %). In the computational simulation,
the number of sample plots ranged from 10 to 60 for 1-ha plots; from 10
to 100 for 0.5-ha plots; and from 10 to 140 for 0.25-ha plots. Taking
into account that the total area of our study site is 800 ha, a single
sample plot with a size 1, 0.5 or 0.25 ha yields a sampling intensity of
0.125%, 0.0625% and 0.03125%, respectively. Thus, the corresponding
ranges in sampling intensities employed in each simulation were:
1.25–7.5% for 1-ha plots; 0.63–6.25% for 0.5-ha plots; and 0.39–4.38%
for 0.25-ha plots.

Inventories by stratified sampling were compared against simple
random sampling for the three plot sizes and over the range of segment
numbers. The cut-off limit established for comparison between strati-
fied and simple random sampling designs was a 10% of relative un-
certainty, which is the admissible sampling error limit in inventories for
forest management plans (Brasil, 2007). The notations and the stratified
inventory estimators are presented below (Cochran, 1977). The suffix h
denotes the stratum, and i the sampling unit within each stratum.

Stratum-wise mean estimator of variable y (e.g., basal area in
m2·ha−1);
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nh=number of plots in the stratum; N= total number of plots;

Fig. 2. Results using 1 ha plots: a) Correlogram of the structural attributes of the canopy (ALS-derived) with the basal area (m2.ha−1) measured in the field; (b) scree
plot by the Elbow method; (c) dendrogram obtained by Ward's method. Panels (b) and (c) are derived from cluster analysis using just the ALS-derived canopy height
attribute.
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H= total number of strata; yhi=value obtained for i plot at stratum h;
Wh=weight of stratum h (nh/N).

3. Results

We selected Canopy Height as our structural variable for forest
stratification because it was the canopy structure variable that showed
the highest correlation with the basal field area (Fig. 2a). Using the
Elbow method (Fig. 2b), the optimal number of groups adopted was
k=4, as can be observed in the dendrogram (Fig. 2c). The values of
average and standard deviation of the variables obtained for 100×100
cells are described in Table 1. Note that the average basal area and the
average canopy height increase steadily from stratum 01 to 04 (Table 1
and Fig. 3a).

To corroborate the relevance of this classification from the view-
point of the field information, an ANOVA posthoc Tukey’s test was
performed, which resulted in a significant difference of 5% for the
average basal area among all segments (Fig. 3b). The map (Fig. 3c)
shows the spatial distribution of the four groups throughout the study
area. Analyzing the first component (Z1) from the PCA, the variables
canopy openness (eigenvector= 0.55), canopy height (eigen-
vector=−0.50), LAIunderstory (eigenvector= 0.48), and LAI (eigen-
vector=−0.39) together represented most of the structural variation
in the forest. This gradient of structural variation can be observed from
both the vegetation profiles of the four strata separately (Fig. 4b), and
also from thee variations in the forest canopy observed from the CHM
and the ALS data (Fig. 4c and d). The low weight of the variable rug-
osity (eigenvector= 0.23) in the first component shows that this vari-
able had little impact on the characterization of groups.

The sample intensity reduction was calculated for each of the three
plot sizes, with different classes of stratification and relative uncertainty
set at 10% (Table 2). It was not possible to calculate average and
standard deviation in the simulated inventory for k=6 and 7 for the
spatial resolution of 1 and 0.5 ha, because the number of plots in one of
the strata was N=1. The computational simulation (Fig. 5) illustrates
the estimated difference between stratified and simple random

sampling for the three plot sizes analyzed.

4. Discussion

To our knowledge, this is the first paper to analyze the potential of
ALS technology to reduce field sampling intensity in Amazonian forest
inventories. In general, ALS was able to generate strata that differ-
entiated variation in forest basal area, reducing the sample effort by up
to 41%. In this study we focused on basal area because it is a direct field
measurement. Nevertheless, other parameters of interest that can be
estimated by using allometric equations, such as volume and above-
ground woody dry biomass, would also be more efficiently sampled
taking our forest ALS survey-based stratification approach
(Supplementary Fig. S15).

To implement this approach it is necessary to have a means to define
an efficient number of strata. As in previous similar studies like that of
Adnan et al. (2019), the Elbow criterion proved to be an efficient ap-
proach to determine the number of segments (k=4), as demonstrated
by significant differentiation of basal area. However, the stratification
potential for estimating basal area from the ALS canopy height metric
was even greater, since in the present study, up to six segments (k=6)
were discriminated with significant differences. Therefore, there is no
need to rigorously adopt the Elbow criterion, although it is a good in-
dicator to determine the optimal number of groups. On the other hand,
the choice of additional strata beyond approximately k=6 generated
little additional gain in the estimates (Table 2) and may even be in-
efficient by partitioning the population into groups comprising a small
number of potential sample plot locations, increasing the variance of
the estimates (McRoberts et al., 2012; Mauro et al., 2016) or even
making it impossible to calculate the stratum-weighted sampling. As an
example, Table 2 shows the decrease in the sampling intensity when
increasing group number from 6 to 7 in plots of 0.25 ha.

The correlation between the canopy height and basal area at plot
level can be explained by the ALS's sensitivity in capturing the height of
dominant and co-dominant trees occupying the forest canopy and
which are positively related to stem diameter and basal area (Asner

Table 1
Statistical summary of vegetation attributes for the four segments.

Field and Lidar variables Group 01 Group 02 Group 03 Group 4

Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation

Basal area (m2.ha−1) 5.92 2.03 8.97 2.28 11.26 2.29 14.58 2.7
Canopy height (m) 19.2 1.54 22.52 0.78 25.48 1.09 29.24 1.24
Rugosity (m) 8.68 1.19 8.86 1.13 8.83 1.22 8.87 1.17
LAI (m2.m−2) 1.72 0.32 1.97 0.03 2.21 0.28 2.43 0.27
LAI_undersoty (m2.m−2) 0.57 0.09 0.44 0.1 0.35 0.1 0.28 0.07
Canopy openness (%) 0.35 0.08 0.22 0.06 0.14 0.05 0.08 0.04

Fig. 3. (a) Scatter analysis of basal area (field) and canopy height; (b) boxplot of the basal area data for each of the four groups created in the cluster analysis with the
canopy height; (c) map of cells classified by stratum.
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et al., 2002, 2012; Baker and Wilson, 2000; Sullivan et al., 2017).
However, allometric relationships between tree size and shape may
vary from forest to forest, or even from tree to tree (Lefsky et al.,
1999a,b; Mäkelä and Valentine, 2006; Dahle and Grabosky, 2009).
Therefore, the use of a single ALS variable will not always be efficient in
distinguishing forest typologies and parameters (biomass, basal area),
since a forest with a more homogeneous structure and little variation in
canopy height may generate a low correlation between ALS and field
data (Baker and Wilson, 2000; Kennel et al., 2013; Palace et al., 2015).

In our study, the use of the canopy height for stratification was also
efficient in ordering other structural parameters of the canopy (Fig. 4a).
Forests with lower height have greater canopy opening and, conse-
quently, higher vegetation density of the understory (LAIunderstory). The
canopy rugosity was relatively high (~9m) in all strata; therefore, it
does not serve as a good stratification parameter in this case. This
variation of canopy height can be explained by the nature of the forest
type studied, which is predominantly open, scattered with clusters of

dominant trees, clearings of different sizes and succession stages, and
the occurrence of lianas and bamboo in areas with a higher incidence of
light.

The use of ALS in the differentiation of forest patterns is associated
with improved estimations, reduction of prediction errors, and opti-
mization of the sampling effort. In a mixed forest with predominance of
pine and deciduous species, Hawbaker et al. (2009) achieved a 68%
reduction in model prediction error for the variables diameter, basal
area, and biomass when estimating them separately according to strata
created with ALS data. In heterogeneous temperate forests, Heurich and
Thoma (2008) obtained lower RMSE values for basal area and volume
estimates (~15%) when estimating by stratified forest inventory using
ALS, compared to non-stratified population estimates (30%).

Besides the improvement in the estimates, the stratification allows
the reduction in the number of plots needed to capture the forest var-
iation gradient, which allows sampling intensity to be decreased. In a
mixed forest of pine and deciduous trees, McRoberts, Chen and Walters

Fig. 4. (a) Biplot of PCA from 100×100 cells grouped into four segments (colors); (b) LAD profile; (c) Canopy Height Model in a 1-ha cell selected at each stratum;
(d) cloud of cell points selected within each stratum. In (c, d), the average canopy height plot was selected as an example. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimation of reduction in number of plots (N) and sampling intensity (%) for stratified inventory in k strata, for plots sizing 1, 0.5 and 0.25 ha. * Number of segments
selected by the Elbow method. ** Number of segments with no significant difference in at least one pair of segments. NA: not available due to N < 2.

Plot size Simulation k2 k3 k4 * k5 k6 k7**

N % N % N % N % N % N %

100×100m (1 ha) Stratified 34 4.7 30 4.1 27 3.7 25 3.5 NA NA
Randon 46 6.4 46 6.4 46 6.4 46 6.4
REDUCTION 26% 35% 41% 46%

70×70m (0.5 ha) Stratified 53 3.5 45 3.0 44 2.9 42 2.8 NA NA
Randon 76 5.1 76 5.1 76 5.1 76 5.1
REDUCTION 30% 41% 42% 45%

50×50m (0.25 ha) Stratified 89 3.0 80 2.7 75 2.5 69 2.3 67 2.2 67 2.2
Randon 112 4.0 121 4.0 122 4.0 121 4.0 120 4.0 119 3.9
REDUCTION 27% 33.90% 38.50% 43% 44.20% 43.70%
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(2017) were able to reduce sampling intensity by up to 35% without
losing accuracy in the estimators, based on stratification with canopy
height metrics obtained from ALS. In the present study, there was a
reduction of the sample intensity because the population was grouped
in a larger number of strata (up to k=6), varying from 26 to 46% of
relative gains.

As for the size of the plots, we found that the reduction in sampling
intensity for the stratified inventory was higher for 0.5-ha plots, with
the exception of k=5. However, in terms of area, plots of 1-ha had a
higher gain (3.7% or 19 ha) when compared to the other two plot sizes:
0.5 ha (2.9% or 16 ha) and 0.25 ha (2.5% or 12 ha). Another advantage
of the 1-ha plot is that it better captures the gradient of vegetation
variation with a lower number of field samples.

The benefits of stratification include reduced effort and economic
gains, because the amount of plot sampling for effective inventory and
monitoring is reduced. McRoberts, Gobakken and Næsset (2012) com-
pared the cost of ALS overflight to the cost of the field sampling and
found that sample intensity needed to be increased by 50% to achieve
the same reduction of the variance obtained from the ALS-enabled
stratified inventory approach. The total costs were very similar, but the
authors emphasize that the investment in the laser survey generates
other benefits, such as the DTM. ALS also offers the capacity of ecolo-
gical analysis of a variety of factors relevant to forest monitoring and
management (Lefsky et al., 2002; Yu et al., 2011; Vastaranta, 2012;
Ferraz et al., 2016; Silva et al., 2016). Analogously to McRoberts,
Gobakken and Næsset (2012), we can discuss the expected reduction in

cost that would result from our approach in the Acre Embrapa forest
using approximate values obtained from consultation with specialized
companies that provide ALS overflight services and forest inventory in
the Amazon region. For purposes of example, with the costs of the ALS
flight at US $ 33.00 ha−1, and the costs of surveying forest inventory
plots (including trees with DBH≥ 10 cm) at US $ 1500.00 ha−1, then
we can calculate the expected cost of plot sampling with the savings
made by reducing effort. Then, given the difference between the
number of plots of the stratified inventory and the simple random
sampling inventory was 19 plots of 1 ha, the saved costs reach ap-
proximately US $ 28,500.00 for installation and measurement. This is
41% of the total cost of the estimated sampling without stratification
(i.e., US $69,000.00). This value of savings is slightly higher than the
total cost of ALS, estimated at US $ 26,400.00 for the total area over-
flown in this work.

In addition to the reduction of the sampling intensity resulting from
the stratification, the information on vegetation structure provided by
ALS has many advantages for the management of tropical forests. It
offers the possibility of generating volumetric maps that can assist in
the planning of harvest units, the identification of clearings and areas of
low potential for timber, monitoring of volumetric growth and forest
biomass after harvesting activities, and survey information that opti-
mizes harvesting operations in the field, such as the modeling of terrain,
watercourses and vegetation density in the understory. Since ALS can
measure and estimate important structural attributes significant to
forest management, it is a powerful tool for decision-making in

Fig. 5. Computational simulation of stratified inventory in four segments (k=4) (blue) versus completely randomized (red) for three sizes of plots: (a) 100× 100m;
(b) 70× 70m; and (c) 50× 50m. The upper and lower confidence limits were set for alpha= 0.05.
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management actions (Wulder et al., 2012), which may amplify its re-
turn on investment beyond efficiency gains from sampling stratifica-
tion. Furthermore, NASA’s Global Ecosystem Dynamics Investigation
(GEDI), a recently operational spaceborne lidar system, is already on
board the international space station and collecting 25-m diameter
footprint measurements of canopy structure attributes. GEDI could thus
be an alternative dataset for reducing field sampling efforts and land-
scape monitoring in tropical forests. This could be especially true if, by
combining GEDI with other remote sensing data, such as Landsat or
TanDEM-X InSAR data, spatially-continuous maps of canopy structural
attributes can be derived at a similar spatial resolution to the one em-
ployed in our study (e.g. Qi et al., 2019).

5. Conclusion

The average height of the forest canopy, obtained by the ALS fly-
over, was a good predictor of the variation of basal area of trees with
timber potential (DBH≥ 40 cm) in open - type primary forests with
palm, bamboo and dense forest portions. The remote airborne lidar
sensor was efficient for planning the forest inventory, allowing for
stratification of sampling effort to be equal across forest types (no
matter their frequency on the landscape), reducing the number of
sample units by 41%, from 46 to 27 (1-ha plots with 4 strata, i.e, ve-
getation types). Stratification also offered a reduction of the sampling
intensity in inventories with plots sizing 0.5 and 0.25 ha, but with
smaller sampling area and greater number of field plots. The results of
the use of ALS in areas of primary forest subject to forest management
in the Amazon have great advantages, considering the high costs and
efforts made to carry out a diagnostic inventory in the field. In addition,
ALS generates strategic information for the planning of logging and
conservation of the forest landscape.
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