

PULVERIZAÇÃO FOLIAR DE CAULIM EM PLANTAS DE MAMOEIRO SOB CONDIÇÃO DE DEFICIT HÍDRICO NO SOLO

DAMIANA LIMA BARROS¹; EUGENIO FERREIRA COELHO²; <u>SAULO COLONNEZI DE O.</u> RAMALHO³; LENILSON WISNER FERREIRA LIMA⁴; RAFAEL LIMA DE OLIVEIRA⁵

INTRODUÇÃO

A cultura do mamoeiro tem se destacado fortemente na economia de muitos países. O Brasil, por exemplo, é o segundo maior produtor desta fruta e vem aumentando as áreas de cultivo para atender a demanda do mercado externo e interno (CARVALHO et al., 2019). Nos últimos três anos, no Brasil, foi muito difícil manter a produtividade por conta da ocorrência de eventos climáticos extremos tais como elevadas temperaturas do ar e escassez de chuva (CARVALHO et al., 2019).

O mamoeiro é uma planta de metabolismo C₃ muito sensível as variações nas condições climáticas, as quais também influenciam diretamente no processo de transpiração. O déficit de pressão de vapor (DPV) do ar é um dos principais fatores que provoca alterações no processo de transpiração do mamoeiro. Assim como o teor de umidade do solo que gera um gradiente de potencial entre o mesmo, a planta e a atmosfera (RODRIGUES et al., 2011). A condutância estomática é um bom indicador das condições fisiológicas da planta pois é proporcional a transpiração desta. Além disso, a transpiração é um processo necessário mas que gera grandes perdas de água durante o mesmo para que a planta possa produzir potencialmente. Atualmente, temse buscado técnicas que aumentem a eficiência do uso da água pela cultura como é o caso das tecnologias dos filmes de partículas.

A tecnologia dos filmes de partículas vem sendo utilizada no sentido de aumentar a eficiência de uso da água pelas culturas. Entre os produtos utilizados está o caulim que é um silicato de alumínio hidratado cujo principal constituinte é a caulinita. É um material refletor que pode diminuir a temperatura da folha resultando em menor transpiração e maior eficiência de uso da água (MOFTAH e AL-HUMAID, 2005).

Portanto, este estudo teve por objetivo avaliar o efeito de diferentes concentrações de caulim e DPV do ar na condutância estomática e na temperatura foliar do mamoeiro, sob déficit hídrico.

- 1. Universidade Federal do Recôncavo da Bahia. Email: damibarros@hotmail.com
- 2. Instituição de Pesquisa EMBRAPA Mandioca e Fruticultura. Email: eugenio.coelho@embrapa.br
- 3. Universidade Federal do Recôncavo da Bahia. Email: saulo_colonnezi@hotmail.com
- 4. Universidade Federal do Recôncavo da Bahia. Email: lenilsonlimaagro@gmail.com
- 5. Universidade Federal do Recôncavo da Bahia. Email: rafael82lima82@gmail.com

MATERIAL E MÉTODOS

O estudo foi realizado com a cultura do mamão, Tainung n1, em lisímetros de drenagem instalados no campo experimental da Embrapa Mandioca e Fruticultura, Cruz das Almas - Bahia ("12° 48'S, 39° 06" W, 225 m), cujo clima é classificado como úmido a sub-úmido com 1.143 mm de chuva por ano. O delineamento experimental foi o inteiramente casualizado com quatro repetições. Em esquema fatorial 5 x 4: cinco concentrações de caulim (0, 20, 40, 60 e 80 g L⁻¹) e quatro valores de DPV ar (2,22; 2,36; 2,64; e 2,68 kPa). Para obtenção desses valores do DPV ar nos períodos de avaliação, foram utilizadas as equações 1 e 2 (JONES, 1992).

$$= 0.6113 * 1 - --- eq. (1)$$

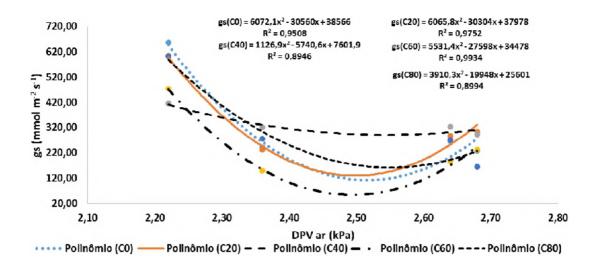
Em que,

DPV ar é o déficit de pressão de vapor do ar (kPa); UR é a umidade relativa do ar (%) e t é um parâmetro adimensional calculado pela equação 2.

Em que,

T_{ar} é a temperatura do ar no momento da avaliação (°C).

As variáveis climatológicas foram obtidas nos dados da estação automática de Cruz das Almas –BA, pelo site do INMET.


A calda foi preparada e aplicada na copa das plantas com auxílio de pulverizador costal, com capacidade para 20 L, até o ponto de escorrimento para garantir uniformidade de distribuição nas folhas. Foram realizadas medições da condutância estomática (gs) e a temperatura foliar (Tf), utilizando-se um porômetro (DECAGON®) modelo SC-1. No período de avaliação, as plantas de mamão estavam na fase de florescimento com altura média de 1,2 m, diâmetro médio de 0,1 m e área foliar média de 3,3 m². O teor de umidade do solo foi fixado no ponto de murcha (0,2157 cm³ cm⁻³) por meio do monitoramento com sensores de TDR.

Os valores obtidos em função dos tratamentos foram comparados mediante análise de regressão, utilizando-se o software Sisvar (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

A análise de variância mostrou que apenas o DPV do ar teve efeito sobre a condutância estomática e a temperatura foliar do mamoeiro. A condutância estomática do mamoeiro pulverizado com caulim nas concentrações de 0, 20, 60 e 80 mg L⁻¹ teve efeito significativo dos diferentes DPV do ar. Como mostra a figura 1, a condutância estomática do mamoeiro sob pulverização foliar com

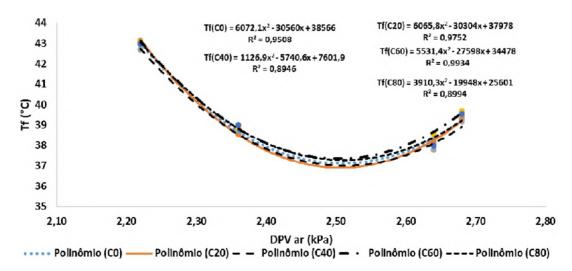

caulim a 40 mg L⁻¹ não sofreu efeito do DPV do ar. Para a concentração de 60 mg L⁻¹de caulim, a condutância estomática do mamoeiro se apresentou com valores menores, de um modo geral.

Figura 1. Condutância estomática do mamoeiro, em função do déficit de pressão de vapor do ar, pulverizado com diferentes concentrações de caulim.

A condutância estomática do mamoeiro diminuiu em função do DPV do ar até o valor estimado em 2,5 kPa, com valor de 71 mmol m⁻² s⁻¹. Esse comportamento discorda de alguns trabalhos que mostraram uma relação linear crescente da *gs* em função do DPV do ar (RODRIGUES et al., 2011; MACHADO FILHO et al., 2006). Isso pode ser explicado pela adaptação das plantas as condições impostas de déficit hídrico e pulverização foliar.

As plantas de mamão tiveram a temperatura foliar influenciada pelo DPV do ar para todas as condições de pulverização com caulim (Figura 2).

Figura 2. Temperatura foliar do mamoeiro, em função do DPV do ar, pulverizado com diferentes concentrações de caulim.

O comportamento da temperatura foliar em função do DPV do ar foi semelhante ao comportamento da gs. Houve uma redução na temperatura foliar até o valor de DPV do ar de 2,5

kPa, sendo 37 °C, aproximadamente. Mesmo sem efeito significativo, o caulim pode atuar na redução da temperatura foliar por refletir a luz solar incidente sobre a folha alterando o mecanismo da abertura estomática. Essa condição permite aumentar a eficiência de uso da água pela cultura em condições de déficit hídrico no solo. É possível que o efeito do caulim tenha sido comprometido, nesse estudo, devido o conteúdo de água no solo se encontrar no ponto de murcha permanente.

CONCLUSÕES

As diferentes concentrações de caulim não influenciaram na temperatura foliar e nem na condutância estomática da cultura do mamoeiro;

Os diferentes DPV do ar tiveram efeito na condutância estomática e na temperatura foliar do mamoeiro.

AGRADECIMENTOS

À FAPESB pelo apoio através das bolsas de estudo; À EMPRAPA Mandioca e Fruticultura pela estrutura utilizada no estudo; Ao PPGEA da Universidade Federal do Reconcavo da Bahia pelo suporte.

REFERÊNCIAS

CARVALHO, C. de et al. **Anuário brasileiro da fruticultura 2018-2019** / Cleonice de Carvalho ... [et al.]. – Santa Cruz do Sul: Editora Gazeta Santa Cruz, 2019. 50 p.

JONES, H. G. Plants and microclimate: a quantitative approach to environmental plant physiology. 2. ed. Cambridge: Cambridge University Press, 1992. 85p.

MACHADO FILHO, J. A.; CAMPOSTRINI, E.; YAMANISHI, O. K.; FAGUNDES, G. R. Variação sazonal das trocas gasosas em folhas de mamoeiro cultivado em condições de campo. Bragantia, v. 65, n. 2, p. 185-196, 2006.

MOFTAH, A.E., Al-HUMAID, A.R.I. Effects of antitranspirants on water relations and photosynthetic rate of cultivated tropical plant (Polianthestuberosa L.). **Pol. J. Ecol.** 53 (20), 165–175. 2005.

RODRIGUES, H. J. B.; COSTA, R, F.; RIBEIRO, J. B. M.; SOUZA FILHO, J. D. C; RUIVO, M. de L. P.; SILVA JÚNIOR, J. de A. Variabilidade sazonal da condutância estomática em um ecossistema demanguezal amazônico e suas relações com variáveis meteorológicas. **Revista Brasileira de Meteorologia**, v.26, n.2, 189 - 196, 2011.