

XIX CONGRESSO NACIONAL I CONGRESSO INTERNACIONAL

O futuro mercado de suínos, fundamentado pela ciência e pelo conhecimento.

SANIDADE

Uso da citometria de fluxo para a avaliação da fagocitose produzida por uma vacina de mucosa contra *Salmonella* sp. em suínos

Use of flow cytometry for the evaluation of phagocytosis produced by a mucosal vaccine against Salmonella sp. in swine

Caroline Reichen^{1*}, Diogenes Dezen1, Mariana Meneguzzi¹, Jalusa Deon Kich²

Introdução

A imunidade inata, mediada por neutrófilos e macrófagos (células que são a ponte entre a imunidade inata e adaptativa) e a imunidade celular desempenham um papel importante na proteção contra Salmonella sp. (Haesebrouck et al., 2004; Arguello et al., 2012). Neutrófilos e macrófagos são responsáveis pela fagocitose, a qual permite a eliminação dos agentes invasores e a apresentação de antígenos estranhos ao sistema imune (Janeway et al., 2001). O objetivo desta pesquisa foi avaliar a capacidade fagocítica produzida por uma vacina de subunidade, baseada em antígenos secundários. Uma sequência genética comum para todas as espécies de Salmonella sp. foi clonada em um plasmídeo de expressão, e inserido em Bacillus subtilis, que produziu subunidades (peptídeos) que foram incorporadas por micropartículas, compondo uma vacina de mucosa.

Material e métodos

O experimento foi realizado em 16 crechários, sendo 8 vacinados (grupo vacinado - GV) e 8 controles (grupo controle - GC). Um total de 15.655 animais receberam a vacina de mucosa via água de bebida, na dosagem de 2 ml/animal. A primeira dose foi no segundo dia de alojamento do animal na creche e a segunda 15 dias após a primeira. No terceiro dia após a segunda dose da vacina, coletou-se sangue com anticoagulante (heparina) de 32 animais por grupo.

A capacidade fagocítica foi avaliada após a extração das células mononucleares do sangue periférico (PBMC), através da separação das células do sangue em Histopaque (sigma). O sangue total foi diluído 1:1 com água peptonada tamponada (APT), adicionado sobre o mesmo volume de Histopaque e centrifugado a 400 × g por 30 min. A camada de PBMC foi coletada e as células foram contadas. Para 106 leucócitos, 1 µl de pHrodo (Invitrogen) foi adicionado. Este conjunto

¹ Instituto Federal Catarienese (IFC- Concórdia)

² Embrapa Suínos e Aves - Concórdia

foi incubado a 37 °C por 30 min. A quantidade de células que fagocitaram, o reagente e a intensidade de fagocitose foram medidos em comprimento de onda de 488 nm em citômetro FACS Calibur (BD), com excitação da fluorescência por laser de argônio. Para a análise estatística foram feitos testes t ou de Mann-Whitney entre os grupos (p < 0,05). Para análise dos gráficos, em que todas as amostras estão apresentadas em conjunto, usou-se o teste de ANOVA de duas vias.

Resultados e discussão

A intensidade da fagocitose dos monócitos fagocíticos foi alterada pela vacinação (p = 0,067). A ativação de células apresentadoras de antígenos é crucial para a produção de respostas imunes adaptativas eficientes e prolongadas. Ao estimular a fagocitose por monócitos no presente estudo, a vacina demonstra que tem o potencial de induzir respostas adaptativas adequadas (Thiele et al., 2002). O estímulo de respostas imunes inatas, como a fagocitose, pode ser um mecanismo secundário de proteção conferido pela vacina. Em alguns casos, a imunização pode induzir proteção inespecífica, ou seja, a vacina auxilia na proteção contra patógenos diferentes daqueles para o qual ela foi desenvolvida. O estímulo à fagocitose tem este potencial (Kleinnijenhuis et al., 2012).

Conclusão

Ao avaliar todas as granjas conjuntamente, foi encontrado aumento na capacidade fagocítica de monócitos no grupo de animais que receberam, via água de bebida, a vacina de mucosa contra *Salmonella* sp.

Referências

Arguello H et al. Salmonella Control Measures at Farm in Swine Production. In: Bassam AA, Gutler JB (Eds.). Salmonella-Distribution, Adaptation, Control Measures and Molecular Technologies. Londres: IntechOpen; 2012.

Haesebrouck F et al. Efficacy of vaccines against bacterial diseases in swine: what can we expect? Veterinary Microbiology. 2004;100:255-68.

Janeway C et al.Immunobiology. New York: Garland Science; 2001.

Kleinnijenhuis J et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci. 2012;109:17537-42.

Thiele L et al. Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expert Rev Vaccines. 2002;1:215-26.