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Development and Uncertainty 
Assessment of Pedotransfer Functions 
for Predicting Water Contents 
at Specific Pressure Heads
Ali Mehmandoost Kotlar,* Quirijn de Jong van Lier, 
Alexandre Hugo C. Barros, Bo V. Iversen, and Harry Vereecken
There has been much effort to improve the performance of pedotransfer func-
tions (PTFs) using intelligent algorithms, but the issue of covariate shift, i.e., 
different probability distributions in training and testing datasets, and its impact 
on prediction uncertainty of PTFs has been rarely addressed. The common 
practice in PTF generation is to randomly separate the dataset into training and 
testing subsets, and the outcomes of this random selection may be different if 
the process is subject to covariate shift. We evaluated the impact of covariate 
shift generated by data shuffling and detected by Kolmogorov–Smirnov test for 
the prediction of water contents using soil databases from Denmark and Brazil. 
The soil water contents at different pressure heads were predicted by developing 
linear and stepwise regression besides machine learning based PTFs including 
Gaussian process regression and ensemble method. Regression based PTFs for 
the Brazilian dataset resulted in better predictions compared with machine learn-
ing methods, which in their turn estimated high water contents in Danish soils 
more accurately. One hundred PTFs were developed for water content at specific 
pressure heads by data shuffling. From these, 100 sets of fitted van Genuchten 
parameters were obtained representing the generated uncertainty. Data shuf-
fling led to covariate shift, resulting in uncertainty in water content prediction by 
the PTFs. Inherent variability of data may lead to increased prediction uncertainty. 
For correlated data, simple regression models performed as good as sophisti-
cated machine learning methods. Using PTF-predicted water contents for van 
Genuchten retention parameter fitting may lead to a high uncertainty.

Abbreviations: BD, bulk density; ENS, ensemble regression with bagging aggregation; GP, Gaussian pro-
cess; LM, linear model; OM, organic matter; PTF, pedotransfer function; SLM, stepwise linear model.

Pedotransfer functions (PTFs) correlate more readily available soil characteristics 
such as texture, particle size fractions, organic matter (OM), and bulk density (BD) to 
properties that are more difficult to measure (Bouma, 1989). Pedotransfer functions to pre-
dict soil hydraulic properties, especially soil water retention, are among the most frequently 
used. These functions are used in the simulation of soil processes across scales and in land 
surface and Earth system models and may be an interesting alternative to direct measure-
ments (McBratney et al., 2002; Van Looy et al., 2017). Although these PTF-based indirect 
estimations significantly reduce experimental cost and time, they introduce uncertainty 
in simulations of soil processes.

Pedotransfer functions are developed using some kind of statistical fitting procedure. 
Regression-based PTFs for the prediction of water content q as a function of pressure head 
h using particle size fractions, OM content, and BD were developed initially by Gupta and 
Larson (1979) and Rawls et al. (1982) using data from the United States. Similar func-
tions were developed and tested later by Minasny et al. (1999), Tomasella et al. (2000), 
and Børgesen et al. (2008) for soils from New Zealand, Brazil, and Denmark, respec-
tively. Further developments beyond the classical regression analysis include techniques 
like artificial neural networks (Schaap and Leij, 1998a, 1998b; Minasny and McBratney, 
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2002; Merdun et al., 2006; Baker and Ellison, 2008; Campos de 
Oliveira et al., 2017; D’Emilio et al., 2018), pattern recognition 
based methods including support vector machine (Nemes et al., 
2006; Lamorski et al., 2008; Khlosi et al., 2016), Gaussian process 
regression (Kotlar et al., 2019b), and the ensemble approach (Baker 
and Ellison, 2008; Cichota et al., 2013; Liao et al., 2015), all of 
which contributed to the improvement of PTF performance in 
predicting soil hydraulic properties.

Based on a measured dataset and statistically derived, the 
uncertainty of PTFs when extrapolated to other regions, climates, 
or soil types is hard to assess. Several studies (Schaap and Leij, 
1998a; Guber et al., 2006; Pachepsky and Rawls, 2004; Patil and 
Singh, 2016) showed that PTFs are strongly dependent on location, 
and it has therefore been recommended to apply PTFs calibrated 
on small local datasets rather than using PTFs that were devel-
oped on datasets from other regions. There is still need for concern 
regarding the inability of PTFs to be extrapolated (Tranter et al., 
2009). Nevertheless, this kind of extrapolation is common practice 
in regions or countries with a lack of measured soil hydraulic data 
(Nemes et al., 2009), using widely accepted PTFs such as Rosetta 
(Schaap et al., 2001).

The quantification of uncertainty in PTFs is important, 
especially when the output is used in water balance simulations 
(McBratney et al., 2002; Deng et al., 2009). According to the 
principles given by McBratney et al. (2002), PTF uncertainty 
should be quantified and the PTF with minimum variance 
should be used among the available sets of PTFs for a specific 
target. Previous studies have addressed the issue of uncertainty in 
PTFs such as using bootstrapping (Efron and Tibshirani, 1994) 
to analyze modeling uncertainty when developing PTFs (Schaap 
and Leij, 1998b; Ye et al., 2007) and evaluating the uncertainty 
due to measurement errors in input variables (Minasny et al., 
1999; Chirico et al., 2010). The issue of uncertainty in PTFs 
becomes more important for those regions where data for PTF 
development are rare and globally accepted PTFs are applied to 
obtain hydraulic parameters when the probable outcome uncer-
tainty would be propagated into hydrological models. Given 
protocols to determine the similarity between calibrated data 
and the target of interest with PTF developments by Tranter 
et al. (2009, 2010) for cation exchange capacity and the wilting 
point were based on metric distance and fuzzy k-means to remove 
such barriers.

A common assumption in the development of PTFs using 
supervised learning algorithms is that data for training and testing 
present the same statistical properties and frequency distribution. 
In practice, however, this may not be the case and a single probabil-
ity distribution function is not capable of describing the collected 
data. The difference between the frequency distribution of the 
training and testing datasets, called covariate shift (Sugiyama, 
2012), may lead to biased models with a low generalizability of 
the results (Bishop, 2006; Chung et al., 2018).

To assess the uncertainty of PTFs under covariate shift, the 
whole dataset can be rearranged in advance using Monte Carlo 
shuffling to select training and testing subsets (Schaap and Leij, 
1998b). Pedotransfer functions can then be developed on each 
shuffled dataset and analyzed in terms of the uncertainty of their 
prediction capability. This random sampling of training and test-
ing datasets has been addressed in a few studies such as Zhao et al. 
(2016, 2017), who demonstrated a higher uncertainty in artificial 
neural network PTFs for the prediction of saturated hydraulic 
conductivity as shown by highly scattered RMSE values obtained 
from 400 random samplings. Similarly, Jarvis et al. (2013) found 
a significant range of the bootstrapped normalized model coef-
ficients for the prediction of saturated hydraulic conductivity.

The general objective of this study was to contribute to the 
evaluation of PTF development techniques and their performance. 
To do so, our specific objectives were (i) to develop and compare 
simple regression and complex machine learning based techniques 
to develop a PTF-q(h) for the prediction of water content at spe-
cific pressure heads for soils from Denmark and Brazil, (ii) assess 
the relative importance of predictors in machine learning based 
PTFs if machine learning methods perform better than simple 
methods, (iii) investigate the uncertainty of PTFs under the effect 
of differently distributed training and testing datasets, and (iv) 
assess the effect of uncertainty in estimated water contents on 
fitted van Genuchten (1980) parameters.

 6Material and Methods
Soil Datasets

Data from samples collected in the northeastern region of 
Brazil (Brazil-NE, Fig. 1a) were retrieved from Barros et al. (2013) 
and a dataset of Embrapa, the Brazilian Agricultural Research 
Corporation. The database comprised 838 samples with water 

Fig. 1. Location of sample sites for water reten-
tion (Brazil-NE and Denmark datasets).
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contents determined at −0.6, −1, −3, −5, −10, −20, and −150 m 
pressure head (q0.6, q1, q3, q5, q10, q20, q150, respectively), particle 
size fractions (sand, silt, and clay contents), OM, and BD.

Soil data from a temperate region were obtained from a 
Danish database containing 186 samples (Fig. 1b), mostly collected 
from the Jutland peninsula, western Denmark (Iversen et al., 2011; 
Børgesen and Schaap, 2005), containing similar information but 
with water contents at only four pressure heads: −0.1, −1, −10, 
and −150 m (q0.1, q1, q10, and q150, respectively). In both datasets, 
particle size was classified according to the USDA Soil Taxonomy 
as clay (<0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2 mm). 
The saturated water content (qs) was considered equal to the total 
porosity and was calculated from BD and particle density (assumed 
equal to 2.65 g cm−3).

Model Description
Covariate Shift and Development 
of Pedotransfer Functions

For each dataset (Denmark and Brazil-NE), regression and 
machine learning based PTFs were developed for estimating water 
contents at the available pressure heads. The training dataset com-
prised 70% of data randomly allocated; the remaining 30% were the 
testing dataset. The presence of covariate shift, when the training and 
testing dataset have different statistical distributions, was tested by 
randomly shuffling the data and reallocating them 100 times among 
the training and testing sets. For each random shuffle, a PTF for each 
pressure head was developed based on the resulting training set. The 
statistical properties of the training and testing stages were compared 
for each shuffle by graphically representing the correlation between 
mean and variance values of the training and testing data and by per-
forming a Kolmogorov–Smirnov test to explore whether training and 
testing datasets presented the same frequency distributions.

Regression methods used to develop PTFs included two more 
common simple methods (the linear model [LM] and the stepwise 
linear model [SLM]), and two more complex machine learning 
methods: Gaussian process (GP) regression and ensemble regres-
sion with bagging aggregation (ENS).

In the LM, all predictor variables are fitted at once. The SLM 
adds predictors one by one and computes the p value of an F statis-
tic to add or remove potential variables; the final model is obtained 
when no single step improves the model.

In Gaussian process (GP) regression, nearest neighbors are used 
by considering the distance between them based on a covariance (or 
kernel) function. The closeness or similarity between two points 
(distance) is given by kernel functions (Rasmussen and Williams, 
2006). Kernel similarities between a test point and each point of the 
training data are found to predict the target of the test point, thus 
kernel values of far-away points tend to zero (Kotlar et al., 2019b). In 
mathematical form, GP regression can be represented as
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ts trs ts
GP 0,

K KY
Y K K
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  [1]

where Ytr and Yts are training and testing targets (e.g., water con-
tents) and Ktr, Kts, and Ktrs are the covariance of the training data, 
the testing data, and the covariance between the training and test-
ing data, respectively. Considering a Gaussian likelihood function, 
the predictive mean yts for a given test point (xts) is

ts

T 1
ts tr trxy K Y-=K   [2]

where 
ts

T
xK  is the vector with the distances from xts to each train-

ing point. The optimization of kernel parameters and other details 
are given in Kotlar et al. (2019b, 2019c), who successfully applied 
Gaussian regression. The length scale of each predictor extracted 
from its squared exponential kernel function shows the weight or 
importance of the respective predictor in the prediction by a GP 
PTF. The relative importance of each predictor is computed by 
dividing each predictor importance by the sum of the importance 
of all the predictors.

The ENS is based on the aggregation of results from multiple 
learning algorithms (decision tree or weak learners) into a robust 
ensemble predictor (Zhang and Ma, 2012). The bootstrap aggre-
gation (bagging) algorithm generally forms deep trees with less 
concern about overfitting (Møller et al., 2018). The relative impor-
tance of each predictor in random forest is obtained by summing 
the changes in the errors due to each split and dividing the sum by 
the number of branch nodes.

Water Retention Fitting
After obtaining 100 PTFs for each development technique as 

described above, water contents q0.6, q1, q3, q5, q10, q20 and q150 for 
Brazil-NE and q0.1, q1, q10 and q150 for Denmark, corresponding 
to the respective pressure heads, were obtained using the best of 
the developed PTFs among the LM, SLM, GP, and ENS methods. 
Water content predictions were fitted to the van Genuchten (1980) 
equation, using the RETC software (van Genuchten et al., 1991):
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where Se is the effective saturation, q s and qr are saturated and 
residual volumetric water contents, respectively, a (m−1) is a 
scale parameter, and m and n are curve shape parameters, with 
m = 1 − 1/n.

Model Evaluation
The performance of the developed PTFs for predicting the 

target (water content) was evaluated by the root mean square 
error (RMSE), the coefficient of determination R2, representing 
the proportion of the variance in the measured data, and finally 
the Nash–Sutcliffe efficiency (NSE), showing the match between 
observed and predicted values:
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where Yobs and Yest are the measured and PTF-predicted target 
variables (water contents) and obsY  and estY  are the average values 
of the corresponding variables (Krause et al., 2005). Uncertainty 
in the PTF performance was assessed by considering the distribu-
tion of the RMSE obtained from the PTFs developed for each of 
the 100 data shuffles.

 6Results and Discussion
Data Analysis

The soils in the Brazilian and Danish datasets are shown in 
Fig. 2 on a USDA textural triangle. The Danish soils are mainly 
sandy and sandy loam (65% of the samples), and the majority of 
the remaining samples are loamy sands (Fig. 2). The Brazil-NE 
dataset is about 80% sandy clay loam and sandy loam soil samples. 
The remaining 20% mainly consists of loamy sand and clay loam 
samples (Fig. 2).

The descriptive statistics of all soil properties used in PTF 
development are shown in Table 1. The OM content for the 

Danish sites is greater than for the Brazilian soils due to climatic 
conditions (temperate subhumid vs. tropical semiarid) as well as 
their intensive farming background. Bulk density is just slightly 
variable across both datasets, with a coefficient of variation (CV) 
of 10% on average. The spatial variability of OM, water content at 
the wilting point (q150), and clay content are larger for the Danish 

Table 1. Descriptive analysis of soil samples from the Denmark and Brazil-NE datasets.

Soil property Dataset Min. Max. Mean Median CV Kurtosis Skewness

%

Organic matter, kg kg−1 Denmark 0 0.100 0.015 0.008 160 8.02 1.87

Brazil-NE 0 0.027 0.006 0.005 67 6.57 1.66

Sand, kg kg−1 Denmark 0.18 0.97 0.74 0.78 24 2.61 −0.68

Brazil-NE 0.25 0.96 0.64 0.64 22 2.50 −0.26

Clay, kg kg−1 Denmark 0.01 0.42 0.10 0.07 80 4.80 1.42

Brazil-NE 0.02 0.54 0.22 0.22 41 2.67 0.40

Bulk density, Mg m−3 Denmark 1.18 1.99 1.54 1.54 10 2.77 0.23

Brazil-NE 0.73 1.98 1.69 1.70 8 6.50 −0.12

q0.1, m3 m−3 Denmark 0.24 0.51 0.38 0.38 13 2.85 0.07

q0.6, m3 m−3 Brazil-NE 0.10 0.69 0.27 0.27 33 5.09 0.85

q1, m3 m−3 Denmark 0.02 0.43 0.22 0.23 45 2.14 −0.01

Brazil-NE 0.036 0.59 0.21 0.21 38 4.73 0.83

q3, m3 m−3 Brazil-NE 0.014 0.52 0.17 0.17 47 4.94 0.91

q5, m3 m−3 Brazil-NE 0.013 0.50 0.16 0.16 44 5.17 0.96

q10, m3 m−3 Denmark 0.01 0.37 0.14 0.13 57 2.33 0.46

Brazil-NE 0.012 0.47 0.15 0.15 47 4.82 0.88

q20, m3 m−3 Brazil-NE 0.012 0.46 0.14 0.14 50 4.70 0.85

q150, m3 m−3 Denmark 0.00 0.31 0.06 0.04 83 7.29 1.58

Brazil-NE 0.011 0.39 0.11 0.11 45 4.32 0.76

Fig. 2. Soils in the Brazil-NE and Denmark datasets used to develop a 
pedotransfer function PTF-q(h) for the prediction of water content at 
specific pressure heads on a USDA textural triangle.
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soils, with respective CVs of 160, 83, and 80% compared with 67, 
45, and 41% for the Brazilian samples. The skewness is low, except 
for some properties (OM, clay content, and q150). Based on the sen-
sitivity of skewness to extreme values, discussed also by Isaaks and 
Srivastava (1989), we conclude that there is no local distribution of 
soil properties. In general, the median and mean values are almost 
the same, suggesting a normal distribution of the data (Nielsen 
and Wendroth, 2003). In both datasets, OM and clay contents are 
positively skewed while sand content is negatively skewed.

Water contents are typically correlated with texture, OM, 
and BD, and this has been the basis for using regression analysis 
to develop PTFs. Table 2 shows the correlation of the measured 
water contents that are common in both datasets (Brazil-NE and 
Denmark). Significant differences between correlations can be 
observed, for example, in the near-saturated water content (qmin, 
considered as q0.1 for Denmark and as q0.6 for Brazil-NE). Danish 
soils showed qmin to be positively correlated to OM (r = 0.57) and 
negatively to BD (r = −0.48). However, this is not the case for 
soils from Brazil where qmin is significantly correlated only with 
particle size fractions (r = −0.86 with sand content and 0.83 with 
clay content). For Danish soils, the correlation between water con-
tents at higher pressure heads and texture is stronger. A similar 
observation can be made for the soils in Brazil-NE. Clay particles 
are associated with small pore diameters and a large surface area, 
leading to an increase in water adsorption (Martin, 1962). Clay is 
therefore a very good predictor for water contents in the drier part 
of the soil moisture retention range. A positive correlation between 
OM and drier water contents can be observed for the Danish soils.

Covariate Shift Detection
Covariate shift, one of the common biases in data when train-

ing and testing datasets present different distributions (different 
means and variances), as assessed by shuffling the data and ran-
domly selecting the training set, resulted in 100 PTFs. The mean 
and variance of predictors (OM, sand content, clay content, and BD) 
for the 100 random repetitions are shown in Fig. 3 for the Danish 
soils. Scattering in mean and variance values suggests the existence 
of covariate shift in predictors during the PTF development. This 
procedure was implemented for the dataset Brazil-NE as well.

To test for covariate shift, the two-sample Kolmogorov–
Smirnov test was applied. This test assesses the equality of two 

probability distribution functions considering the null hypothesis 
(H0), which confirms that the distributions originate from the 
same probability distribution function, contrary to the alternative 
hypothesis (H1). Furthermore, Kolmogorov–Smirnov describes 
the difference between either the mean value or the variance of 
the two selected samples (Cieslak and Chawla, 2009). Therefore, 
covariate shift in the developed PTFs for both regions can be 
shown to exist by assessing the probability of the alternative 
hypothesis in all 100 shuffled datasets in PTF predictors OM, 
sand, clay, and BD. Note that the existence of covariate shift in at 
least one of the predictors is enough to result in statistical bias in 
PTF development.

Table 3 shows the mean value and standard deviation of 
the probability of the alternative hypothesis (i.e., covariate shift) 
obtained by Kolmogorov–Smirnov for each predictor used for the 
development of PTFs in both datasets. Each predictor showed a 
probability in the order of 30 to 40% of experiencing covariate 
shift by data shuffling.

Figure 4 shows the distribution of the probability of the occur-
rence of covariate shift in n predictors, with n varying between 
0 (no predictor with covariate shift) and 4 (all predictors—OM, 
sand, clay and BD—with covariate shift) during development of 
PTFs for the Denmark and Brazil-NE datasets. In the vast major-
ity of cases, covariate shift occurred in at least one of the predictors, 
and only about 7 ± 2 (Denmark) and 10 ± 4.5% (Brazil-NE) of 
samples had no covariate shift according to the Kolmogorov–
Smirnov test. About 70% of all sample cases showed covariate shift 
in one or two predictors.

Pedotransfer Function for Water Retention
The random selection of the training datasets induced dif-

ferent distributions in each of the 100 shuff ling repetitions. 
As an example, Fig. 5 shows the uncertainty in the prediction 
of q0.1 and q150 for the Danish soils, representing wet and dry 
conditions, using the four development methods (LM, SLM, 
GP, and ENS).

The performance of all developed PTFs for the prediction of 
q0.1 and q150 in terms of RMSE varied significantly due to varia-
tion in the training and testing sample distributions (Fig. 5). For 
near-saturated water content (q0.1), the ENS-PTF was the best 
PTF, as the RMSE varied between 0.030 and 0.055 m3 m−3 with 

Table 2. Pearson correlation analysis between water retention at the pressure head near saturation (qmin), and at pressure heads of −1 m (q1), −10 m 
(q10), and −150 m (q150) with organic matter (OM), particle size distribution (clay and sand contents), and bulk density (BD) for the Brazil-NE and 
Denmark datasets.

Soil property

qmin† q1 q10 q150

Brazil-NE Denmark Brazil-NE Denmark Brazil-NE Denmark Brazil-NE Denmark

OM −0.03 0.57 0.01 0.49 0.01 0.40 0.01 0.29

Sand −0.86 0.04 −0.86 −0.76 −0.87 −0.81 −0.87 −0.81

Clay 0.83 −0.15 0.86 0.63 0.88 0.77 0.89 0.85

BD 0.07 −0.48 0.01 −0.20 −0.02 −0.14 −0.02 −0.10

† qmin is the water content at the minimum available tension for each dataset: q0.6 for Brazil-NE and q0.1 for Denmark.
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an average value of 0.041 m3 m−3, followed by the GPR-PTF and 
SLM-PTF, with equal average RMSE values of 0.044 m3 m−3. 
This robust performance of the developed ensemble PTF with a 

low number of predictors is as good as the PTFs presented 
by Børgesen and Schaap (2005), who used seven classes of 
Danish soil texture. However, in case of the ENS-PTF, the 
performance decreased strongly for the testing data, prob-
ably indicating overtraining.

For the wilting point (q150), model complexity did not 
result in better predictions because LM and SLM not only 
had lower RMSE values (0.020 m3 m−3) compared with 
the GP and ENS methods but also less uncertainty. These 
results are comparable with errors obtained from European 
parametric PTFs proposed by Vereecken et al. (1989) and 
Tóth et al. (2015) for the prediction of water content at the 
wilting point, although they included cation exchange capac-
ity among the predictors. The LM-PTF for the prediction 
of q150 with the uncertainty obtained for Danish soils con-
firms the high importance of clay content and OM, as also 
observed by Wösten et al. (2001) and Rawls et al. (2003). It is

( ) ( )
( ) ( )

150 0.65 0.17 OM 0.01 0.02 Sand

0.47 0.06 Clay 0.00 0.02 BD

q = ± - ±

+ ± + ±
         [7]

The observed variability in performance is rooted in 
the variability of the model compartments, i.e., the coef-
ficients of predictors in the LM-PTF and SLM-PTF, such 
as the means and standard deviations shown in Eq. [7], and 
the relative importance of the predictors in the GP-PTF 
and ENS-PTF. Figure 6a shows the variation in the relative 
importance of predictors in the GP-PTF and ENS-PTF 
resulting from the 100 simulations. The distribution of 
the importance of predictors in the GP-PTF is larger than 
in the ENS-PTF for prediction of q0.1, showing that GP 
regression is very sensitive to covariate shift. In GP regres-
sion (Fig. 6a), OM played a more important role in the 
prediction of q0.1 (relative importance of 0.30) than clay 
content and BD (relative importance of 0.25), whereas sand 
content was least important. There is also a substantial 
standard deviation in the relative importance of BD and 
sand content, confirming that the role of these parameters 
in prediction is sensitive to covariate shift.

The ensemble method (ENS) used mainly OM as a 
predictor (Fig. 6b), with a relative importance of 0.47 ± 0.15, 
while the remainder was equally divided among the other three 
predictors. The predictor importance for the wilting point was 
not shown because its best PTF (LM) was already presented 
(Eq. [7]).

For the Brazil-NE dataset, Fig. 7 shows the results for pre-
dicted water contents q0.6 and q150. Due to the strong linear 
correlation between texture and water contents (Table 2), both the 
LM-PTF and SLM-PTF were able to predict q0.6 precisely, with 
RMSE values of 0.040 and 0.036 m3 m−3, respectively. Machine 
learning methods including GP and ENS showed the same per-
formance as LM; however, ENS was overtrained, as shown by the 
disparity between training and testing RMSE values. The PTFs 
developed by Tomasella et al. (2003) for Brazilian soils predicted 

Fig. 3. Scatterplots of the mean and variance of predictors (organic matter [OM], 
sand content, clay content, and bulk density [BD]) used in training and testing 
of 100 data shuffles for soils from Denmark.

Table 3. Kolmogorov–Smirnov statistical test (p value of 0.05) on the 
training and testing datasets for 100 data shuffles for both regions 
(Denmark and Brazil-NE).

Variable

Probability of covariate shift in predictor

Denmark Brazil-NE

———————————— % ————————————

Organic matter 29.6 ± 2.4 33.2 ± 4.4

Sand 37.8 ± 7.8 44.2 ± 5.5

Clay 33.8 ± 4.5 38.2 ± 3.8

Bulk density 29.6 ± 2.4 30.4 ± 4.3
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q0.6 with an RMSE of 0.046 m3 m−3 but require detailed infor-
mation about the particle size distribution (fine and coarse sand 
fractions), which is not always available. The RMSE values of 
0.046 and 0.050 m3 m−3 for the prediction of this water content 

were also obtained by Barros et al. (2013) using soil samples from 
the northeast of Brazil. For sandy and clayey soils from different 
parts of Brazil, da Silva et al. (2017) reported RMSE values of 

Fig. 4. Probability of the number of predictors (organic matter, sand, 
clay, and bulk density) with covariate shift during development of 
pedotransfer functions for the Denmark and Brazil-NE datasets.

Fig. 5. Box-and-whisker plots of RMSE values for water content at 
−0.1 and −150 m pressure heads (q0.1 and q150, respectively) obtained 
from comparison of estimated values from the 100 developed pedo-
transfer functions with the observed values for soils from Denmark 
using four development methods: linear regression (LM), stepwise lin-
ear regression (SLM), Gaussian process regression (GP), and ensemble 
with least square boosting (ENS); subscripts TR and TS refer to the 
training and testing datasets.

Fig. 6. Box-and-whisker plots showing the relative importance of pre-
dictors (organic matter [OM], sand content, clay content, and bulk 
density [BD]) in the pedotransfer functions developed by (a) Gauss-
ian process regression (GP-PTF) and (b) ensemble with least square 
boosting (ENS-PTF) for the prediction of water content at −0.1 m 
pressure head (q0.1) in soils from Denmark obtained from 100 simula-
tions with random selection of the training datasets.

Fig. 7. Box-and-whisker plots of RMSE values for water content at 
−0.6 and −150 m pressure heads (q0.6 and q150, respectively) obtained 
from comparison of estimated values from the 100 developed pedo-
transfer functions for soils from Brazil-NE using four development 
methods: linear regression (LM), stepwise linear regression (SLM), 
Gaussian process regression (GP) and ensemble with least square 
boosting (ENS); subscripts TR and TS refer to the training and test-
ing datasets.
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about 0.030 and 0.050 m3 m−3 obtained by predictions from a 
semi-deterministic PTF.

The GP-PTF was not able to predict the wilting point under 
covariate shift with the same accuracy as the other methods. The 
obtained RMSE of 0.020 m3 m−3 is similar to the results of van 
den Berg et al. (1997) and Barros et al. (2013), who developed 
PTFs for Brazilian soils. The important feature of regression-based 
methods is the similarity of performance prediction between train-
ing and testing stages, a feature not observed in ENS and explained 
by overtraining. Overtraining is revealed by the very low values for 
RMSE using this algorithm—0.012 m3 m−3 on average, while the 
RMSE increased to 0.022 m3 m−3 in the testing phase.

Robust and simple LMs predicting q0.6 and q150 for the 
Brazil-NE dataset were

( ) ( )
( ) ( )

0.6 2.32 0.57 OM 0.27 0.03 Sand

0.47 0.04 Clay 0.19 0.08 BD

q = ± - ±

+ ± + ±
  [8]

( ) ( )
( ) ( )

150 1.66 0.22 OM 0.17 0.02 Sand

0.38 0.02 Clay 0.08 0.01 BD

q = ± - ±

+ ± + ±
  [9]

The greater effect of BD for predicting the water content near satu-
ration, as observed when comparing these equations, was already 
confirmed by Rawls et al. (2003) and Nguyen et al. (2017).

Figure 8a shows a very large variability in the predictors of 
the GP-PTF for q0.6 and suggests that the effect of OM in pre-
diction of this water content can be ignored. However, removal 
of this variable increased the RMSE for the prediction of q0.6 to 
0.044 m3 m−3 in the testing phase. Sand, clay, and BD shared 
the relative importance in prediction of q0.6 at 0.46, 0.28, and 
0.20 on average, respectively. However, this large variability did 
not occur in components of the ENS-PTF (Fig. 8b) when they 
were exposed to covariate shift, and texture-based predictors were 
mainly used to predict q0.6, specifying about 90% of the relative 
importance together. In view of these findings, q0.6 was also pre-
dicted using the ENS-PTF method with only sand and clay as 
predictors. Compared with the models using all the predictors, the 
RMSE increased by 24%. Therefore, in this case, the elimination 
of predictors is not recommended. We did not show these results 
for wilting point prediction where linear models were much more 
accurate than GP and ENS.

The best PTF was identified by comparing R2 and RMSE 
values for each water content in the Denmark and Brazil-NE data-
sets (Table 4). For the Danish dataset, ENS-PTF performed better 
than other algorithms for the prediction of q0.1 and q1. However, 
the prediction of q0.1 was unreliable, with low and largely unstable 
values of R2 ranging between 0.18 to 0.60. Due to the high rela-
tive importance of clay content in the prediction of q150 for the 
Brazilian dataset, LM was the most accurate model, with an RMSE 
of 0.020 m3 m−3 and a small interval of variation of R2.

The SLM-PTF was the best approach with the highest R2 (0.85 
on average) for the prediction of water contents for the Brazil-NE 
soils. Based on these findings, it can be interpreted that simple 
regression-based PTFs perform better than complex machine 

learning models when the intercorrelation of water contents is high. 
These PTFs require less computational effort for simulation.

Figure 9  shows the 100 PTF-generated soil water retention 
curves for four soils of different texture classes from the Danish 
dataset, together with the curve fitted to the measured data and 
the associated van Genuchten (1980) parameters’ probability dis-
tribution functions. The underestimation of q150 in the clay loam 
and sandy clay loam (Fig. 9a and 9b), together with the large vari-
ability due to the random selection of the training dataset yielded 
discrepancies in the van Genuchten parameters (Table 5).

Fig. 8. Box-and-whisker plots showing the relative importance of pre-
dictors (organic matter [OM], sand content, clay content, and bulk 
density [BD]) in the pedotransfer functions developed by (a) Gauss-
ian process regression (GP-PTF) and (b) ensemble with least square 
boosting (ENS-PTF) for the prediction of water content at −0.6 m 
pressure head (q0.6) in soils from northeastern Brazil obtained from 
100 simulations with random selection of the training datasets.

Table 4. Best pedotransfer function (PTF) selected for the prediction 
of water contents at specific pressure heads in Denmark and Brazil 
(NE): ensemble regression with bagging aggregation PTF (ENS), step-
wise linear PTF (SLM), Gaussian regression PTF (GP), and linear PTF 
(LM).

Target† Dataset Best PTF R2 RMSE

m3 m−3 m3 m−3

q0.1
Denmark ENS 0.35 (0.18–0.60)‡ 0.041 (0.030–0.051)

q0.6
Brazil-NE SLM 0.82 (0.68–0.88) 0.036 (0.027–0.054)

q1
Denmark ENS 0.73 (0.45–0.84) 0.051 (0.034–0.073)

Brazil-NE SLM 0.85 (0.71–0.92) 0.031 (0.021–0.046)

q3
Brazil-NE SLM 0.88 (0.70–0.93) 0.026 (0.018–0.046)

q5
Brazil-NE SLM 0.87 (0.76–0.92) 0.026 (0.013–0.046)

q10
Denmark GP 0.73 (0.13–0.93) 0.041 (0.023–0.086)

Brazil-NE SLM 0.86 (0.71–0.95) 0.026 (0.019–0.037)

q20
Brazil-NE SLM 0.86 (0.72–0.95) 0.024 (0.019–0.037)

q150
Denmark SLM 0.72 (0.17–0.91) 0.021 (0.016–0.043)

Brazil-NE LM 0.87 (0.71–0.92) 0.020 (0.015–0.032)

†  q0.1, q0.6, q1, q3,  q5, q10, q20, and q150 are water contents at pressure heads of 
−0.1, −0.6, −1, −3, −5, −10, −20, and −150 m, respectively. 

‡ Range (minimum–maximum) in parentheses.
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Fig. 9. Soil water retention curves for (a) a clay loam, (b) a sandy clay loam, (c) a sandy loam, and (d) a sandy soil from the Danish dataset. Gray lines are 
plotted with 100 simulations from the estimated points with the best pedotransfer functions (PTFs) shown in Table 4, while the red line was fitted from 
measured data. The box plots are related to points predicted from the PTFs. The histograms are related to the respective van Genuchten parameters 
residual water content (qr), a, and n from the simulations.

Table 5. Average van Genuchten parameters† for soils from the Danish dataset for the simulated scenario using the results of 100 soil water retention curves 
fitted to the water contents generated with the best PTFs from Table 4 and for the observed scenario with parameters obtained from measured data.

Soil sample Soil type Scenario qr qs a n

—————————— m3 m−3 —————————— cm−1

a clay loam simulated 0.000 0.456 0.408 (0.232)‡ 1.117 (0.017)
observed 0.000 0.456 0.419 1.098

b sandy clay loam simulated 0.003 0.39 0.421 (0.455) 1.127 (0.078)
observed 0.00 0.40 3.054 1.068

c sandy loam simulated 0.001 (0.002) 0.471 0.107 (0.034) 1.224 (0.023)
observed 0.014 0.476 0.0819 1.300

d sandy simulated 0.034 (0.015) 0.474 0.080 (0.010) 1.494 (0.110)
observed 0.050 0.474 0.064 1.787

† qr, residual water content; qs, saturated water content; a , scale parameter; n, shape parameter.
‡ Standard deviations in parentheses.
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For the clay loam, although the mean a value obtained from 
the PTF and the observed data were similar (0.408 ± 0.232 and 
0.419 cm−1), the standard deviations in scenarios from estimated 
points were high (Table 5). Additionally, there is no specific dis-
tribution for a values (Fig. 9a and 9b).

There are two issues when using PTFs to estimate water 
content in sandy clay loam soils (Fig. 9b). First, all PTFs 
yielded about 10% underestimation for q150. Second, although 
the observed water contents, especially q1 and q10, crossed the 
center of boxes for simulated data (Fig. 9b), longer whiskers for 
each predicted water content were observed. Thus, very dif-
ferent a values (0.421 ± 0.455 cm−1) were fitted using PTF 
predictions compared with the observed data (a = 3.05 cm−1) 

also shown in Table 5. There were large RMSE values and 
negative values of NSE for both soils (Fig. 9a and 9b), where 
the predicted water retention using PTF points explains the 
deficiency of the PTF-generated points for proper estimation 
of the curve.

In sandy loam and sandy soils (Fig. 9c and 9d), the more 
accurate estimation of q0.1, q1, and q10 positively affected the esti-
mation of a (Table 5), but in both cases q150 was underestimated. 
A better estimation of water content for soils with a higher sand 
content was expected because of the larger number of sandy soil 
samples in the dataset, yielding better trained PTFs.

In the same way as for the Danish dataset, the uncertainty 
of the developed PTFs for the Brazil-NE dataset was evaluated. 

Fig. 10. Generated soil water retention curves for (a) a clay, (b) a loamy sand, (c) a sandy clay loam, and (d) a sandy soil from the Brazil-NE dataset. Gray 
lines represent 100 fits obtained from the best pedotransfer functions (PTFs) shown in Table 4, while the red line was fitted to measured data. The box 
plots refer to water contents predicted from the PTFs. The histograms are related to the respective van Genuchten parameters residual water content 
(qr), a, and n from the PTF predictions.
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One hundred retention curves based on PTF predictions of 
the respective water contents were generated for four randomly 
selected soils in the classes clay, loamy sand, sandy clay loam, 
and sandy. The retention curves and respective histograms of 
the van Genuchten parameters are presented in Fig. 10, showing 
less variation in the estimated water contents than in the Danish 
dataset. This result confirms the average low RMSE values of 
water contents predicted by the best PTFs for the Brazilian data-
set: <3% (Table 4).

Due to the poor performance of the PTFs for clay and 
loamy sand soils (Fig. 10a and 10b), not only was the scatter in 
the fitted van Genuchten parameters higher, but there was also 
an increase in RMSE and a decrease in NSE values. For the sandy 
and sandy clay loam (Fig. 10c and 10d), NSE was >0.8. The high-
est obtained a was about 0.3 cm−1 for the clay soil and 0.1 cm−1 
for the loam soil, while the true values from experimental data 
were 0.08 and 0.55 cm−1, respectively (Table 6). In the clay and 
loamy sand soils, fitted values of a were in the range of 0.35 and 
0.06 cm−1, respectively.

Whiskers for the predicted water contents are short, and in 
each texture class, some water contents were predicted with high 
accuracy (Fig. 10c and 10d). This lower variability and accurate 
prediction was reflected in similar retention parameters using a 
PTF or observed data. The large value of NSE (0.8) and RMSE 
values close to zero confirm this, as well as very similar values 
of the van Genuchten parameters as the average of the PTF-
predicted curves and the observed curve (Table 6). For most 
cases, both a and n values are very similar for simulated and 
observed scenarios.

 6Conclusions
In this study, we investigated the effect of covariate shift 

due to random shuffling of the data before PTF development 
on the performance of the PTF. Linear and stepwise regressions 
and machine learning methods including Gaussian process and 

ensemble regression were used to develop PTFs. The methodol-
ogy was applied to water contents at corresponding pressure heads 
using datasets of soils from Denmark and Brazil. The conclusions 
of this study are:
1. Shuffling of data leading to covariate shift results in uncertainty 

in the prediction of water contents by the developed PTFs.
2. Inherent variability of data as observed in the Danish dataset 

may lead to increased prediction uncertainty.
3. For correlated data such as water contents from the Brazil-NE 

dataset, simple regression models performed as well as sophis-
ticated machine learning methods.

4. Using PTF-predicted water contents for water retention curve 
fitting may lead to high uncertainty in the van Genuchten 
parameters.

Data Availability
Data from this study are available through the Dryad Data Repository (Kotlar et 
al., 2019a).
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