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Abstract

Background: Efficient xylose fermentation still demands knowledge regarding xylose catabolism. In this study,
metabolic flux analysis (MFA) and metabolomics were used to improve our understanding of xylose metabolism.
Thus, a stoichiometric model was constructed to simulate the intracellular carbon flux and used to validate the
metabolome data collected within xylose catabolic pathways of non-Saccharomyces xylose utilizing yeasts.

Results: A metabolic flux model was constructed using xylose fermentation data from yeasts Scheffersomyces stipitis,
Spathaspora arborariae, and Spathaspora passalidarum. In total, 39 intracellular metabolic reactions rates were
utilized validating the measurements of 11 intracellular metabolites, acquired by mass spectrometry. Among them,
80% of total metabolites were confirmed with a correlation above 90% when compared to the stoichiometric
model. Among the intracellular metabolites, fructose-6-phosphate, glucose-6-phosphate, ribulose-5-phosphate, and
malate are validated in the three studied yeasts. However, the metabolites phosphoenolpyruvate and pyruvate
could not be confirmed in any yeast. Finally, the three yeasts had the metabolic fluxes from xylose to ethanol
compared. Xylose catabolism occurs at twice-higher flux rates in S. stipitis than S. passalidarum and S. arborariae.
Besides, S. passalidarum present 1.5 times high flux rate in the xylose reductase reaction NADH-dependent than
other two yeasts.

Conclusions: This study demonstrated a novel strategy for metabolome data validation and brought insights about
naturally xylose-fermenting yeasts. S. stipitis and S. passalidarum showed respectively three and twice higher flux
rates of XR with NADH cofactor, reducing the xylitol production when compared to S. arborariae. Besides then, the
higher flux rates directed to pentose phosphate pathway (PPP) and glycolysis pathways resulted in better ethanol
production in S. stipitis and S. passalidarum when compared to S. arborariae.
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Background
Several non-Saccharomyces yeasts capable of naturally
utilize xylose as carbon source have been identified [1–7].
Among them, Scheffersomyces stipitis is one of the most
studied species and the Spathaspora ssp. has attracted at-
tention in recent years [8–10]. The interest in the economic

conversion of this pentose sugar, present in lignocellulosic
biomass, to fuels and chemicals, motivated the study of xy-
lose consumption in novel yeasts [4, 11–13]. However, fully
understand the xylose metabolism is still a challenge to im-
prove the use of this sugar, the second more abundant in
nature, as a carbon source [14]. Therefore, the systems biol-
ogy approach will be useful for the identification of princi-
ples and patterns that characterize the metabolism of
xylose.
Metabolic flux analysis (MFA) is used to estimate the

intracellular fluxes under a defined metabolic network
[15, 16]. It gives insights on how metabolism is balanced,
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that is, how organisms convert substrates into biomass
and chemicals products [1, 17]. Thus, MFA is useful for
the prediction of possible metabolic limitations. It can
contribute to strain engineering towards high yields of
lignocellulosic ethanol production [18–20]. The meta-
bolic networks constructed for MFA, commonly, use the
information available from genome annotation. A set of
enzymatic reactions are identified and converted into a
mathematical model [21]. Several bioinformatics tools
are available to perform MFA. Among them, OptFlux is
an open-source platform that allows in silico simulations
of intracellular carbon fluxes distribution into a defined
metabolic network [22]. The constraint-based flux ana-
lysis, included in the OptFlux platform, establishes a set
of measured extracellular fluxes such as substrate uptake
and products formation rates to determine the carbon
flux distribution [15]. The number of measured fluxes
determines the size of the network. Therefore, a higher
number of measured fluxes results in a more accurate
metabolic network.
The understating of a real state of a cell depends on a set

of analyzes that provides dataset about the genome, tran-
scriptome, proteome, and metabolome [21]. Among those,
the metabolome dataset is advantageous since quantifica-
tion of intracellular metabolites can be directly linked to
the metabolic network reflecting the phenotype of an or-
ganism at that moment [23, 24]. The systems biology ap-
proach, considering the combination of two methods such
as MFA and metabolomics, is a valuable strategy to predict
intracellular metabolic fluxes distribution and to under-
stand the behavior of a given metabolic network.
Nevertheless, the utilization of data from intracellular

metabolite quantification is not routinely incorporated
into MFA due to various technical challenges [18, 25].
Among them, there are the steps of data acquisition,
such as sample preparation and metabolites extraction
[26, 27], which are critical because of the high turnover
rates of intracellular reactions [28]. Then, it needs the
establishment of a sensitive and selective analytical
method for detection and quantification the metabolites
taking into consideration the low concentration of me-
tabolites in a complex biological matrix [26, 28]. Finally,
the amount of data generated demands statistical ana-
lysis so a trustable value can be applied to MFA [29, 30].
Thereby, the purpose of this work was to validate a

dataset of 11 intracellular metabolites of naturally xy-
lose-fermenting yeasts utilizing MFA. Thus, for the first
time, a comparative evaluation of metabolic flux analysis
with addition metabolome data was performed for Schef-
fersomyces stipitis, Spathaspora passalidarum, and
Spathaspora arborariae.
Among them, 80% of total metabolites were confirmed

with a correlation above 90% when compared to the
stoichiometric model. Nevertheless, the metabolites

phosphoenolpyruvate and pyruvate could not be vali-
dated in any studied yeasts. Finally, the three yeasts had
the metabolic fluxes from xylose to ethanol compared.
Xylose catabolism occurs at twice-higher flux rates in S.
stipitis than S. passalidarum and S. arborariae. In yeasts
S. stipitis and S. passalidarum is observed that after the
xylose assimilation reactions, approximately 50% of the
carbon flux rates are directed to pentose phosphate
pathway (PPP) and 50% to glycolysis. Different from S.
arborariae, where first, carbon flux is directed to reac-
tion into oxidative-PPP. Besides, S. passalidarum present
1.5 times high flux rate in the xylose reductase reaction
NADH-dependent than other two yeasts.

Results
MFA for xylose-fermenting yeasts S. stipitis, S. arborariae,
and S. passalidarum
Initially, one stoichiometric model was constructed for S.
stipitis, S. arborariae, and S. passalidarum containing the
xylose catabolism, pentose phosphate pathway, glycolysis,
and tricarboxylic acid cycle. The model has 39 reactions
and 35 metabolites, including the cofactors NAD(P) H,
NAD(P)+, and ATP (Additional files 1, 2 and 3). The dif-
ference between the number of reactions and metabolites
resulted in four degrees of freedom. Table 1 shows the
measured extracellular rates included in the model. Differ-
ent time points were used to calculate the rates because of
the different growth rates between the yeasts. Therefore
all samples were taken at the exponential phase at 28 h,
32 h, and 40 h for S. stipitis, S. arborariae, and S. passali-
darum, respectively (Table 1).
The rates of extracellular metabolite were used as con-

straints to simulate the intracellular carbon flux distribu-
tions in the MFA model (Fig. 1). The xylose consumption
rates of respectives yeasts are represents by a negative sig-
nals. The extracellular xylose consumption rate of S. stipi-
tis is at least twice faster than observed in S. arborariae,
while the S. passalidarum showed 1.5 times faster xylose
consumption rate than S. arborariae.
Among product formation, ethanol was the major me-

tabolite secreted by all the three yeasts evaluated. There-
fore, the respective ethanol measurements rates were
used to validate the intracellular flux simulations. The
correlation between experimentally and calculated rates
for ethanol production were above 90% (Fig. 2). Accord-
ingly, we defined the respective intracellular carbon flux
distributions as a metabolic flux calculated (MFA-calcu-
lated). In other words, the MFA-calculated is the one
that the intracellular carbon flux distribution was simu-
lated utilizing the extracellular rates.
In our analysis of MFA, we can identify that some me-

tabolites influence the flux distribution. For example, the
reactions for conversion the metabolites erythrose-4-phos-
phate and D-Ribulose-5-phosphate are 2.8 and 1.8 times
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lower in S. arborariae (R09 = 0.23) than observed in S. sti-
pitis (R09 = 0.66) and S. passalidarum (R09 = 0.42), re-
spectively. Also, it was found that ethanol production
rates are inversely proportional to glycerol and xylitol me-
tabolites formation.

Metabolomics of S. stipitis, S. arborariae, and S.
passalidarum during growth on xylose as a carbon source
The quantification of the 11 metabolites concentration
(mM) in all studied yeasts is shown in Fig. 3. The analysis
of variance (ANOVA) could corroborate that the metabo-
lome data are within a range of reliability (Additional file
4). The metabolite ACCOA could not be detected only in
S. stipitis but was detected in S. arborariae and S. passali-
darum, indicating that in S. stipitis less carbon was di-
rected into respiratory metabolism. The RU5P (0.04mM)
is twice concentrated than R5P (0.02mM) in both S. stipi-
tis and S. passalidarum. While in S. arborariae, the R5P
concentration (0.01mM) was three times lower than
RU5P (0.04mM). The concentration of S7P is seven times
higher in S. passalidarum than observed in S. stipitis and
S. arborariae. The metabolite E4P was not detected only S
arborariae but was detected in S. stipitis and S. passali-
darum, indicating that E4P may rapidly be converted to
G3P and F6P. The DHAP was about four times lower in
S. arborariae (0.005mM) than observed in S. stipitis
(0.020mM) and S. passalidarum (0.015mM). The metab-
olites G6P (0.05mM), F6P (0.06mM) and PEP (0.06mM)
were at least twice concentrated in S. passalidarum than
observed in S. stipitis (0.02mM, 0.03mM and 0.02mM)
and S. arborariae (0.02mM, 0.03mM and 0.02mM), re-
spectively. The metabolite PYR in S. stipitis (0.10mM) is
five times higher than observed in S. arborariae (0.02

mM) and S. passalidarum (0.02mM). Finally, the concen-
tration of MAL in S. arborariae (0.10mM) was twice and
three times lower than observed in S. stipitis (0.20mM)
and S. passalidarum (0.30mM), respectively (Fig. 3).

Utilization of the NAD(P) H and NAD(P)+ cofactors along
with the metabolic network
The metabolic model constructed contains specific
reaction rates cofactors NAD(P) H – NAD(P)+

dependent. The NADPH/NADP+ ratio is twice
higher in S. stipitis, while in S. arborariae and S.
passalidarum we did not observe differences. The
high NADPH released can influence the higher bio-
mass formation observed in S. stipitis in contrast
with S. arborariae and S. passalidarum. Already the
NAD+/NADH ratio is 2.5 times high in S. arborar-
iae, showing high NAD+ released, which characterize
an unbalance cofactor in this yeast. Among the sim-
ulations of intracellular carbon flux distribution,
some reaction rates caught our attention (Fig. 4).
For example, the reaction rate (R02) that converts
XYL → XOL with NADH-dependent was three times
higher than the reaction rate using NADPH. The re-
action rate G6P + 2NADP → RU5P + 2NADPH (R10)
in S. arborariae was four times higher than observed
in S. stipitis and S. passalidarum. Showing that in
the yeast S. arborariae, there is a higher necessity of
regeneration the NADPH cofactor. Corroborating the
high reaction rate (R01) that use NADPH in reaction
conversion. Besides, the yeast S. passalidarum
showed the reaction rate DHAP + NADH → GROL
+ NAD+ (R15) negative, contrasting with S. stipitis
and S. arborariae. This characteristic in S.

Table 1 Measured extracellular flux rates

Xylose consumption rates [cons] are represent by a negative signal, extracellular product formation [e] (mmol/gCDW.h− 1), Carbon balance (%), and redox balance
(%). The experiments were performed with sample withdraw at the exponential growth phase in biological triplicates
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passalidarum agrees with the absence of glycerol
formation and better cofactors balance. The reac-
tions XYL + NADH → XOL + NAD+ (R02), XOL +
NAD+ → XYLO + NADH (R03), GAP + NAD+ →
PEP + NADH (R16), and ACDH + NADH → ETOH
+ NAD+ (R19) presented the highest rates. Indicating
the importance of cofactor balance. The reaction

rates with negative values indicate reversible
reactions.

Validation of metabolome dataset utilizing MFA
The metabolite quantification was validated using MFA
analysis. For that, the entire metabolome dataset was
added to the MFA-calculated (Fig. 5). The metabolic flux

Fig. 1 Intracellular carbon fluxes distributions during xylose catabolism to ethanol production. S. stipitis (green), S. arborariae (red), and S.
passalidarum (blue). Xylose consumption rates are represented by a negative signal. The first intracellular reaction (xylose to xylitol) shows two
arrows; left represents reaction using NADPH, right represents reaction using NADH cofactor. The extracellular metabolites highlighted in black
boxes had its flux rates used as constraints to the MFA-calculated
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model with metabolome data is defined as an MFA-mea-
sured. First, one metabolite was added per simulation
and compared to the fluxes obtained experimentally in
the MFA-Calculated. In S. stipitis and S. arborariae, ten
intracellular metabolites were quantified and, conse-
quently, ten simulations performed. While in S. passali-
darum, 11 metabolites quantified, which resulted in 11
simulations of carbon flux distribution.
In the yeast S. stipitis, it was observed that from ten me-

tabolites, eight (i.e., 80%) showed a correlation higher than

0.90 between calculated and measured fluxes (Additional file
5a). Only in S. stipitis, there was no simulation for metabolic
flux distribution measured with ACCOA since it could not
be detected experimentally. In its turn, in S. arborariae, it
was observed that from ten metabolites, seven (i.e., 70%)
showed a correlation higher than 0.90 between calculated
and measured fluxes (Additional file 5b). Only on S. arbor-
ariae, no simulation occurred with metabolite E4P since it
could not be detected experimentally. While in S. passali-
darum, it was observed that from 11 metabolites, nine (i.e.,
82%) showed a correlation higher than 0.90 between calcu-
lated and measured fluxes (Additional file 5c).
The consistency of intracellular metabolites mea-

surements were verified using the Pearson correl-
ation test (R2) (Fig. 6). The correlation encountered
between experimental data and calculated flux ob-
tained for S. stipitis, S. arborariae, and S. passali-
darum were above 90%. Overall, from 20 metabolic
flux rates involved in xylose conversion to ethanol,
only four of them were not predicted accurately in
the metabolic model proposed. Therefore the meta-
bolic flux distribution measured compared with
metabolic flux calculated ones confirmed the accur-
acy of the metabolome data. Although most of the
metabolites had a correlation above 90%, it is noted
that the measured and calculated metabolic fluxes
for the metabolites PEP (29%) and PYR (69%) has a

Fig. 2 Correlation between measured and calculated fluxes for
ethanol production. S. stipitis (green cycle), S. arborariae (red square)
and S. passalidarum (blue triangle)

Fig. 3 Intracellular metabolites concentrations (mM). Yeast S. stipitis (green column), S. arborariae (red column), and S. passalidarum (blue column).
All experiments performed in biological triplicates. [c] represent the cytosol metabolites. The presented values are the average of ANOVA analysis
for three biological replicates and nine technical replicates
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weak correlation in three tested xylose-fermenting
yeasts.
The flux rates of S. stipitis and S. arborariae in the xy-

lose assimilation pathway showed that the reaction
XYL +NADPH → XOL +NADP (R01) have an error of
85 and 60%, respectively (Fig. 7). Figure 7 highlighted
only the reaction rates that errors were above 10%. The
reaction rate using cofactor NADPH influenced the xyli-
tol accumulation and interfered the flux analysis.
The reaction rate G6P → RU5P (R10), responsible for

regenerating NADPH in oxidative pentose phosphate
pathway and the reversible reaction G6P ← → F6P, also
showed error higher than 60%. In contrast, in S. passali-
darum, the reaction rate G6P → F6P (R11) showed at
least 2.5 times less error when compared to S. stipitis
and S. arborariae. In general, our analysis was able to
predict 80% of intracellular carbon flux rates with an ac-
curacy above 90% in relationship to calculated and mea-
sured flux rates from xylose until ethanol formation.

Discussion
Metabolome dataset for the intracellular carbon flux
distribution
Metabolome data increase the precision of the actual
state of cell metabolism [21]. Its measurements can be
directly linked to the metabolic network since it enables
the identification and quantification a large number of
metabolites simultaneously under a specific condition
[24, 29]. The metabolomic analyses result in the gener-
ation of a complex dataset. Some of the technical chal-
lenges are processing a large amount of data and
performing statistical analyses, and then it can be linked
to the studied biological system [30]. Therefore, it is cru-
cial to develop an approach that is capable of validating
metabolome data after statistical treatment.

Previous metabolomic studies did not succeed in
quantifying the sugar-phosphate as such as G6P and F6P
[31, 32]. Nevertheless, here, both isomers could be de-
tected and quantified in the three yeasts S. stipitis, S.
arborariae, and S. passalidarum. Also, the method based
on UHPLC-MS/MS employed in this study enabled the
separation and quantification of RU5P and R5P [26],
overcoming the limitation observed in a previous meta-
bolomics analysis for xylose fermentation performed by
S. passalidarum [33].
Some metabolites could not be detected in particu-

lar yeasts; for example, E4P could not be detected
only in S. arborariae. Since the flux rate formation
for E4P in this yeast is at least twice slowly (reaction
S7P + GAP → E4P + F6P = 0.23) when compared to S.
stipitis and S. passalidarum (reaction S7P + GAP →
E4P + F6P = 0.65 and 0.42). Therefore this metabolite
was below the detection limit. Also, the absence of
E4P is associated with low carbon flux rate into the
pentose phosphate pathway in S. arborariae, when
compared to S. stipitis and S. passalidarum. The
ACCOA could not be detected in S. stipitis since it is
observed that the carbon flux is preferably directed to
ethanol formation.
Consequently, less carbon flux is directed to respira-

tory metabolism in the tricarboxylic acid cycle. Also, the
difficulty of accurately quantifying metabolic flux influ-
enced the detection of the ACCOA metabolite. Possibly,
this limitation can be solved with the addition of more
metabolic reactions in the stoichiometric model. More-
over, the ACCOA is involved in 34 compartmentalized
metabolic reactions and used for acetylation of macro-
molecules [34]. To cell balance the use of this precursor
metabolite, cells have evolved several levels of tight regu-
lation, especially to control the biosynthesis of amino

Fig. 4 Metabolic reaction rates using NAD(P) H / NAD(P)+ cofactors. S. stipitis (green), S. arborariae (red), and S. passalidarum (blue). R01 – XYL to
XOL; R02 - XYL to XOL; R03 – XOL to XYLU; R10 – G6P to RU5P; R15 – DHAP to GOL; R16 – GAP to PEP; R19 – ACCOA to ETOH; R20 – ACDH to
ACE; R25 – ISO to AKG; R26 – AKG to SUC; and R29 – MAL to OXA
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acids, lipids, nucleotides, and carbohydrates needed for
cell growth, homeostasis, and maintenance [34].
The metabolites PEP and PYR could not be validated

using MFA in any studied yeast. However, a previous
study that assessed the metabolome of S. passalidarum in

xylose fermentation encountered similar concentrations
that were quantified here [33]. Possibly, as PYR is a
branch-point metabolite involved in the respiration (mito-
chondria) and alcoholic fermentation (cytosol), this may
have influenced the metabolomics analysis since the

Fig. 5 Intracellular carbon flux distribution using measured data. S. stipitis (green), S. arborariae (red), and S. passalidarum (blue). Xylose
consumption rates are represented by a negative signal. The first reaction (xylose to xylitol) shows two arrows; left represents reaction using
NADPH, right represents reaction using NADH cofactor. Extracellular metabolites highlighted in black boxes had the flux rates used as constraints.
Intracellular metabolites highlighted in white boxes limited the reaction rates with its concentration in MFA-measured
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metabolomics is not able to separate the compounds from
different compartments cellular [33]. Moreover, the pre-
cise quantification of such metabolites is limited due to its
presence in more than one cellular compartment [35].
The changes in metabolite concentration do not readily

allow conclusions on metabolic fluxes or the direction of
the flux changes. An increase in metabolite concentration
can both be indicative of the increased activity of metabol-
ite producing enzymes, but also decreased the activity of
metabolite consuming enzymes [36]. Nevertheless, the
addition of the metabolite concentration in the MFA
model can be useful to validated metabolome data. Here a
correlation between carbon flux distribution measured
and calculated could be done for 80% of studied metabo-
lites. Thus, the stoichiometric network model and intra-
cellular carbon fluxes distribution could be estimated
more precisely. They were integrating MFA with metabo-
lome data of xylose-fermenting yeasts. Therefore,

demonstrating that metabolite concentration determines
the intracellular metabolic flux distribution in the central
metabolism of yeast [37].

Intracellular carbon flux distribution of xylose metabolism
in yeasts
The first step of xylose reduction to xylitol realized by
xylose reductase (XR) enzyme using both NADPH and
NADH as cofactors [1, 7, 8, 38]. However, the XR en-
zymes present different cofactor preference [7, 39–41].
Therefore, two reactions represent this first step in xy-
lose metabolism in the model. First, the reaction is
XYL +NADPH → XOL +NADP. Second reaction is
XYL +NADH → XOL +NAD+. Xylose reduction reac-
tion NADH-dependent showed approximately twice
higher flux rate in S. stipitis (1.97) and S. passalidarum
(1.28) that is observed in S. arborariae (0.68). In S.
arborariae, the flux rate of conversion xylose to xylitol

a) b) c)

Fig. 6 Correlation test (R2) between calculated and measured flux rates (mM/gCDW.h− 1). The relationship assessed with all metabolites measured
that present a correlation higher than 0.90 for S. stipitis (a), S. arborariae (b), and S. passalidarum. (c)

Fig. 7 Percentage of errors between calculated and measured flux rates. Columns are showing that the errors are less than 10% for most of the
metabolic reaction rates from xylose to ethanol: S. stipitis (green), S. arborariae (red), and S. passalidarum (blue)
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has employed the cofactor NADPH preferentially [7].
This feature observed in S. arborariae is associated with
xylitol accumulation [7, 8]. Our results, corroborated
with it and also demonstrated that only S. arborariae
present xylitol production (Table 1). This characteristic
may be associated with low xylose transportation cap-
ability [42]. The S. arborariae have a flux rate for oxida-
tive-PPP (reaction G6P → RU5P) in 3.0 times higher
than observed in S. passalidarum. This observation indi-
cates the need to regenerate the NADPH cofactor in S.
arborariae. Also, it noted that S. arborariae has a slower
flux rate to consume xylose and a smaller growth rate.
Due to the decreased cell growth, the requirement of
NADPH has been reduced and caused the down-regula-
tion of fluxes through the pentose phosphate pathway
[13, 25].
On the contrary, for S. passalidarum already showed

that it has two XR (genes XIL1.1 and XIL1.2), and one
of them uses NADH preferentially as a cofactor [8]. Its
enzymatic activity presents higher NADH-dependent XR
[7]. Besides then, the conversion of G6P → RU5P in S.
passalidarum was 3.0 times slower than S. stipitis and S.
arborariae. Demonstrating less need for carbon flux to
oxidative-PPP and carbon flux directed more to PPP and
glycolysis pathways.
The enzymatic activities for xylose reductase (XR) of

S. stipitis and S. arborariae cell extract are twice higher
using NADPH as cofactor when compared to NADH-
dependent activity [7, 8, 23]. Nevertheless, here, the cal-
culated flux rates of the XR reaction using NADH was
at least four times higher. Into MFA-measured was ob-
served that the carbon flux distribution, preferably the
use of NADH as the cofactor in XR reaction. This differ-
ence between enzymatic activities and calculated flux
rates can be explained by optimal condition and concen-
tration determined in enzymatic activities, not necessar-
ily these occur in vivo. As observed previously, an MFA
study showed the same result with flux distribution pref-
erably using XR reaction with NAD-dependent in a re-
combinant xylose-utilizing Saccharomyces cerevisiae
[23]. Therefore, the MFA showed that higher the reac-
tion rate of XR NADH preference, more ethanol forma-
tion is observed (S. stipitis and S. passalidarum).
On the other hand, the XR NADPH preference

showed xylitol accumulation (S. arborariae), confirming
the literature data and our previous study [7, 8, 23]. The
cofactor imbalance in XR and XDH reactions result in
xylitol production, as observed in S. arborariae and prior
studies [23]. The results of intracellular flux rates
showed in MFA models are in good agreement with pre-
vious work that showed that higher NADH dependent
XR activity resulted in less xylitol production [23].
Our results demonstrate a positive correlation between

glycolytic flux rate and ethanol production. The low

glycolytic flux seems to limit xylose utilization. These re-
sults are in agreement with a previous study that also
applied metabolic flux analysis in genetic engineered S.
cerevisiae [43, 44]. It has been previously suggested that
the low glycolytic flux towards glyceraldehyde-3-phos-
phate and consequently, pyruvate may limit the con-
sumption of xylose [43]. Therefore, increasing the
metabolic reaction activities that direct carbon to gly-
colysis may be a valuable strategy to improve the metab-
olism of xylose. Take together, the metabolic flux along
with the metabolome data, which increased the predic-
tion accuracy, showed that in S. stipitis the glycolytic re-
action (G6P ← → F6P) is 4.5 times faster than S.
arborariae, and 2.7 times faster than observed in S. pas-
salidarum. The faster metabolic fluxes in the glycolytic
pathway observed in S. stipitis resulted in better ethanol
production, and it was the main characteristic that dif-
ferentiated it from the other evaluated yeasts.

Conclusions
The present study elucidated for the first time a stoi-
chiometric model from xylose until ethanol to estimate
the carbon flux distribution in Spathaspora yeasts for
the first time. The metabolic flux model validated the
quantification of 11 metabolites, where up to 80% of
intracellular carbon flux rates could be correlated with
an accuracy above 90%. The flux analysis corroborated
that S. stipitis and S. passalidarum are the two yeasts
with better metabolic characteristics towards xylose fer-
mentation. These characteristics include higher xylose
consumption rates, a higher reaction rate of XR with
NADH preference, higher flux rates directed to PPP and
glycolysis pathways, and less need to directed carbon
flux to oxidative-PPP for the regeneration of NADPH.
Characteristics that would enable better NADH/NAD+

balance, thus allowing improves ethanol production
from xylose.

Methods
Yeast strains and cultivation conditions
The yeasts used in this study were Scheffersomyces stipi-
tis (NRRL Y-7124), Spathaspora arborariae (NRRL Y-
48658), and Spathaspora passalidarum (NRRL Y-27907).
These were kindly provided by the ARS (NRRL) culture
collection (Peoria, USA). All are preserved in 30% gly-
cerol at − 80 °C. As described previously, were per-
formed all cultivations in the bioreactors [7]. Briefly, the
fermentations were carried out in bioreactors (Multifors
2, Infors HT) with 500 mL of the defined mineral
medium [45], supplemented with 40 g L− 1 xylose as a
carbon source. The fermentation started with an optical
density of 600 nm (OD600) equals 0.5. The temperature
set up at 28 °C and stirred was kept at 400 rpm, pH was
maintained at 5.5 by addition 3M KOH. Oxygen was
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supplied at limited conditions. At those conditions, dis-
solved oxygen (DO) was kept below 10% with airflow of
only 0.05 L/min throughout the cultivation in the biore-
actors. All fermentations were carried out in biological
triplicates. Samples were withdrawn to determine xylose
consumption and product formation at regular intervals
of time (approximately every 8 h) of cultivation. Extra-
and intracellular quantification of metabolites was done
using samples in the middle exponential growth phase
where a pseudo-steady state is assumed, and therefore,
all rates at that time-points were considered as constant
[15]. The time point of during exponential growth was
28 h, 32 h, and 40 h for S. stipitis, S. arborariae, and S.
passalidarum, respectively.

Determination of extracellular fluxes
The extracellular metabolites such as xylose, ethanol,
xylitol, glycerol, acetate, pyruvate, and succinate concen-
trations were determined by High-Performance Liquid
Chromatography (HPLC) as previously described [7].
Briefly, culture samples were collected in the middle ex-
ponential growth phase, centrifuged and the supernatant
analyzed by an HPLC system (Acquity UPLC H Class,
Waters) equipped with a refractive index detector. The
metabolites were separated on an HPX-87 H column
(Bio-Rad Laboratories) with a 5 mM sulfuric acid mobile
phase at a flow rate of 0.6 mL/min and a temperature of
45 °C. After that, the extracellular concentration values
are divided by biomass and time at that fermentation
point. The data show the average ± standard deviation in
mM/gCDW. h− 1 of three biological triplicates (Table 1).
The carbon balance and degree of reduction were calcu-
lated by taking the ratio of products in C-mole and con-
sumed substrate in C-mole [46]. Biomass was measured
through OD600 using a spectrophotometer (SpectraMax
M3, Molecular Devices). For each collected point, cell
dry weight (CDW) was performed through 5mL of pre-
inoculum and stationary growth phase of all yeasts in
fermentative processes. Samples were withdrawn and
centrifuged (12,000×g, 5 min). Before weighing, the cells
were placed in a glass tube and incubated to dry at 60 °C
at least 48 h. Therefore, it established a correlation be-
tween OD600 values and CDW. Approximately, for each
OD600 = 1.0 were obtained 0.5 g L− 1 of cells dry weight.

Standard metabolites and solvents
Acetate (ACE), acetyl coenzyme A (ACCOA), alpha-keto-
glutaric acid (AKG), dihydroxyacetone phosphate (DHAP),
erythrose-4-phosphate (E4P), ethanol (EtOH), fructose-6-
phosphate (F6P), glucose (GLU), glucose-6-phosphate
(G6P), glyceraldehyde-3-phosphate (GAP), glycerol (GOL),
malate (MAL), phosphoenolpyruvate (PEP), pyruvate (PYR),
ribose-5-phosphate (R5P), ribulose-5-phosphate (RU5P),
sedoheptulose-7-phosphate (S7P), succinate (SUC), xylitol

(XOL), xylose (XYL), xylulose (XYLU) and all solvents as
such as sulphuric acid, tributylamine, acetonitrile and
methanol used in HPLC and UHPLC-MS/MS analysis were
purchased from Sigma-Aldrich (St. Louis, MO, USA) in
their highest purity. Ultrapure water (18.2 MΩ) was ob-
tained from a Direct 16 Milli-Q purification system (Milli-
pore, Bedford, USA).

Metabolomics analysis
The experimental setup for determination and quantifi-
cation of metabolome data is in Additional file 6. As
mentioned before, all data was originated from the three
replicates samples collected in the middle of the expo-
nential growth phase under oxygen-limited conditions.
This data point was the same used to calculate the extra-
cellular flux rates, the carbon recovered, and redox bal-
ance. The sample preparation protocol and analytical
data acquisition were previously described and opti-
mized [26, 47, 48]. Briefly, preparation of the samples in-
volved the steps of quenching and metabolites extraction
using cold methanol (− 40 °C) followed by boiling etha-
nol (96 °C). The analytical method was based on
UHPLC-MS/MS for metabolite separation and quantifi-
cation [48]. Details of this analysis are previously showed
[26, 48]. The MS methodology was carried out on an
AcQuitytm UPLC system (Waters, Milford, MA, USA)
coupled to a triple quadrupole mass spectrometer (Xevo
TQD, Waters) equipped with an electrospray ionization
source. UPLC it performed on a Hydrophilic Interaction
Liquid Chromatography (HILIC) with a BEH amide col-
umn (2.1 × 150 mm × 1.7 μm) (Waters Corporation, Mil-
ford, MA, USA) and Ion-Pairing Chromatography (IPC)
with a reverse phase column, HSS-T3 (2.1 × 150 mm ×
1.8 μm) (Waters Corporation, Milford, MA, USA). The
metabolites detected in both environment extra and
intracellular, for example, xylose, xylitol, and glycerol
were not included into the metabolome dataset since the
quantification of these compounds presents high vari-
ance, and it was not possible to define how much was
intra- and extracellular.

Statistical analysis of intracellular metabolite
concentration
It performed in biological triplicates all cultivations in
bioreactors. For each replicate, it extracted the intracel-
lular metabolites in three-time points within the expo-
nential growth phase of yeasts. The intracellular
extraction of each time point was analyzed by UHPLC-
MS/MS method in three technical replicates, giving a
total of 27 samples measurements. Therefore, to compile
all resulting data into a single value, the metabolome
dataset was statistically processed through a measured
repeated ANOVA design. RStudio software (http://www.
rstudio.com, https://www.rstudio.com/products/rstudio/
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download/) was used to construct the ANOVA model.
The following mathematical equation represents how
the ANOVA model test was performed.

y ijk ¼ μþ α iþ β j ið Þð Þ þ τ k þ ατð Þ ik þ e ijk

yijk = μ + αi + βj(i) + τk + (ατ)ik + eijkUsing this linear
model, it was assumed that the data for class (i) for yeast
(j) at time (k) is equal to an overall mean (μ) plus the
treatment effect (αi), the effect of the yeast within that
class (βj(i)) the effect of time (τk), the effect of the inter-
action between time and class ((ατ)ik) and the error
(eijk).
Such that:

� μ = overall mean
� αi = effect of class i
� βj(i) = random effect of yeast j receiving class i
� τk = effect of time k
� (ατ)ik = class by time interaction
� εijk = experimental error

The Additional file 4 shows the concentrations obtained
after statistical analysis from the metabolome data.

Stoichiometric model construction
An overview of the metabolic model is shown in Additional
file 1. The stoichiometric model was constructed based on
previous studies [13, 23, 49]. The model composed of 39 re-
actions within the xylose assimilation pathway, pentose
phosphate pathway, glycolysis, and TCA. It included the
TCA cycle, but the compartmentalization into mitochondria
and cytosol was not considered due to an equipment limita-
tion. The probe of oxygen used covers only the measure-
ments of dissolved oxygen in the medium. Thereby, it was
not possible to measure the oxygen released, data necessary
for the metabolic flux calculation. However, similar models
have proved efficient to support understanding sugar metab-
olism in yeasts [23, 49]. Biomass equation was determined
as previously described [23]. It consists of the macromole-
cules components of the cell (i.e., proteins, nucleic acid, and
polysaccharides) [50]. The stoichiometric model was con-
structed based on the information available at The Kyoto
Encyclopedia of Genes and Genomes (KEGG). It used as
the reference genomic and biochemical information of S. sti-
pitis (Entry T01023). The genes encoding for the enzymes
on the carbohydrate metabolism present in the respective
genome could be determined using KEGG pathway.

Metabolic flux analysis using OptFlux
The model uploaded into OptFlux from an Excel file
(Additional file 2). The degree of freedom of the meta-
bolic network was calculated using the properties of the
stoichiometric model. The accurate number of degrees

of freedom obtained by the difference between the num-
ber of metabolites of the system and the number of
linearly independent equations [17]. For differentiate in-
ternal and external reactions, external metabolites were
identified with “[e]” and intracellular metabolites occur-
ring in cytosolic subsystems with “[c].” It used a biomass
reaction as an objective function [22, 23, 51]. Thus,
added the extracellular measured flux rates obtained
from of middle exponential growth phase to the model.
The extracellular measurements used are xylose con-
sumption rate, xylitol, acetate, glycerol, pyruvate, and
succinate production rates. The simulations were run
using the algebraic method with least square fitting as
properties.

Carbon flux distribution using extracellular flux rates
measurements
The extracellular flux rates measurements were utilized to
simulate the metabolic fluxes and to calculate the carbon
fluxes distribution. The model classified as an overdeter-
mined system containing 39 reactions, 35 metabolites, 27
genes, and 04 degrees of freedom. Nine extracellular flux
rates were measured (xylose consumption, biomass, etha-
nol, carbon dioxide, xylitol, glycerol, acetate, pyruvate, and
succinate productions) and used to limit the initial meta-
bolic model resolution. Considering the principle of mass
conservation and molarity, this ensures that the total
amount of compounds produced must be equal to the
total amount being consumed [17, 36, 52].
Between them, for each yeast, xylose consumption,

and biomass production rates were maintained fixed
during all simulations. Xylose consumption rates were
fixed with following values − 2.15, − 0.90, and − 1.37
(mM/gCDW.h− 1), whereas biomass production rates
were fixed with 1.45, 1.27, and 1.01 (g. L− 1) for S. stipi-
tis, S. arborariae, and S. passalidarum, respectively. The
extracellular ethanol flux rates were used to validate the
carbon flux distribution in the calculated model. First,
the simulations were performed without the ethanol flux
rate, and then, the flux rate obtained through this simu-
lation was compared with the ethanol rate obtained
experimentally.

Validation of metabolome data using metabolic flux
analysis
The statistical analysis resulted in a single value of intra-
cellular metabolites concentration. Those were added to
the stoichiometric model. After that, a simulation was
performed to determine the flux distribution within the
metabolic network. Initially, the simulations performed
with the addition of one metabolite by time. Thus, 11
measured fluxes distribution were obtained, one for each
measured metabolite. Then, the fluxes derived from stoi-
chiometric calculations and the ones with the addition
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of metabolome data were compared using the Pearson
correlation coefficient (R2). The correlation coefficient is
useful to find the relationship between the calculated
and measured fluxes distributions. The metabolites,
whose correlation was above 90%, were used in the
stoichiometric model for a new round of carbon flux
simulations. Thus it was possible to estimate the
percentage of error, and consequently, identify hits
between calculated and measured fluxes for each
measured metabolite.

Additional files

Additional file 1: Overview of metabolic network from xylose to
ethanol. The metabolic model showns the directions of intracellular
metabolic reactions (continuos arrows), xylose consumption and
products formation (dashed arrows), and cofactors (NADPH/NADP+;
NADH/NAD+; ATP) utilized in some reactions. (PDF 169 kb)

Additional file 2: The stoichiometric model. Metabolic reactions added
to the OptFlux. (PDF 41 kb)

Additional file 3: List of metabolites. The intracellular and extracellular
metabolites added to the OptFlux. (PDF 39 kb)

Additional file 4: Intracellular metabolites concentrations (μg/mL).
Average and standart desviation of metabolites concentrations obtained
after statistical analysis (ANOVA) from the metabolome data. (PDF 52 kb)

Additional file 5: a Correlation (R2) between calculated and measured
fluxes - S. stipitis. Acetyl-CoA (ACCOA), dihydroxy-acetone-phosphate
(DHAP), erythrose-4-phosphate (E4P), fructose-6-phosphate (F6P), glucose-
6-phosphate (G6P), malate (MAL), phosphoenolpyruvate (PEP), pyruvate
(PEP), ribose-5-phosphate (R5P), ribulose-5-phosphate (RU5P), and
sedoheptulose-7-phosphate (S7P) were the metabolites measured. (X-
axis) show the calculated fluxes using the constrained values of products
formation. (Y-axis) show measured fluxes with respectively metabolites
concentrations. Graphics in square presents a correlation higher than 0.9.
Flux rates are in mmol/gCDW.h− 1. b Correlation (R2) between calculated
and measured fluxes - S. arborariae. Acetyl-CoA (ACCOA), dihydroxy-acetone-
phosphate (DHAP), erythrose-4-phosphate (E4P), fructose-6-phosphate (F6P),
glucose-6-phosphate (G6P), malate (MAL), phosphoenolpyruvate (PEP),
pyruvate (PYR), ribose-5-phosphate (R5P), ribulose-5-phosphate (RU5P), and
sedoheptulose-7-phosphate (S7P) were the metabolites measured. (X-axis)
show the calculated fluxes using the constrained values of products
formation. (Y-axis) show measured fluxes with respectively metabolites
concentrations. Graphics in square presents a correlation higher than 0.9. Flux
rates are in mmol/gCDW.h− 1. c Correlation (R2) between calculated and
measured fluxes - S. passalidarum. Acetyl-CoA (ACCOA), dihydroxy-acetone-
phosphate (DHAP), erythrose-4-phosphate (E4P), fructose-6-phosphate (F6P),
glucose-6-phosphate (G6P), malate (MAL), phosphoenolpyruvate (PEP),
pyruvate (PYR), ribose-5-phosphate (R5P), ribulose-5-phosphate (RU5P), and
sedoheptulose-7-phosphate (S7P) were the metabolites measured. (X-axis)
show the calculated fluxes using the constrained values of products
formation. (Y-axis) show measured fluxes with respectively metabolites
concentrations. Graphics in square presents a correlation higher than 0.9. Flux
rates are in mmol/gCDW.h− 1. (ZIP 183 kb)

Additional file 6: Experimental design for metabolomics data. Three
species of xylose-fermenting yeasts S. stipitis, S. arborariae, and S.
passalidarum. The times of replicates (T1, T2, T3) and the technical
replicates (R1, R2, R3) are repeated for each biological replicate into an
oxygen-limited condition (A, B, C). (PDF 135 kb)
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