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Abstract
Laser-induced breakdown spectroscopy (LIBS) has become a prominent analytical tech-

nique in recent years for real-time characterization of soil properties. However, only a

few studies of soil chemical and physical properties have been reported using LIBS until

recently. The aims of this article are to: (a) provide the basic principles of LIBS for soil

analysis and (b) present the use of LIBS for the analysis of soil pH, soil texture and the

humification degree of soil organic matter (SOM). The second article will cover soil clas-

sification and soil elemental analysis, including plant nutrients, carbon (C) and toxic ele-

ments. LIBS is a multi-element analytical technique based on atomic spectroscopy that

employs a high-energy laser pulse focused onto a sample surface to create a transient

plasma. It is a spectroscopic analytical technique that requires very little or no sample

preparation, examines each sample in seconds, and offers a flexible platform for the

examination of a broad array of elements in the sample. LIBS also can be used to infer

soil chemical and physical properties if a relationship exists between the chemical com-

position and the soil properties. With proper calibration, LIBS has a great potential for

real-time in-field soil analysis and precision farming that could lead to improved soil

management and agricultural production, and reduced agricultural environmental

impacts.

Highlights

• Laser-induced breakdown spectroscopy (LIBS) is a fast, multi-element analyti-
cal technique with great potential for soil characterization.

• Basic principles of LIBS and general description of its use for soil analysis are
provided.

• Soil chemical and physical characterization by LIBS are reviewed and compared
to other techniques.

• LIBS advantages, limitations and challenges are discussed for soil chemical and
physical characterization.
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1 | INTRODUCTION

The proper management of soils in agricultural systems can
only be achieved by the knowledge of soil chemical, physi-
cal and biological properties, including nutrient content,
organic matter content, pH, texture, bulk density, water-
retention capacity and microbial activity (Tejada &
Gonzalez, 2006). However, obtaining such properties is
labour intensive as it requires several techniques, such as:
dry combustion for carbon (C), nitrogen (N), hydrogen (H),
oxygen (O) and sulphur (S) (Yeomans & Bremner, 1991);
chemical extraction for nutrients (Bray & Kurtz, 1945;
Mehlich, 1984; Olsen, Cole, Watanabe, & Dean, 1954);
inductively coupled plasma (ICP) or atomic absorption spec-
troscopy (AAS) for multi-element analysis (Houba, Tem-
minghoff, Gaikhorst, & van Vark, 2000; Huang & Schulte,
1985; Tüzen, 2003); and the pipette method for soil texture
(Liu, Odell, Etter, & Thornburn, 1966). Most of these tech-
niques require specific sample preparation and take hours to
days to analyse a sample; therefore, they are limited for
large-scale measurements, especially in the context of preci-
sion farming requirements (Borghi, Avanzi, Bortolon,
Luchiari Junior, & Bortolon, 2016). Thus, expedited tech-
niques are a necessity for soil analyses, because they can
provide regular monitoring and rapid evaluations of soil
properties, even in real time, and could ultimately lead to
improved soil management and reduced agroecosystem
environmental impacts.

Among recent techniques, laser-induced breakdown
spectroscopy (LIBS) is one that has great potential for real-
time in-field soil analysis. It is a spectroscopic analytical
technique that requires little or no sample preparation, evalu-
ates each sample in seconds and can quantify elemental con-
centrations of samples when properly calibrated (Cremers &
Radziemski, 2013; Miziolek, Palleschi, & Schechter, 2006;
Noll, 2012). LIBS is also considered a sensitive technique
that can detect most elements in the range of μg g−1

(Cremers & Radziemski, 2013), although it is not as sensi-
tive as ICP, with limits of detection (LOD) in the range of
μg kg−1 (Thompson & Barnes, 1992). In soil samples, LIBS
can be used successfully to determine C content (e.g., see
the review by Senesi & Senesi, 2016), macro- and micro-
nutrients (Díaz, Hahn, & Molina, 2012; Ferreira et al., 2011;
Harris, & Cremers, D. a, Ebinger, M.H., & Bluhm, B.K.,
2004; Sallé, Cremers, Maurice, Wiens, & Fichet, 2005) and
contaminants (Bousquet, Sirven, & Canioni, 2007; Senesi
et al., 2009). Additionally, LIBS can be used to infer soil
chemical and physical properties if a relationship exists
between the properties and the chemical composition. For
instance, recent studies have demonstrated the ability of
LIBS to categorize soil samples (Pontes et al., 2009) and to
assess soil pH (Ferreira, Gomes Neto, Milori, Ferreira, &

Anzano, 2015), the humification degree of soil organic mat-
ter (SOM) (Ferreira et al., 2014) and soil texture (Villas-
Boas et al., 2016), based on the spectral signature of the
samples. LIBS can also be easily combined with other tech-
niques, such as Raman spectroscopy, for not only elemental
but also molecular analysis (Harmon, Russo, & Hark, 2013).
Because of these advantages, LIBS has become a promising
technique that can be coupled with other techniques for
direct real-time in-field soil analyses.

LIBS has greatly advanced in recent years due to
intensive research on understanding the physical pro-
cesses involved in the plasma formation, the setup design
and data treatment (Noll, 2012; Zorov, Popov, Zaytsev, &
Labutin, 2015). With the advent of double-pulse LIBS
systems, the signal acquired has become more stable and
reproducible and less affected by matrix effects. The
quality of the emission lines has also improved consider-
ably with the new high-resolution spectrometers with
intensified charge-coupled device (ICCD) detectors, such
as Echelle spectrometers, and time generators operating
even at the nanosecond scale, which allows precise con-
trol of delay and integration times. In addition, several
algorithms are becoming available to correct noise, con-
tinuous background, line overlap and matrix effects
(Zorov et al., 2015).

A general introduction to the technique can be found in
several publications (Cremers & Radziemski, 2013; W. D.
Hahn & Omenetto, 2010; D. W. Hahn & Omenetto, 2012;
Miziolek et al., 2006; Noll, 2012). Harmon et al. (2013)
and Zorov et al. (2015) wrote reviews for geological and
environmental applications, including soil and sediment
analyses. A review on soil C analysis using LIBS was writ-
ten by Senesi and Senesi (2016). Because of its simple
setup, LIBS has also been embedded in stand-alone sys-
tems, such as that installed in the Curiosity Rover to
explore soil on Mars, and made portable for in-field analy-
sis (e.g., handheld devices) (D. Day, Connors, et al., 2015;
D. R. Day, Derman, Egan, Soucy, 2015). Recent papers
have compared LIBS performance and/or its combined use
with other techniques such as near infrared reflectance
spectroscopy (NIRS) and visible (Vis)-NIRS in soil appli-
cations (Bricklemyer, Brown, Turk, & Clegg, 2018; Knadel
et al., 2017).

The goal of this review article (Part I) is to provide the
basic principles and general description of the use of LIBS
for soil chemical and physical analysis, including soil pH,
soil texture and humification degree of SOM. Here, refer-
ence or new techniques will be compared to LIBS along
with their advantages and disadvantages. In Part II of this
review (Villas-Boas et al., 2019, this issue), soil elemental
analysis, including C, nutrients, toxic elements and soil
classification, will be presented.
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2 | LIBS TECHNIQUE

2.1 | Basic principles

Laser-induced breakdown spectroscopy (LIBS), also known
as laser-induced plasma spectroscopy (LIPS) and laser spark
spectroscopy (LSS), is a multi-element analytical technique
based on atomic spectroscopy. LIBS can analyse solid, liq-
uid and gaseous materials. In principle, the technique can
quantify all elements with detection limits ranging from 0.3
to 100 μg g−1 (Noll, 2012). Because of its simple setup
(Figure 1), LIBS can be used in a wide range of applications,
including hazardous environments (e.g., radioactive and
explosive), difficult to access and remote areas (e.g., deep
ocean and Mars), and directly in the field (Lee, Wu, Lee, &
Sneddon, 2004). A famous application of an LIBS system is
its use in the Curiosity Rover to explore the soil composition
on Mars (Grotzinger et al., 2012).

LIBS consists of focusing a high-energy laser pulse, with
irradiance above 109 W cm−2, on the sample surface to cre-
ate a transient plasma and resolving the emission with a
high-resolution spectrometer (usually less than 0.1 nm).
Plasma is a state of matter composed of atoms, ions, elec-
trons and radiation in thermodynamic and electrostatic equi-
librium, that is, temperature and chemical species
distributions are in physical–chemical equilibrium
(Cristoforetti et al., 2010). With such irradiance, the laser
pulse can evaporate a small amount of the sample, whether
solid, liquid or gaseous. The excited atoms, ions and elec-
trons from the ablated sample form the plasma, which can
reach a temperature of approximately 100,000 K at the
moment of its ignition (Miziolek et al., 2006). During the
laser pulse interaction and less than a microsecond after it,
the plasma emits a broad range of radiation due to its high
temperature. As the plasma cools, the background radiation
attenuates, and the emission lines of the elements can be

observed. The intensity of the emission lines depends on the
delay between the laser pulse interaction and spectrum
acquisition, and varies for each element. The longer the
delay, the lower the background radiation and the emission
line intensities. Thus, for each element, there is an optimum
delay time, usually from 1 to 10 μs, which maximizes the
signal-to-background ratio. Finding the optimum delay time
for several elements is a difficult task and requires several
combinations of parameters, which can be reduced by facto-
rial design, as performed by Ferreira et al. (2009).

To identify and measure the emission lines, a set of col-
lecting lenses and a fibre-optic cable direct the plasma emis-
sion to a spectrometer, which resolves the light spectrum.
Because emission lines are specific to each element, the
acquired spectrum reveals the sample fingerprint (i.e., its ele-
mental composition), which can be used to identify soil
types. With the emission line intensities, calibration models
can be developed to estimate the element concentrations in
soil samples (more details in the ‘Quantitative Analysis’
section).

2.2 | Experimental setup

A typical LIBS setup consists of a pulsed laser, a focusing
lens, a sample holder, collecting lenses, a spectrometer, a
time delay generator and a computer (Figure 1). Various
laser systems (e.g., CO2 and Excimer) can be used, but LIBS
mostly employs a neodymium-doped yttrium aluminium
garnet (Nd:YAG) laser operating at its fundamental wave-
length (1,064 nm) or one of its harmonics (532, 355 or
266 nm), typically in nanoseconds (Miziolek et al., 2006).
Among laser parameters, the excitation wavelength is one of
the most critical, as it affects the coupling between irradia-
tion and the material surface.

For LIBS systems, the laser pulse duration can range
from femtoseconds (10−15 s) to microseconds (10−6 s) and
affects the resulting spectra. For femtosecond lasers, the
pulse interacts so rapidly with the sample surface that it
ceases before the plasma forms, in contrast to microsecond
lasers, in which a considerable amount of pulse energy
excites the species in the plasma. Nanosecond lasers lie in
between femto- and microsecond lasers and were the most
used in the reviewed applications.

Plasma emission is resolved by a spectrometer, usually a
broad range polychromator and a charge-coupled device
(CCD) or intensified charge-coupled device (ICCD) detec-
tor. Most polychromators operate from 200 to 1,000 nm,
where most of the emission lines of all elements are detect-
able. The resolution of the spectrometer defines the quality
of a LIBS measurement, allowing consecutive emission lines
to be separated without intricate processing, especially for

FIGURE 1 A typical laser-induced breakdown spectroscopy
(LIBS) setup
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spectra obtained from complex matrices, such as soil
samples.

The delay generator is a fundamental component of the
LIBS setup needed to synchronize the laser and the spec-
trometer with electrical pulses from nanoseconds to millisec-
onds. Fine-tuning of delay time allows optimization of the
signal-to-noise/background ratio, which in turn enhances
quantitative analysis.

A sample holder is an optional element of the system
because LIBS can be applied directly to the sample, even in
its original location. However, a sample holder is rec-
ommended to facilitate adjustment of the optics because all
samples can be reliably placed at the same distance relative
to the laser focus. For in situ analysis or samples with an
irregular surface, an autofocus system may be required for
optical adjustment.

Optimizing system parameters can considerably improve
LIBS signal quality. In typical LIBS systems, four parame-
ters require adjustment, namely: (a) laser pulse wavelength,
(b) laser pulse energy, (c) delay time and (d) gate window.
Depending on the application, the parameters can be opti-
mized for each element separately or together. For soil anal-
ysis, LIBS usually includes the determination of several
elements, including nutrients and toxic elements in a single
measurement. Numerous combinations of parameters are
possible, which require the evaluation of several experi-
ments. Otherwise, this type of analysis becomes unfeasible
in practice. To minimize the number of experiments, a facto-
rial design (Deming, Palasota, & Palasota, 1991) may be
used, as was performed by Ferreira et al. (2009). This
method allows maximizing the emission line intensities of
several elements relative to the background with a feasible
number of experiments.

One way to improve the quality of the LIBS signal is the
use of a second pulse. Whereas the first pulse ablates a frac-
tion of the sample surface and creates a plasma, the second
re-excites the plasma to enhance the signal-to-noise ratio
(Cremers & Radziemski, 2013). This type of system is
known as double-pulse LIBS (DP-LIBS) and may employ a
single laser that shoots two consecutive pulses or two lasers
shooting independent pulses. In either case, the inter-pulse
delay must be short enough (usually a few microseconds) to
re-excite the plasma during its lifetime (Cremers &
Radziemski, 2013). With two distinct lasers, a few configu-
rations are possible: both pulses can be parallel or orthogo-
nal at the same or different wavelengths. This setup requires
several adjustments other than that for typical LIBS systems,
such as the inter-pulse delay, the wavelength of both pulses
and the optical configuration.

Recent advances in LIBS system setup have been pro-
posed to improve the repeatability and sensitivity of the
technique, as reviewed by Zorov et al. (2015): resonance

laser excitation, spark discharge excitation, microwave exci-
tation, plasma confinement in an external magnetic field,
and plasma confinement in a microchamber. If a given ele-
ment is not detected in soil sample analyses by the LIBS sys-
tem used, such experimental configurations may be
considered.

2.3 | Qualitative analysis

LIBS is an analytical tool widely used for qualitative analy-
sis (Cremers & Radziemski, 2013) because its fundamental
principle relies on the identification of the emissions of the
various chemical species in the plasma emission spectrum.
For soil analysis, qualitative LIBS analyses are of great
importance because they allow identification of not only the
constituent elements but also the type of sample. This type
of analysis can be used to discriminate between sets of sam-
ples, for example different types of soils, rocks and minerals
(Zorov et al., 2015). The use of LIBS for qualitative analyses
can also be very useful in environmental monitoring, espe-
cially for the detection of toxic elements in soils (Barbafieri,
Pini, Ciucci, & Tassi, 2011; Capitelli et al., 2002; Eppler,
Cremers, Hickmott, Ferris, & Koskelo, 1996; Hilbk-
Kortenbruck, Noll, Wintjens, Falk, & Becker, 2001; Santos
et al., 2009; Yamamoto, Cremers, Ferris, & Foster, 1996).

A LIBS spectrum consists of numerous emission lines,
each relating to a given chemical species, with excited elec-
trons emitting photons at specific wavelengths, thus all-
owing identification of the elemental composition of the
sample. Such identification is usually achieved by compar-
ing the spectral peaks (such as those in Figure 2) with emis-
sion lines of established databases, such as NIST (Kramida
et al., 2018) and Kurucz (Smith, Heise, Esmond, & Kurucz,
1995). However, this is not an easy task, because samples

FIGURE 2 Laser-induced breakdown spectroscopy (LIBS)
spectrum of a soil sample containing emission lines of various
chemical elements in different ionization states

4 VILLAS-BOAS ET AL.



such as soils are generally heterogeneous and composed of
several elements, thus leading to several emission lines in
the spectrum (as in Figure 2). In addition, the position of the
peaks may drift slightly (a shift of 0.05 nm is common) due
to time and environmental conditions, making it even more
difficult to identify the emission lines. Thus, such issues can
result in misleading elemental identifications, but can be
avoided or minimized with prior knowledge of the composi-
tion of the sample of interest. In qualitative analyses, the fol-
lowing factors should also be considered (Zorov
et al., 2015):

• Presence of spectral lines at various stages of ionization,
which depend on the experimental conditions. Generally,
atomic and first ionization lines are observed in ambient
air, whereas those of higher ionization levels (up to the
fifth order) can be observed in a vacuum.

• The relative intensities of the spectral lines of each ele-
ment extracted from the databases. Emission lines with
the highest values of relative intensity are more likely to
be found in the spectrum. Typically, these lines are
persistent.

• Presence of multiplets. If a transition is observed in the
spectrum, the other multiplets must also be detected.

• Identification of at least three emissions for a given chem-
ical element to prove its existence in the sample.

Several studies (Refs. 91–99 as cited in Zorov et al.,
2015) have developed techniques for improving qualitative
analysis. Among these works, two methods deserve atten-
tion. The first considers the crustal abundance of elements
(Ref. 95 as cited in Zorov et al., 2015). The second com-
pares the experimental spectrum to synthetic spectra gener-
ated on the basis of the physical properties of the plasma and
parameters of the emission lines (Refs. 99 and 100 as cited
in Zorov et al., 2015). In the first method, the rank of a line
for the element n, defined as MP metrics, is calculated by
the expression:

MP=
cn

λm−λtheorj j ð1Þ

where cn is the abundance of n in the earth crust, and λm
and λtheor are the wavelengths of the observed peak and the
transition line of n in the database, respectively. This calcu-
lation must be done for the possible elements near the peak.
The line is correctly identified if the MP value of a certain
element is three times greater than the value of other
elements.

The second method generates synthetic spectra based on
plasma physical properties, such as temperature and electron
density at local thermodynamic equilibrium, and physical

parameters of the emission lines of possible elements, such
as energies of the fundamental and excited levels, Einstein
coefficients and excited level degeneracy (Refs. 99 and
100 as cited in Zorov et al., 2015). Spectra are generated
with various combinations of elemental composition and
plasma parameters and are compared via Pearson correlation
coefficient. The selection of the spectrum with the highest
coefficient thus allows identification of the emission lines.
This method was able to accurately identify more than
40 emissions between 393.34–413.04 nm in soil samples
(Ref. 99 and 100 as cited in Zorov et al., 2015), which is a
promising alternative to qualitative analyses.

2.4 | Quantitative analysis

Quantitative analysis using LIBS is possible because the ele-
mental abundances in the sample are proportional to their
line intensities from the plasma emission. More strictly,
quantitative analysis by LIBS is based on two assumptions:
(a) the contents of an element in the plasma and in the sam-
ple are proportional, and (b) the emission line intensity of
the species (either atom or ion) of an element in the LIBS
spectrum is proportional to the concentration of the
corresponding element in the plasma. Even though these
assumptions may be satisfied, line intensity also depends on
several interrelated factors, such as: laser pulse properties
(wavelength, energy and duration), material characteristics
(composition, optical transmissivity, reflectance, thermal
conductivity and surface morphology), laser-material cou-
pling, and environmental conditions (gas composition and
pressure) in which the material is ablated (Harmon et al.,
2013). The mechanisms involved in plasma formation are
non-linear and are the result of the combination of these fac-
tors. Therefore, the assumptions cannot be satisfied a priori
and rely on the criteria that the plasma must be (a) optically
thin and (b) in local thermodynamic equilibrium. The first
criterion implies that no electrons absorb the photons travel-
ling to the collecting lenses. When an excited electron
decays to a lower energy level in an atomic or ionic species,
it emits a photon with a specific wavelength that can only be
absorbed by a free electron or another that is in the lower
level of the same species. Considering all of the directions in
which a photon can be emitted, the probability is low of it
being absorbed by an electron in its path to the collection
lenses. However, denser plasmas or samples of a high con-
centration of a particular element may have a high probabil-
ity. The second criterion requires that all atoms, ions and
free electrons be at local thermodynamic equilibrium in the
plasma (i.e., their temperature distribution must be character-
ized by the same mean) (Cristoforetti et al., 2010). A thor-
ough plasma study may be required for quantitative
analyses, as pointed out by Cristoforetti et al. (2010).

VILLAS-BOAS ET AL. 5



Ideally, the intensity of an emission line is proportional
to the abundance of the respective element in the sample.
However, laser pulse properties, material characteristics,
laser-material coupling and environmental conditions can
still affect the line intensities. Even if all factors are con-
trolled, the plasma formation, and consequently the line
intensities, can still differ for consecutive laser pulses
because of matrix effects. Every interaction between a laser
pulse and sample surface results in a unique plasma because
ablation and plasma formation depend on non-linear mecha-
nisms. Thus, even the slightest variation in pulse power or
duration may lead to a distinct plasma. Distinct matrices
(e.g., soil and alloy) may considerably affect the line inten-
sity of an element, such as phosphorus (P) and iron (Fe). To
circumvent matrix effects, several approaches have been
proposed including: (a) laser pulse averaging, (b) sample
homogenization, (c) area normalization, and (d) the use of
internal or external standards (Harmon et al., 2013). Laser
pulse averaging aims to reduce the influence of laser pulse
oscillation and sample surface heterogeneity. The second
and third approaches help minimize the variation of line
intensities caused by the sample heterogeneity. The use of
an internal standard helps to correct the variations in ablation
and plasma formation, whereas external standards are used
to calibrate curves for the samples of interest.

Effectively measuring the concentration of an element in
a sample may require several data treatments due to the com-
plexity of an LIBS spectrum (see example in Figure 2),
which depend on the sample type and the LIBS system. The
usual data treatments for LIBS spectra are: (a) offset removal
and baseline correction, (b) spectral normalization, (c) line
intensity calculation and (d) calibration method
development.

Baseline offset, commonly found in spectroscopy, is a
constant signal independent of the samples analysed and is
derived from system electronics, optics and experimental
conditions. In general, the offset is the minimum value of a
spectrum. In LIBS systems, a blank measurement
(i.e., without sample) provides the best estimate for the off-
set. Such a procedure should be performed regularly to cor-
rect oscillations of laser properties, spectrometer parameters
and environmental conditions during measurements.

The baseline is a recurring problem in LIBS spectra
because of the strong residual background emission, mainly
found in systems that cannot properly adjust the delay time,
such as those with fixed parameters or configured for the
simultaneous analysis of several elements. The baseline can
be corrected either locally for just a couple of peaks or for a
broad spectral range. In the first case, the most common
approach is to fit a straight line to the points on the sides of
one or more peaks, a method that is known as “correction of
three points” (Dawson, Snook, & Price, 1993). In the second

case, an algorithm (e.g., Liland, 2015; Liland, Almøy, &
Mevik, 2010; Liland & Mevik, 2011) fits a smooth curve to
the baseline points that are in regions free of well-defined
peaks. The first method is suitable for just a couple of peaks
in a narrow region, whereas the second is suitable for a wide
spectral range containing several interfered peaks. For ele-
ment quantification, the first method is preferable. On the
other hand, the second method is more appropriate for quali-
tative analyses, such as sample classification, and for the
assessment of sample properties, such as soil pH, in which
the elements related to the property are not known.

Several normalization methods can be used to reduce
matrix effects in LIBS, as was reviewed by Zorov,
Gorbatenko, Labutin, and Popov (2010). Among these
methods, background normalization and the use of an inter-
nal reference are the most used. Because line intensities are
related to the plasma formation, and the plasma formation is,
in turn, related to the laser-material interaction, all emission
lines may be similarly affected by the plasma formation.
Therefore, normalizing the line intensities by the area under
the spectrum may minimize the effects of the plasma forma-
tion. Although helpful, background normalization may
prove to be unsatisfactory for accurate and precise measure-
ment using LIBS (Zorov et al., 2010). A better strategy for
spectral normalization is the use of an internal reference. If
an element is used as an internal reference in a sample set,
then its emission line intensities can be used to normalize
the emission lines of other elements. This solution underlies
the fact that the matrix effects affect all emission lines simi-
larly. For steel alloys, in which Fe concentration does not
vary, Fe lines may be used to normalize the lines of other
elements, such as P. Nevertheless, no element in soil has a
constant concentration that can be used as an internal stan-
dard unless all samples are similar (i.e., the same type and
with similar texture) or are mixed with a rare element
(e.g., yttrium) at a given concentration. Although useful,
adding a rare element to soil samples may be unfeasible for
practical reasons (e.g., price and excess sample preparation).

The correct way to normalize the intensity of a line is by
using the Boltzmann equation (e.g., Zorov et al., 2015).
According to this equation, the ratio between the lines of
two elements depends not only on the ratio of the concentra-
tion between the elements but also on the plasma tempera-
ture. Dependence on plasma temperature can be eliminated
if the upper-level energy of the lines is very close. Thus, the
concentration of an element can be determined by the inter-
nal reference concentration and the ratio between the lines of
the two elements. Besides dependence on the local thermo-
dynamic equilibrium, this process is impractical because it
requires finding appropriate lines of the internal reference
for each line to be normalized. To find appropriate lines for
normalization, Zorov et al. (2015) proposed using the
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correlation coefficient between a line intensity of the element
of interest and the emission signal intensity of each spectral
point. The criterion for applying this method requires the fol-
lowing conditions: (a) high correlation coefficient with the
line of the element of interest, (b) comparable intensities
between the lines and (c) little variation in the concentration
of an internal reference among samples. According to the
authors, an advantage of such a criterion is that the method
does not require local thermodynamic equilibrium. Using this
procedure, Zorov et al. (2015) improved lead (Pb) and molyb-
denum (Mb) determination in soil samples.

In spectroscopy, the intensity of an emission line can be eval-
uated by the corresponding peak height or area. The peak area
can be calculated numerically or by the area under the distribu-
tion estimated by deconvolution, a method that fits a suitable dis-
tribution, usually Gaussian, Lorentzian or Voigt (a mixture of
Gaussian and Lorentzian) for the emission lines in an LIBS spec-
trum. Either the height or the numerical area can only be prop-
erly evaluated without interference from other peaks. In most
cases, deconvolution is recommended because it best estimates a
line intensity and can separate overlapped peaks.

The choice of emission lines is also crucial in LIBS analy-
sis. In the range of 190 to 1,000 nm, several emission lines of
an element may be found in atomic emission databases, such
as NIST (Kramida et al., 2018) and Kurucz (Smith et al.,
1995). However, just a few emission lines may be useful for
LIBS analysis, because of their transition probabilities,
expected line intensities, and the state (atomic or ionic) they
originated from. For example, from 100 C emission lines in the
NIST database, only a few may be found in the LIBS spectrum
of a soil sample, because most of those lines have low transi-
tion probability or are from ions C II, C III and C IV. (The
notation, element E followed by a capitalized Roman numeral,
indicates the E ionization level in atomic emission databases
(Kramida et al., 2018; Smith et al., 1995); for instance, C I is
the atomic C, C II is the first C ionization and C III is the sec-
ond C ionization.) First ionized C is unlikely to be found in the
plasma, due to the high ionization energy (11.26 eV) required
to remove an electron from atomic C compared to the energy
of 8.62 eV to create a plasma at 100,000 K. (In plasma theory,
the plasma energy is kBT, where kB is the Boltzmann constant
and T is the temperature; therefore, 1 eV is equivalent to
11,604.5 K.) Metals such as aluminium (Al), on the other hand,
are likely to be found in the first ionized state, due to their low
ionization energy (e.g., first Al ionization requires 5.99 eV).
Another problem commonly found in LIBS analysis is the self-
absorption of emission lines. When the transition probability of
an emission line is high, the corresponding photon is likely to
be absorbed by an electron in the plasma. At low concentra-
tions, the probability is low, but as the concentration increases,
the probability also increases. Therefore, the intensity of such a
line does not vary linearly with the concentration of the

corresponding element and should be avoided for calibration
models.

Univariate or multivariate and linear or non-linear models
can be used to calibrate LIBS for soil analysis (e.g., Ferreira
et al., 2011; Ferreira, Milori, Ferreira, Da Silva, & Martin-Neto,
2008; Nicolodelli et al., 2014; Segnini et al., 2014). The univari-
ate and linear model may be suitable in most cases. However,
the intensity of a single emission line may not reflect the varia-
tion of an element concentration, because of self-absorption,
weak signal or interference by lines of other elements. To over-
come such problems or to improve LIBS accuracy, multivariate
models may be used, such as partial least square regression
(PLSR), support vector machine (SVM) and artificial neural net-
works (Zhang et al., 2015). Such models can also be calibrated
with a large spectral region rather than emission line intensities.
To calibrate models, a given sample set (namely training
set) is used to determine the weights of the spectral points
according to the concentration of the element of interest.
The weighting process is usually performed automatically
and considers spectral points with strong correlations with
the concentration of elements of interest. The use of such
models considering a wide spectral region is useful when
LIBS spectra are too intricate for the emission lines to be
properly separated. Nevertheless, multivariate models may
overfit the training set (i.e., the models are likely to have a
poor predictive performance with samples not belonging to
the training set). Therefore, linear models considering
emission line intensities are preferable to non-linear multi-
variate models that use large spectral regions. More details
on chemometrics applied to LIBS analysis can be found in
the reviews by Hahn and Omenetto (2012) and Zhang
et al. (2015).

In addition to the univariate and multivariate models, the
concentration of an element can be obtained by a theoretical
model, known as the calibration-free method (Ciucci et al.,
1999), without the need for a calibration curve. In this
method, the concentration of an element α is given by the
total emitter density, Nα, as:

Cα =NαAαχp ð2Þ

where Aα is the atomic mass of α and χp is plasma normali-
zation constant defined by:

χp =
X
i

NiAi

 !−1

ð3Þ

or can be obtained by Equation (2) if the concentration of an
element is known. The term Nα is commonly approximated
by the sum of NαI and NαII, the emitter density of αI and αII.
The emitter density of species s (e.g., αI or αII), Ns, can be
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obtained by the Boltzmann equation (Gornushkin, Merk,
Tognoni, & Panne, 2010):

Is =
Nshc

4πUs Tð Þ
gskA

s
ki

F λð Þ e
−

Es
k

KBT ð4Þ

where Is is the intensity of an s emission line, F(λ) is the
spectrometer function, gsk is the level k degeneracy of s, As

ki

is the Einstein coefficient of s for spontaneous emission
from level k to i, h is the Planck constant, c is the speed of
light, KB is the Boltzmann constant, T is the plasma tempera-
ture, and Us(T) is the s partition function at temperature T.
The main advantage of this method is that the matrix effects
are minimized because plasma parameters are taken into
account (Ciucci et al., 1999).

2.5 | Sample preparation

Soils are among the most complex matrices for LIBS analy-
sis due to the heterogeneity of constituents and particle size
(Jantzi et al., 2016). For instance, the spectra of two consec-
utive LIBS measurements of a soil sample may differ even if
all conditions are the same. This problem can be aggravated
if intact soil samples are analysed (Bricklemyer, Brown,
Barefield, & Clegg, 2011; Bricklemyer, Brown, Turk, &
Clegg, 2013). In this case, the variation among spectra of
each sample can be too great. To compensate for this issue,
the analyst can average numerous shots (e.g., 100) or nor-
malize each spectrum. The LIBS analysis can also be per-
formed on powdered soil samples, which were ground and
homogenized either manually with mortar and pestle or
mechanically. Thus, the resulting spectra vary less than
those obtained for intact samples, but the preparation
requires extra minutes per sample. Ground and homogenized
soil samples can also be pelletized to ameliorate surface
roughness. Although sample preparation time increases
(~5 min/sample), the resulting spectra vary the least for pel-
letized samples in relation to the other types of soil sample
preparations, because heterogeneity and surface roughness
are minimized. For direct in-field measurements in which
time is crucial and soil sample preparation is not practical,
averaging a large number of measurements on the sample
surface may reduce errors and be better suited for this condi-
tion. For all types of samples, including soil, detailed sample
preparation can be found in the work of Jantzi et al. (2016).

3 | SELECTED SOIL CHEMICAL
AND PHYSICAL PROPERTIES

Soil chemical properties, such as pH, cation exchange
capacity and salinity, are related to many important pro-
cesses that occur in soils, including mineralization,

solubilization, the decomposition rate of SOM, and immo-
bilization of minerals and nutrients because of biological
activity. The analysis of chemical properties usually
requires reagents and a long laborious process, which may
affect the results. Because chemical properties are indi-
rectly related to the elemental composition, they can be
estimated by LIBS in conjunction with multivariate
methods. For instance, soil salinity is measured by the
quantification of sodium (Na+), potassium (K+), calcium
(Ca2+), magnesium (Mg2+) and chloride (Cl−) ions and
their concentrations may be directly determined by LIBS.
Therefore, a combination of emission lines of such ele-
ments may provide a useful estimation for soil salinity. In
this section, we will present the use of LIBS to estimate soil
pH, the humification degree of SOM and soil texture.

3.1 | Soil pH

Acid–base equilibrium in soil, evaluated by pH, is involved
in many biochemical processes and also affects other soil
physical, chemical and biological properties (McLean,
1982). Even soil productivity is affected by such an equilib-
rium. Usually, soil pH is determined in slurries of water and
soil (McLean, 1982) or addition of a CaCl2 solution to mini-
mize problems with suspended particles and variable salt
content (Schofield & Taylor, 1955). Nonetheless, sample
preparation differs for each type of soil, which demands a
previous characterization and further analytical process to
determine soil pH. LIBS offers an alternative method to esti-
mate soil pH because many elements are related to soil acid-
ity or alkalinity. For instance, Ca is directly related to soil
pH, because the presence of Ca indicates soil alkalinity, and
soil liming is a common practice to correct soil acidity. In
addition, exchangeable Al dominates acid soils and may pre-
cipitate to form aluminium hydroxide (Al(OH)3) with lim-
ing. Thus, Ca and Al together with H and O lines were
considered in developing a multivariate calibration model
for soil pH.

The following study considered 60 samples covering a
broad range of Brazilian soils with pH between 4.0 and 6.3
and standard deviation of less than 0.2 pH units (Ferreira
et al., 2015). The samples were cryogenically ground with
liquid N to reduce heterogeneity and were pelletized with a
10-ton press for the LIBS measurements. The pelletized soils
were subjected to an LIBS system using a Nd:YAG laser
operating at 532 nm with a pulse of 115 mJ energy, 4.4 ns
pulse duration and 10 Hz repetition rate. The LIBS spectra
were acquired by an Echelle spectrograph with a focal length
of 195 mm, F/7, from 200 to 975 nm, coupled with an ICCD
detector. The delay between the laser pulse and spectra
acquisition was 400 ns and the spectrograph integration time
gate was 25 μs. The calibration model was developed using
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the PLSR method and with narrow regions around the emis-
sion lines of Ca II at 373.69, 393.33 and 396.82 nm, Al I at
394.42 and 396.15 nm, H I at 656.11 nm and O II at 655.46,
656.51 and 657.11 nm as input variables. Calibrated with
50 samples (training set), the model estimated the soil pH of
the remaining 10 samples (test set) with R = 0.86 and a root
mean error of prediction of 0.4 pH units (Table 1) consid-
ered a satisfactory uncertainty compared to the 0.2 pH units
of the reference technique.

3.2 | Humification degree of soil organic
matter (SOM)

Organic matter is crucial for the health of soil because it pro-
vides a source of nutrients to plants and microorganisms,
promotes good physical soil structure and minimizes ero-
sion, and constitutes one of the most important C reservoirs
on Earth. In particular, SOM represents the largest terrestrial
C pool and its maintenance depends directly on soil manage-
ment practices in managed systems (Falkowski, 2000).
However, understanding which soil management practice is
suitable for each type of soil is not an easy task and requires
several decades of experiments and analyses to determine
not only the content of C in soils but also its stability.

Carbon stability cannot be measured directly but is to a
certain extent related to the chemical structure of organic
matter, which can be assessed by the humification degree,
an index associated with the complexity of the chemical
structure. More specifically, the chemical pathways of
decomposition and humification of SOM enhance the con-
centration of recalcitrant chemical structures, such as com-
plex conjugated aromatic rings. To evaluate such structures,
a chemical fractionation process is typically performed to
separate the humic substances: humin, humic and fulvic

acids. This is a complex, laborious and long process (gener-
ally requiring 15 days). The structure of these substances
can be assessed by nuclear magnetic resonance (NMR) and
electron paramagnetic resonance (EPR). However, these
techniques cannot be used for soil rich in Fe, such as Brazil-
ian soils. For this reason, fluorescence spectroscopy is a
valuable alternative to evaluate the structure of humic sub-
stances, despite the need for the separation step. Recently,
Milori et al. (2006) demonstrated that the fluorescence area
of bulk soil was proportional to the fluorescence index of
the separated humic substances and created the index HLIFS,
which corresponds to the ratio between the fluorescence area
and the C concentration. Although this simplified the pro-
cess of analysing the humification degree of SOM, it still
required the elemental analyser and fluorescence spectros-
copy to evaluate HLIFS. Because the humification degree
depends on the composition of SOM, LIBS can be used to
estimate this index based on the stoichiometric relation
between elements in the soil samples. Ferreira et al. (2014)
evaluated the humification degree of 56 soil samples, classi-
fied as sandy Yellow Red Argisol, collected from 0 to
80-cm soil depth of two sugar cane fields, with and without
burning. The samples were ground with a mortar and pestle
and subsamples were then used to determine C using an ele-
mental analyser, while the remainder was pelletized with an
8-ton press. The pellets were then analysed by fluorescence
spectroscopy (non-destructive technique) first, followed
by LIBS.

The system used for fluorescence spectroscopy consisted
of a continuous wave laser operating at 405 nm to excite the
organic substances and a spectrometer to acquire the fluores-
cence spectra (420 to 800 nm). The integration time, the
number of measurements for averaging and the boxcar were
400 ms, 3, and 3, respectively. The LIBS system consisted
of a Nd:YAG laser, operating at 1064 nm, pulse energy of
50 mJ, a pulse duration of 8 ns and seven spectrometers with
a resolution of 0.1 nm covering the range of 188 to 980 nm.
The delay time and the integration time were adjusted to
10 μs and 2 ms, respectively. For each sample, 60 measure-
ments were acquired and each spectrum was normalized by
the respective area in the range of 190.8 to 500.6 nm. The
region outside this range was disregarded for analysis. Nor-
malization by area was used to reduce the spectral dispersion
caused by the matrix effects (Cremers & Radziemski, 2013).
The normalized spectra were averaged for each sample.

To estimate the humification degree of SOM by LIBS,
two models were developed: one for C concentration and
another for the fluorescence area. The C concentration was
estimated by the emission line at 193.03 nm corrected by the
Al line at 193.56 nm, as described in the ‘Carbon’ section in
Part II of this review (Villas-Boas et al., 2019, this issue).
Two steps were used for the fluorescence area: (a) selecting

TABLE 1 Comparison between the reference and predicted pH
values

pH reference
value

pH predicted by LIBS and
PLSR method

Absolute
error

6.2 4.9 1.3

5.4 5.0 0.6

4.5 4.4 0.1

5.4 5.3 0.1

5.0 5.1 0.1

4.5 4.5 0.0

5.6 5.6 0.0

4.1 4.4 0.3

4.8 4.7 0.1

5.9 5.7 0.2

Reprinted with permission from the work of Ferreira et al. (2015).
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the emission lines and (b) developing the calibration model.
To select the lines, the entire spectral region was correlated
with the fluorescence area, which was considered as a func-
tion of each wavelength (independent variable). Only wave-
lengths showing linear, quadratic or exponential behaviour
were considered in the calibration model. Thus, the selected
lines were: Al I at 394.42, Al II at 198.96 nm; Mg I at
285.22, Mg II at 279.55 and 280.26 nm; and Ca I at 422.65,
Ca II at 317.95, 393.38, 396.84 and 396.91 nm. The calibra-
tion model used in this analysis was based on the k-nearest
neighbour technique (k-NN) (Aha, Kibler, & Albert, 1991),
with k = 5, and was tested with a 10-fold cross-validation.
(An N-fold cross-validation is a procedure that splits sam-
ples into N sets and tests the performance of a calibration
model. The model is developed with N-1 sets and tested with
the remaining set. The procedure is repeated until all sets are
tested.) The results are shown in Figure 3a. A Pearson corre-
lation coefficient of 0.87 and root average error of 33.5%
was obtained for the fluorescence area estimated by LIBS
(A-LIBS). Despite the scatter dispersion in Figure 3a, the
humification degree estimated by LIBS (HLIBS) showed a
high correlation coefficient (0.94) to the humification degree
evaluated by LIFS (HLIFS) (Figure 3b). Therefore, HLIBS was
to some extent corrected for C concentration also estimated
by LIBS. In other words, the errors of one estimate partially
compensated for the errors of the other.

The selection line analysis indicated that the fluorescence
area was positively correlated with the emission lines of Al
but negatively correlated with the emission lines of Mg and
Ca. Therefore, as organic matter becomes more humified, it
tends to bind to Al, while tending to lose Mg and Ca, which
probably belong to organic compounds composed mainly of
aliphatic chains instead of complex aromatic rings. More
information on humification degree of SOM can be found in

the review by Senesi, Martin-Neto, Villas-Boas, Nicolodelli,
and Milori (2018).

3.3 | Physical properties: Soil texture

Soil texture affects the susceptibility to erosion, nutrients
and pollutant leaching, water-retention capacity, drainage
and organic matter content. Traditionally, soil texture is
determined by the pipette or hydrometer method, but both
are laborious and require day-long pretreatment to disperse
clay particles and aggregates. Other methods have been
developed for the direct determination of soil particle size,
for example, gamma-ray attenuation (Naime, Vaz, & Mac-
edo, 2001), X-ray attenuation, laser diffractometry, photo-
metrical techniques and electroresistance particle counting
(McCave & Syvitski, 1991), but all of them require a disper-
sion step. Methods for indirect determination, such as visible
and near infrared reflectance spectroscopy, have also been
proposed (Chang, Laird, Mausbach, & Hurburgh, 2001;
Curcio, Ciraolo, D'Asaro, & Minacapilli, 2013; Madari
et al., 2006; Viscarra Rossel, Walvoort, McBratney, Janik, &
Skjemstad, 2006), but their accuracy depends on environ-
mental conditions, such as temperature and humidity, when
the samples are analysed.

In principle, soil texture cannot be determined by its ele-
mental composition due to its relation to the size of particles
which is a physical feature. However, because soils are
formed by rock weathering, which is a combination of phys-
ical, chemical and biological processes, their mineral parti-
cles are derived from the source geology, which may
ultimately define the size of particles. In other words, rocks
do not break down evenly, even in the same weathering con-
ditions, due to their crystalline structure. Therefore, the
size of a particle is to a certain extent related to its origin,
which in turn is related to its elemental composition.

FIGURE 3 (a) Validation of the fluorescence area estimated by laser-induced breakdown spectroscopy (LIBS); (b) validation of the
humification degree estimated by LIBS. Reprinted with permission from the work of Ferreira et al. (2014)
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This section covers how LIBS was used to estimate the per-
centage of sand, clay and silt of soil samples (Villas-Boas
et al., 2016).

This study took into account the 60 soil samples pres-
ented in the ‘Humification degree of SOM’ section and mea-
sured with the same LIBS system. Each soil sample was
measured 60 times. Instead of building calibration models
with the proportions of sand (α), clay (β) and silt (γ), the var-
iables were transformed as follows:

ε= α−β−γ

ϕ= β−γ

(
ð5Þ

Such a transformation allows reducing the uncertainty of
estimating the three components because the uncertainty of a
calibration model is inevitably higher than that of the refer-
ence method for each component individually. Thus, the
uncertainty of estimating two variables is lower than that of
estimating three. The calibration models were then devel-
oped considering the variables ε and ϕ, and the estimated
relative proportions were recovered by:

α=
1+ ε

2

β=
1+2ϕ−ε

4

γ =
1−2ϕ−ε

4

8>>>>>>><
>>>>>>>:

ð6Þ

To calibrate LIBS, two approaches were used: one con-
sidering the entire spectral range from 188 to 980 nm,
henceforth called model A, and another considering emis-
sion lines with high correlation with the proportions of sand,
clay or silt, henceforth called model B. Both models were
developed using PLSR. Prior to developing the models, the

offset of each spectrum was subtracted and the samples were
split into two sets: one for data treatment and another for
model development. The first set contained 15 samples man-
ually chosen with varying texture from sandy to clay soils.

The data treatment consisted of a baseline correction
method and a peak-finding procedure. The method used for
baseline correction was 4S Peak Filling (Liland, 2015),
which had been successfully applied to other techniques,
such as NMR and Raman spectroscopies (Liland et al.,
2010; Liland & Mevik, 2011). Using a genetic optimization
algorithm (Mebane Jr & Sekhon, 2011), the method was
optimized with the first 15 samples and individually for each
spectrometer region due to their intrinsic response functions.
Later, the corrected spectrum was averaged for each sample
and used in the peak-finding procedure, which consisted of
correlating each wavelength with the soil texture and
selecting emission lines with an absolute correlation coeffi-
cient higher than 0.8 for any of the textural proportions.
According to this criterion, the emission lines were selected
from the species: silicon (Si) I, Si II, titanium (Ti) I, Ti II,
Fe I, Fe II, Na I, Na II, Ca I, Ca II, K I, Al I, cobalt (Co) II,
Mg I, Mg II, V I, barium (Ba) I, Ba II, and beryllium
(Be) I. The 4S peak filling parameters optimized with the
first set were used to develop model A with the test set.
Analogously, model B was developed with the area of the
selected emission lines determined by the deconvolution
procedure (‘Carbon’ section in Part II of this review (Villas-
Boas et al., 2019, this issue)) with Lorentzian distribution
for the peaks.

A leave-one-out cross-validation was applied to models
A and B, resulting in an average Pearson correlation coeffi-
cient of 0.89 and 0.9, respectively, and an average RMSE of
6% for both models. Even though the accuracy of model B
is equivalent to the accuracy of model A, model B should be
more robust than model A in practice, because it is based on
specific emission lines rather than a large spectral region, as

FIGURE 4 Scatterplot of the relation between Si I (a), Na II (b) and Fe I (c) emission lines and the proportion of sand. Reprinted with
permission from the work of Villas-Boas et al. (2016)
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TABLE 2 Comparison between the classification using the pipette method and that using laser-induced breakdown spectroscopy (LIBS)
coupled with model B

Reference values Estimated by LIBS and model B

Sample Sand Silt Clay Classification Sand Silt Clay Classification

1 27.3 18.4 54.3 Clay 17.2 22.3 60.4 Clay

2 39.9 18.9 41.2 Clay 31.2 19.1 49.7 Clay

3 57.2 9.2 33.6 Sandy clay loam 53.7 9.5 36.9 Sandy clay

4 27.8 16.0 56.2 Clay 31.5 16.2 52.3 Clay

5 92.3 2.1 5.6 Sand 97.4 0.0 2.6 Sand

6 36.5 14.8 48.7 Clay 32.0 14.0 54.0 Clay

7 59.4 6.4 34.2 Sandy clay loam 53.1 9.4 37.4 Sandy clay

8 57.1 9.2 33.7 Sandy clay loam 60.9 6.8 32.3 Sandy clay loam

9 48.2 9.5 42.3 Sandy clay 36.8 16.0 47.1 Clay

10 52.8 13.9 33.4 Sandy clay loam 46.7 13.8 39.5 Sandy clay

11 19.4 19.2 61.4 Clay 20.8 20.4 58.8 Clay

12 27.5 19.2 53.3 Clay 24.7 21.1 54.2 Clay

13 84.2 6.3 9.5 Loamy sand 82.4 8.2 9.4 Loamy sand

14 58.8 10.2 30.9 Sandy clay loam 36.8 16.2 47.1 Clay

15 59.0 7.4 33.6 Sandy clay loam 60.2 6.9 33.0 Sandy clay loam

16 39.3 15.3 45.5 Clay 51.5 11.0 37.5 Sandy clay

17 52.0 14.4 33.6 Sandy clay loam 50.6 13.8 35.6 Sandy clay

18 48.3 10.1 41.6 Sandy clay 48.1 10.9 41.0 Sandy clay

19 19.0 20.3 60.7 Clay 30.1 18.4 51.6 Clay

20 36.3 14.8 48.8 Clay 22.5 18.3 59.2 Clay

21 4.0 30.2 65.8 Clay 23.9 23.8 52.3 Clay

22 14.7 20.9 64.4 Clay 26.0 17.4 56.5 Clay

23 18.4 20.2 61.3 Clay 27.9 17.7 54.4 Clay

24 33.3 13.9 52.8 Clay 42.7 11.9 45.5 Clay

25 18.2 21.0 60.7 Clay 25.1 21.8 53.1 Clay

26 41.2 15.2 43.6 Clay 43.2 14.4 42.3 Clay

27 56.9 12.4 30.7 Sandy clay loam 54.1 21.0 24.9 Sandy clay loam

28 86.6 7.1 6.4 Loamy sand 94.7 2.1 3.2 Sand

29 45.8 10.0 44.1 Sandy clay 49.7 9.2 41.0 Sandy clay

30 53.8 14.9 31.3 Sandy clay loam 61.0 12.0 27.0 Sandy clay loam

31 56.9 9.7 33.4 Sandy clay loam 51.5 10.7 37.8 Sandy clay

32 53.8 14.3 31.9 Sandy clay loam 51.6 15.4 33.0 Sandy clay loam

33 14.7 21.3 64.0 Clay 18.2 22.0 59.8 Clay

34 42.4 12.8 44.8 Clay 48.4 10.9 40.8 Sandy clay

35 48.1 10.4 41.6 Sandy clay 50.3 11.1 38.6 Sandy clay

36 42.4 14.0 43.7 Clay 45.2 12.7 42.0 Sandy clay

37 30.6 24.2 45.2 Clay 22.6 38.2 39.2 Clay loam

38 57.3 8.8 33.9 Sandy clay loam 56.0 8.6 35.4 Sandy clay

39 14.8 21.5 63.6 Clay 18.2 21.0 60.8 Clay

40 11.9 35.3 52.8 Clay 2.0 29.6 68.5 Clay

(Continues)
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in model A. Model A should be more susceptible to the
matrix effects than model B, because the former may have
taken into account noise and background emission. The
peak-finding procedure also indicated which elements are
more abundant in clay, sand and silt. For instance, the lines
Si I at 221.80 nm and Na II at 228.4 nm were positively cor-
related with the proportion of sand, whereas Fe I at
305.89 nm was negatively correlated (Figure 4). The posi-
tive Si correlation with sand proportion was expected
because most sand particles are derived from silica (SiO2).
In addition, the Na positive correlation may be related to the
type of Brazilian rock (probably feldspar) from which the
sand originated. Conversely, the observed negative Fe corre-
lation may be a consequence of clay particles being rich in
Fe oxides.

In conclusion, LIBS estimated the soil textural propor-
tions with accuracy higher than 0.85 and uncertainty of 6%
on average for both models. The uncertainty was reason-
able compared to that of the pipette method (3%), which
means that LIBS could be used to scan large areas because
it is a quick way to estimate the soil texture. According to
the soil texture triangle (Saxton, Rawls, Romberger, &
Papendick, 1986), LIBS together with model B classified
correctly most soil samples (Table 2), except for only two
samples classified more than two classes distant. More
recently, Knadel et al. (2017) used the LIBS procedure and
associated model analysis developed by Villas-Boas et al.
(2016), with excellent results for soil texture determination
for Danish agricultural soils. Knadel et al. (2017) also com-
pared LIBS to NIRS analysis (including soil C determina-
tion) and concluded that LIBS resulted in lower prediction
errors for most properties than the well-established vis-
NIRS method.

4 | CONCLUDING REMARKS

In this, the first of a two-part review, we covered LIBS fun-
damentals and recent LIBS studies in assessing soil chemi-
cal and physical properties. We showed that LIBS is a

technique with great potential for soil chemical and physi-
cal characterization, due to its simple setup, low cost per
sample analysis, simplified sample preparation and ability
to detect a broad range of elements. Despite traditional
LIBS use for soil elemental analysis, including C, nutrients
and toxic elements, we demonstrated how to use LIBS to
assess complex soil chemical and physical properties, such
as soil pH, humification degree of SOM and soil texture.
Such a result is possible because of the relation between
elemental composition and soil chemical and physical
properties, for instance the relation of soil pH to Ca and Al
concentrations.

The main advantage of using the LIBS technique for soil
analysis is that we can evaluate various soil properties from
only one measurement, not to mention the other intrinsic
advantages, such as analysis speed, low cost per analysis
and analysis without reagents. Although not as precise and
accurate as reference techniques, LIBS can be very useful
for screening large areas, thus allowing monitoring of vari-
ous soil properties, as well as the relative abundance of
nutrients and contaminants. The use of the technique for
other properties, such as cation exchange capacity, salinity
and water-retention curve, remains to be evaluated. In the
second part of this review, we will discuss the LIBS applica-
tions to soil classification and soil elemental analysis,
including soil C, nutrients and toxic elements. We will cover
the main LIBS advantages, limitations and challenges for
soil elemental analysis.
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TABLE 2 (Continued)

Reference values Estimated by LIBS and model B

Sample Sand Silt Clay Classification Sand Silt Clay Classification

41 39.3 14.9 45.9 Clay 42.6 16.7 40.7 Clay

42 91.8 2.5 5.7 Sand 70.1 7.9 22.0 Sandy clay loam

43 11.4 31.3 57.3 Clay 11.3 30.4 58.3 Clay

44 59.0 7.1 34.0 Sandy clay loam 54.1 7.1 38.8 Sandy clay

45 19.6 18.5 61.9 Clay 18.9 25.7 55.3 Clay

Reprinted with permission from the work of Villas-Boas et al. (2016).
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