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Urochloa is the most cultivated genus as pasture 
on tropical livestock farms because of its tolerance 

to acidic soils, good carrying capacity, insect resistance, 
and nutritional value (Jank et al., 2014; Pessoa-Filho et al., 
2017). The most economically important species are U. 
decumbens (Stapf) R. D. Webster (syn. Brachiaria decum-
bens Stapf) and U. brizantha (Hochst. ex A. Rich.) R. D. 
Webster [syn. B. brizantha (Hochst. ex A. Rich.) Stapf], 
which are both tetraploid (2n = 4x = 36). Apomixis is 
the normal mode of reproduction in these species, and 
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ABSTRACT  Although genotyping-by-sequencing (GBS) is a 
well-established marker technology in diploids, the development 
of best practices for tetraploid species is a topic of current 
research. We determined the theoretical relationship between 
read depth and the phred-scaled probability of genotype 
misclassification conditioned on the true genotype, which we 
call expected genotype quality (EGQ). If the GBS method has 
0.5% allelic error, then 17 reads are needed to classify simplex 
tetraploids as heterozygous with 95% accuracy (EGQ = 13) vs. 
61 reads to determine allele dosage. We developed an R script 
to convert tetraploid GBS data in variant call format (VCF) into 
diploidized genotype calls and applied it to 267 interspecific 
hybrids of the tetraploid forage grass Urochloa. When reads 
were aligned to a mock reference genome created from GBS 
data of the Urochloa brizantha (Hochst. ex A. Rich.) R. D. 
Webster cultivar Marandu, 25,678 biallelic single nucleotide 
polymorphism (SNPs) were discovered, compared with ~3000 
SNPs when aligning to the closest true reference genomes, 
Setaria viridis (L.) P. Beauv. and S. italica (L.) P. Beauv. Cross-
validation revealed that missing genotypes were imputed by 
the random forest method with a median accuracy of 0.85 
regardless of heterozygote frequency. Using the Urochloa spp. 
hybrids, we illustrated how filtering samples based only on 
genotype quality (GQ) creates genotype bias; a depth threshold 
based on EGQ is also needed regardless of whether genotypes 
are called using a diploidized or allele dosage model.
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core ideas

•	 Introduced concept of expected genotype quality 
(EGQ) and software to calculate it

•	 Provided read depth guidelines for GBS in tetraploids
•	 Developed software to generate diploidized genotype 

calls from VCF files
•	 Demonstrated value of aligning GBS reads to a mock 

reference genome for SNP discovery
•	 Recommend filtering based on GQ and read depth to 

prevent genotype bias

Abbreviations:  EGQ, expected genotype quality; EMBRAPA, Brazilian 
Agricultural Research Corporation; GATK, Genome Analysis Toolkit; GBS, 
genotyping-by-sequencing; GQ, genotype quality; HMA, homozygous 
for the major allele; LD, linkage disequilibrium; MAD, minor allele depth; 
MAP, maximum a posteriori; PCR, polymerase chain reaction; SNP, single 
nucleotide polymorphism; VCF, variant call format.
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for many years, genetic improvement in South America 
was based on screening new introductions from Africa 
(Miles, 2007; Jank et al., 2011). To facilitate breeding by 
sexual hybridization, Swenne et al. (1981) used colchicine-
induced tetraploids of the diploid species U. ruziziensis 
(R. Germ. & C. M. Evrard) Crins (2n = 2x = 18) as female 
parents to cross with apomictic tetraploids. This interspe-
cific hybridization scheme has become the foundation of 
the Urochloa spp. breeding programs at the International 
Center for Tropical Agriculture in Colombia and the Bra-
zilian Agricultural Research Corporation (EMBRAPA) 
(Lutts et al., 1991; Miles et al., 2006; Monteiro et al., 2016). 
As in other crops, genome-wide markers can provide sig-
nificant value for Urochloa spp. breeding programs. Sev-
eral previous studies have used microsatellite markers to 
study population structure in Urochloa (Jungmann et al., 
2010; Vigna et al., 2011; Silva et al., 2013), but the ubiquity 
and cost-effectiveness of SNPs are advantageous for dis-
covering genetic variants and predicting complex traits.

Arrays and GBS of multiplexed, reduced-represen-
tation libraries have been used to generate large, biallelic 
SNP datasets in heterozygous tetraploids, including potato 
(Solanum tuberosum L.) (Felcher et al., 2012; Uitdewilligen 
et al., 2013), alfalfa (Medicago sativa L.) (Li et al., 2014), 
rose (Rosa L.) (Koning-Boucoiran et al., 2015), kiwi [Actin-
idia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson] 
(Melo et al., 2016), and Urochloa spp. (Worthington et al., 
2016; Ferreira et al., 2019). Both arrays and GBS generate 
a signal for each allele that can be used to predict allele 
dosage, that is, the tetraploid genotype. For the SNP array, 
signal intensity is not necessarily proportional to allele 
dosage, and therefore, different classification algorithms 
have been explored (Voorrips et al., 2011; Serang et al., 
2012; Schmitz Carley et al., 2017). For GBS data, the allele 
signal intensity is the read count, which can be analyzed 
using the aforementioned classifiers, but the focus of 
this manuscript is genotype calling based on a binomial 
model. The binomial model is central to well-established 
software packages such as the Genome Analysis Toolkit 
(GATK) (McKenna et al., 2010; DePristo et al., 2011) and 
FreeBayes (Garrison and Marth, 2012) as well as more 
recent tools developed specifically for polyploids (Blischak 
et al., 2018; Gerard et al., 2018; Clark et al., 2019).

It is generally recognized that higher read depth is 
needed to estimate allele dosage in polyploids, but the 
literature contains a number of different approaches and 
recommendations. Uitdewilligen et al. (2013) developed 
KASP assays for 270 GBS markers in potato and compared 
the genotype calls from the two methods; the results 
under different filtering criteria led the authors to conclude 
that “~60–80× can be used as a lower boundary for reliable 
assessment of allele copy number…” Bastien et al. (2018) 
used a threshold of 53 reads for determining allele dosage 
in potato because it was deemed “sufficient to distinguish 
between the five expected genotypic classes based on a 
chi-square distribution.” Gerard et al. (2018) developed 
software to investigate the effects of allelic bias, overdis-
persion, and sequencing error on read-depth thresholds.

Our approach is similar to Gerard et al. (2018) (and 
was developed independently) in that a binomial model is 
used to estimate the probability of genotype misclassifica-
tion. However, whereas Gerard et al. (2018) reported pop-
ulation-level statistics, our focus is the difference between 
simplex and duplex genotypes. We also account for the 
nonmonotone relationship between the probability of gen-
otype misclassification and read depth (see Methods sec-
tion). Our results are reported on the phred-scale (defined 
as −10 log10 q, where q is the error probability), analogous 
to the GQ field of the VCF (Danecek et al., 2011). However, 
whereas GQ is conditioned on the predicted genotype, our 
metric is conditioned on the true genotype. Because the 
metric can be viewed as an expectation over all possible 
allele counts for a given total read depth, we call it EGQ.

Expected genotype quality was used to guide the 
analysis of GBS data for a panel of 267 tetraploid U. ruzi-
ziensis × U. brizantha hybrids. Because few markers had 
sufficient read depth to determine allele dosage with rea-
sonable accuracy, genotype calls were made using a dip-
loid approximation, in which the three heterozygotes were 
not distinguished. This approximation is common for 
GBS in heterozygous tetraploids, and typically a threshold 
of 11 reads is used to ensure the probability of misclas-
sifying a heterozygote as homozygous is <5% (Li et al., 
2014). However, this threshold is based on the assumption 
of no error in the GBS method, and our theoretical treat-
ment elucidates how the threshold increases with error.

Even with a diploid approximation, the Urochloa 
dataset contained missing data. Imputation of missing 
genotypes in GBS datasets has been studied extensively in 
inbred lines and heterozygous diploids, with hidden Mar-
kov models being the preferred method when a genetic 
or physical map for the markers is available (Hickey et 
al., 2012; Swarts et al., 2014; Fragoso et al., 2015). When a 
map is not available, as was the case for the Urochloa spp. 
hybrids, the random forest algorithm (Breiman, 2001) can 
still be used and has performed well in other species (Rut-
koski et al., 2013; Money et al., 2015). Our objectives were 
to evaluate different filtering criteria, references genomes, 
and imputation accuracy for the Urochloa dataset.

MATERIALS AND METHODS
Expected Genotype Quality
A binomial model was used to determine the statisti-
cal relationship between read depth and EGQ. Let f 
(k,N,r) denote the probability mass function for the 
binomial distribution with k successes out of N trials 
and success probability r. The likelihood of observ-
ing k reads of the alternate allele given N total reads 
for tetraploid genotype x Î {0,1,2,3,4} was modeled as 
æ öé ù ÷ç é ù ê ú ÷r = -e + - eç ÷ë ûç ê ú ÷çè øë û

, , 1 1
4 4x
x xf k N , where the allelic error rate e 

is the probability that a read is generated by one allele but 
counted toward the other (e.g., as a result of errors during 
polymerase chain reaction [PCR] or sequencing). Under 
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a uniform prior, the maximum a posteriori (MAP) tet-
raploid genotype call for the observed result (k,N) is the 
value of x that maximizes f. For some values of k, the 
MAP solution does not equal the true value. Summing 
f over these values of k and expressing the result on the 
phred scale leads to the following expression for EGQtet:

=
é ùe =- r -dë ûåtet 10 tet0

EGQ ( , , ) 10log ( , , ) 1 ( ,MAP )
N

xk
x N f k N x  [1]

The symbol d in Eq. [1] is the Kronecker delta function, 
which equals 1 when its two arguments are equal and 0 
when they are unequal.

For diploidized genotype calls, the three possible 
genotypic states are denoted {A, H, B}, where the hetero-
zygous state H = dosages 1, 2, or 3, and the homozygous 
states A = dosage 0 and B = dosage 4. The corresponding 
three-vector of posterior probabilities is proportional to 
(pA, pH, pB) º (f0, f1 + f2 + f3, f4), and the MAP solution 
(under a uniform prior) for the observed result (k,N) is 
the value of j that maximizes pj. For some values of k, the 
MAP solution does not equal the diploidized genotype 
y corresponding to the true tetraploid state x. Summing 
f over these values of k and expressing the result on the 
phred scale leads to the following expression for EGQdip:

=
é ùe =- r -dê úë ûådip 10 dip0

EGQ ( , , ) 10log ( , , ) 1 ( ,MAP )
N

xk
x N f k N y  [2]

Although Eq. [1] and [2] tend to increase with read 
depth, they are not monotone functions of N. Our results 
for EGQ correspond to the following monotone extension:

³f e = e( , , ) min EGQ( , , )M Nx N x M   [3]

which has the property f(x,N,e) ³ f(x,M,e) for N > M. 
Using the R programming language (R Development 
Core Team, 2017), a function was created (Supplemental 
File S1) to calculate f(x,N,e).

Genotyping-by-Sequencing of Urochloa Species
Genomic DNA was extracted using the Qiagen DNeasy 
kit for 267 tetraploid U. ruziziensis × U. brizantha hybrids 
from EMBRAPA, as well as for the U. brizantha Marandu. 
The GBS libraries were prepared according to Elshire et 
al. (2011) using the ApeKI enzyme and sequenced on five 
lanes of the Illumina Hi-Seq 2500 platform with 1×100 
bp reads. Reads were demultiplexed and trimmed using 
Cutadapt (Martin, 2011) and then aligned to five different 
Poaceae family genomes with bwa-mem (Li, 2013): Setaria 
viridis (v1.1. http://phytozome.jgi.doe.gov/), Setaria italica 
(Bennetzen et al., 2012), sorghum [Sorghum bicolor (L.) 
Moench] (v3.1. http://phytozome.jgi.doe.gov/), rice (Oryza 
sativa L.) (Ouyang et al., 2006), and corn (Zea mays L.) 
(Schnable et al., 2009). The alignment percentage for each 
reference was evaluated with Bowtie2 (Langmead and Sal-
zberg, 2012). Reads were also aligned to a mock reference 
genome generated from the reads for Marandu with the 
software GBS–SNP–CROP (Melo et al., 2016). The GATK 
(McKenna et al., 2010; DePristo et al., 2011) Haplotype-
Caller was used for SNP discovery with the ploidy flag set 
to 4, followed by removal of SNPs that did not meet the 
recommended thresholds (Broad Inst., 2016): Fisher strand 

bias (FS) £ 60.0, RMS mapping quality (MQ) ³ 40.0, rank 
sum test for mapping quality (MQRankSum) ³ −12.5, 
rank sum test for read position (ReadPosRankSum) 
³ −8.0.

Using the R programming language, a function was 
created (readVCF, Supplemental File S2) to process the 
VCF file and perform additional filtering. Only bial-
lelic SNPs were retained. The VCF file includes variants 
relative to the reference genome regardless of whether 
they are polymorphic in the genotyped population. To 
identify polymorphic markers, the total number of reads 
for the minor allele, or minor allele depth (MAD), was 
calculated for each marker based on the allele depth field, 
and variants with MAD < 2 were removed. The Genome 
Analysis Toolkit calculates allele frequency based on the 
dosage of called genotypes, which was deemed unreliable 
because of low read depth. A suitable proxy for filtering 
that does not require allele dosage information is the 
frequency of genotypes homozygous for the major allele 
(HMA), which was capped at 0.99. For each sample, 
GATK provides the phred-scaled likelihood for each of 
the five tetraploid genotypes, which was converted into 
a posterior probability pi for genotype i Î {0,1,2,3,4} 
(assuming a uniform prior) by the following:

-

-

=

=
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PL /10

4 PL /10
0
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10

i
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The tetraploid genotype call corresponds to the largest 
probability, and GQtet = −10log10(1 − maxipi).

Because of the low read depth per sample in the 
Urochloa dataset, diploidized genotype calls were made 
in which the three heterozygous genotypes were not dif-
ferentiated. This corresponds to defining a new vector of 
posterior probabilities, = + + 0 1 2 3 4( , , )p p p p pp , in which the 
probability of the heterozygous state is the sum of the 
probabilities for the simplex, duplex, and triplex geno-
types. The diploidized genotype call corresponds to the 
largest probability, and =- - 

dip 10GQ 10log (1 max )i ip .
Missing genotypes in the diploidized marker dataset 

were imputed with the R package randomForest (Liaw 
and Wiener, 2002; Supplemental File S3), which is based 
on the algorithms in Breiman (2001). For each marker, a 
training set of 100 hybrids was randomly selected from 
the hybrids with genotypes, and all other hybrids with 
genotype data were masked and used for validation. 
Because each marker had no more than 50% missing 
data, this ensured at least 33 hybrids were available for 
validation. We used 300 classification trees for prediction, 
and all markers with r2 ³ 0.1 were used as m potential 
predictors. We used the default setting of randomly sam-
pling m  predictors at each split. Classification accuracy 
is the proportion of hybrids in the validation set for which 
the predicted genotype is correct. Accuracy results were 
binned by heterozygosity (with a constant bin range of 
0.1) and reported at the midpoint for each bin (e.g., 0.3 for 
bin 0.25–0.35). As a baseline for comparison, the missing 
genotypes for each marker were also imputed with the 
population mode (i.e., the most common genotype).

http://phytozome.jgi.doe.gov
http://phytozome.jgi.doe.gov/
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RESULTS
Expected Genotype Quality
The EGQ is the phred-scaled probability of genotype 
misclassification conditioned on the true value. An EGQ 
of 13 corresponds to 95% genotype accuracy, and a score 
of 20 corresponds to 99% accuracy. Figure 1 shows EGQ 
for simplex and duplex genotypes as a function of total 
read depth. The allelic error rate, defined as the prob-
ability that a read is generated by one allele but counted 
toward the other (e.g., as a result of errors during PCR 
or sequencing), also affects EGQ. The blue lines in Fig. 1 
correspond to diploidized genotypes, for which misclassi-
fying simplex samples as homozygous (instead of hetero-
zygous) is more likely than misclassifying duplex samples. 
The green lines correspond to genotype calls based on 
allele dosage, for which the relative EGQ of the two 
types of heterozygotes is reversed; misclassifying duplex 
samples is more likely than misclassifying simplex ones. 
The intuitive reason for this result is that a duplex geno-
type can appear as either simplex or triplex as a result of 
sampling variation, but comparable uncertainty for the 
simplex genotype exists only in the direction of higher 
dosage (i.e., with the duplex). In the absence of error (solid 
lines), 11 reads are needed to make diploidized genotype 

calls with EGQ 13 vs. 61 reads for determining allele dos-
age. Allelic errors have a greater effect on EGQdip than 
EGQtet. With 0.5% error (dashed lines), the minimum 
depth needed to achieve EGQ 13 for diploidized geno-
types increases to 17 reads, while the minimum depth for 
determining allele dosage remains 61.

Genotyping-by-Sequencing of Urochloa  
Species Hybrids
As no reference genome for the Urochloa spp. hybrids 
was available, the reference genomes of five other Poaceae 
species were evaluated for alignment. Figure 2 shows the 
number and percentage of aligned reads from the ApeKI-
reduced representation of the U. brizantha cultivar 
Marandu. The percentage of reads aligned was low for 
all genomes, ranging from 1.92% for rice to 7.88% for S. 
italica. For both Setaria species and sorghum, over three-
fourths of the aligned reads mapped to a unique location. 
For rice and corn, this proportion decreased to one half. 
The same five genomes were compared with respect to 
variant discovery in a panel of 267 tetraploid U. ruzizien-
sis × U. brizantha hybrids. After removing variants with 
median depth less than eight, the two Setaria species 
generated the most biallelic SNPs (2809–3203) (Table 1).

Fig. 1. Expected genotype quality (EGQ) as a function of read depth for two different allelic error rates.
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To better utilize the GBS reads, a mock reference 
genome was built by clustering the trimmed reads 
from Marandu into 1,309,910 nonredundant consen-
sus sequences, or centroids (Melo et al., 2016). A highly 
repetitive sequence was detected in the centroids, for 
which the first 50 bp are

GAGATCGGAAGAGCGGTTCAGCAGG-
AATGCCGAGACCGATCTCGTATGCC.

The entire 50 bp was present in 3.3% of the centroids, and 
when truncated to the first 40 or 30 bp, the frequency 
increased to 8.5 and 14.9%, respectively. The repetitive 
sequence was also detected in all 267 hybrids. A nucleotide 
BLAST search of the 50-bp sequence against the NCBI 
database returned highly significant matches to a diverse 
set of species, including Larimichthys crocea and Cyprinus 
carpio (100% identity across 49 bp), Triticum aestivum L., 
and Solanum pennellii Correll (98% identity across 50 bp).

When the GBS reads for the 267 hybrids were 
aligned to the centroids, the number of biallelic SNPs 
with median depth greater than eight increased to 25,678 

(Table 1). A depth threshold of eight reads corresponds to 
EGQdip ³ 10 at 0.5% allelic error, whereas a depth thresh-
old of 47 is needed for EGQtet ³ 10. As only 1955 SNPs 
had median depth greater than 47, tetraploid genotype 
calls were not pursued.

Figure 3 is a histogram of the GQdip scores for all 
153,589 diploidized genotypes (sample × marker combina-
tions) with depth equal to eight in the filtered dataset. For 
homozygous genotypes, GQdip was peaked at 10, while for 
heterozygotes GQdip exceeded 30. The lower GQ for homo-
zygotes is related to the low EGQ for simplex genotypes: 
heterozygous genotype calls have strong support because 
both alleles have been observed, whereas homozygous calls 
could be the result of misclassifying a simplex sample.

The cumulative distribution in Fig. 4 reveals the 
SNP dataset is dominated by rare alleles. The x-axis of 
Fig. 4 is the genotype frequency of hybrids homozygous 
for the major allele, and the y-axis is the proportion of 
SNPs for which the HMA frequency is less than or equal 
to the x-axis value. The SNP counts in Table 1 are based 
on an upper limit of 0.99 for HMA, and 51% of the SNPs 
discovered with the mock reference genome had HMA 
genotype frequencies between 0.95 and 0.99.

Genotype Imputation
The success of genotype imputation depends on the 
amount of linkage disequilibrium (LD) between markers, 
which is often quantified by the physical distance at which 
r2 (the squared correlation) drops below some threshold. 
Since a physical reference genome was unavailable for this 
study, LD was quantified based on the maximum r2 for 

Fig. 2. Number and percentage of reads from the U. brizantha cultivar ‘Marandu’ that aligned to five Poaceae reference genomes.

Table 1. Number of biallelic single nucleotide polymorphisms (SNPs) 
with <50% missing data based on a minimum sample depth of eight.

Reference No. SNPs
Urochloa brizantha 25,678
Setaria viridis 3203
Setaria italica 2809
Sorghum bicolor 1331
Zea mays 763
Oryza sativa 571
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each SNP. Figure 5A shows the distribution of r2
max for 

3230 SNPs from the filtered dataset that are 25 to 75% het-
erozygous to capture a range of difficulty for imputation. 
The median value of r2

max was 0.4 to 0.5 for heterozygote 
frequencies below 0.5 but gradually decreased as the pro-
portion of heterozygotes increased toward 0.75.

Cross-validation accuracy was determined with a 
training set of 100 hybrids selected at random from all 
hybrids with genotype data for a particular marker. The 
accuracy shown in Fig. 5B is the proportion of predicted 
values equal to the masked value. The results are binned by 

heterozygote frequency, with the median accuracy shown 
by a solid line and the first and third quartiles by dashed 
lines. Imputation with the population mode is a simple 
baseline method that, by definition, has lower accuracy as 
the frequency of the modal genotype declines. By contrast, 
the random forest method was largely unaffected by het-
erozygote frequency, with a median accuracy of ~0.85.

DISCUSSION
As mentioned in the introduction, there has been varia-
tion in the filtering criteria used in previous studies 
involving GBS of tetraploids. Uitdewilligen et al. (2013) 
recommended 60 to 80× for determining allele dosage, 
which corresponds to a EGQtet of 13 to 16. For dip-
loidized genotype calling, the threshold of 11 reads from 
Li et al. (2014) is frequently used, which corresponds to 
EGQ = 13.7 in the absence of error but only EGQ = 11.1 
when the allelic error is 0.5%. To achieve EGQdip ³ 13 
with 0.5% allelic error, a threshold of 17 reads is needed.

The need for higher read depth per site to make 
accurate genotype calls in tetraploid species underscores 
the importance of selecting restriction enzymes to opti-
mize the fragment size distribution. This study used 
ApeKI, which has a 5-bp recognition sequence, while 
Worthington et al. (2016) and Ferreira et al. (2019) used 
enzymes with 6-bp recognition sequences (HincII and 
NsiI, respectively) for GBS of Urochloa spp. F1 popula-
tions. Future research on GBS for Urochloa species 
should explore a two-enzyme system, such as the PstI–
MspI combination introduced by Poland et al. (2012), 
as a way of generating more markers with higher read 
depth. Bastien et al. (2018) compared ApeKI against the 
PstI–MspI combination in tetraploid potato and obtained 

Fig. 3. Distribution of genotype quality (GQdip) scores for diploidized genotypes of Urochloa spp. hybrids with sample depth equal to eight. 
The figure is based on 25,678 SNPs, discovered using the U. brizantha mock reference genome for alignment. Heterozygous samples (Het) 
are shown in light gray, and homozygous samples (Hom) are shown in dark gray.

Fig. 4. Cumulative distribution for the frequency of Urochloa spp. 
hybrids homozygous for the major allele (HMA). The y-axis is the 
proportion of SNPs for which the HMA frequency is less than or 
equal to the x-axis value.
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tenfold more markers with the two-enzyme system when 
using a minimum sample depth of 53 reads.

The difference in EGQ for simplex (or triplex) vs. 
duplex genotypes has important implications for filter-
ing GBS data. For diploidized genotype calls, setting a 
minimum GQ threshold creates bias against simplex (and 
triplex) samples relative to duplex samples; for tetraploid 
genotype calls, the opposite bias is present. Using a depth 
threshold based on the desired minimum EGQ does not 
introduce this bias, but filtering only on depth does not 
address reads with low base or mapping quality. Our con-
clusion is that a combination of the two approaches (depth 
and GQ) is needed. Supplemental File S1 can be used to 
calculate EGQ (Eq. [3]) for any depth and allelic error rate, 
and Supplemental File S2 can be used to generate matrices 
(marker × sample) of tetraploid or diploidized genotype 
calls and corresponding GQ scores from a VCF file.

The aforementioned considerations are appropriate 
for genotype calling based on the posterior mode. An 
alternative approach is to estimate allele dosage based on 
the posterior mean, which produces fractional genotype 
calls (Ashraf et al., 2014; Sverrisdoìttir et al., 2017; Clark 
et al., 2019). Such data are suitable when additive models 
are used in association analysis and genome-wide predic-
tion, but a number of genetic analyses require integral 
estimates of dosage, including linkage analysis (Hack-
ett et al., 2013; Zheng et al., 2016), dominance effects 
(Rosyara et al., 2016; Endelman et al., 2018), and haplo-
type inference (Su et al., 2008; Aguiar and Istrail, 2013).

This study used the traditional approach of setting hard 
thresholds for genotype calling followed by imputation of 
the missing data. We did not explore the interplay between 

threshold and imputation accuracy, but this is an interest-
ing topic for future research. It seems appealing to select 
thresholds to achieve similar genotype accuracy in the sam-
ples called based on allele counts vs. those that are imputed. 
Ultimately, the traditional two-step approach (threshold 
then impute) is suboptimal because the read counts for the 
missing genotypes are not used during imputation. For 
ordered markers, this limitation can be overcome by using 
hidden Markov models with read counts as the emission 
states. This approach has been used in diploid mapping 
populations (Fragoso et al., 2015; Bilton et al., 2018) and 
can be extended to hidden Markov models that have been 
developed for SNP array markers in tetraploids (Hackett et 
al., 2013; Zheng et al., 2016). For unordered markers, alter-
native imputation methods need to be explored.

Author Contributions
JBE and FIM designed the study. SCLB and CBdoV crossed 
and developed the Urochloa population. KGXM performed 
the DNA extraction. STN and MFC built the mock refer-
ence genome. JBE, FIM, and STN analyzed the data and 
drafted the manuscript. RFN and MFC provided analytical 
expertise and edited the manuscript. JBE and RFN super-
vised the whole study. All authors read and approved the 
final version of the manuscript for publication.

Supplemental Information Available
Supplemental information is available with the online 
version of this manuscript as well as in Dryad at https://
doi.org/10.5061/dryad.4j2c7h6. 

Fig. 5. (A) Distribution of the maximum LD (r2) for 3230 SNPs with heterozygote frequency between 0.25 and 0.75 in the Urochloa spp. 
hybrids. The x-axis values are bin midpoints. (B) Imputation accuracy defined as the proportion of imputed values equal to the masked value.

https://doi.org/10.5061/dryad.4j2c7h6
https://doi.org/10.5061/dryad.4j2c7h6


8 of 9 the plant genome  vol. 12, no. 3  november 2019

Conflict of Interest
The authors declare that there is no conflict of interest. 

ACKNOWLEDGMENTS
Financial support was provided by the National Council for Scientific and 
Technological Development (CNPq), Coordination for the Improvement 
of Higher Education Personnel (CAPES), and the Brazilian Agricultural 
Research Corporation (EMBRAPA). Computing services were provided 
by the National Center for High Performance Processing in São Paulo 
(CENAPAD) and the Center for High Throughput Computing (CHTC) at 
UW-Madison. We thank Schuyler Smith for contributions to the bioinfor-
matics pipeline and Sushan Ru for comments on the binomial model.

REFERENCES
Aguiar, D., and S. Istrail. 2013. Haplotype assembly in polyploid genomes 

and identical by descent shared tracts. Bioinformatics 29:i352–i360. 
doi:10.1093/bioinformatics/btt213

Ashraf, B.H., J. Jensen, T. Asp, and L.L. Janss. 2014. Association studies 
using family pools of outcrossing crops based on allele-frequency 
estimates from DNA sequencing. Theor. Appl. Genet. 127:1331–1341. 
doi:10.1007/s00122-014-2300-4

Bastien, M., C. Boudhrioua, G. Fortin, and F. Belzile. 2018. Exploring 
the potential and limitations of genotyping-by-sequencing for SNP 
discovery and genotyping in tetraploid potato. Genome 61:449–456. 
doi:10.1139/gen-2017-0236

Bennetzen, J.L., J. Schmutz, H. Wang, R. Percifield, J. Hawkins, A.C. 
Ponaroli, et al. 2012. Reference genome sequence of the model plant 
Setaria. Nat. Biotechnol. 30:555–561. doi:10.1038/nbt.2196

Bilton, T.P., M.R. Schofield, M.A. Black, D. Chagné, P.L. Wilcox, and 
K.G. Dodds. 2018. Accounting for errors in low coverage high-
throughput sequencing data when constructing genetic maps using 
biparental outcrossed populations. Genetics 209:65–76. doi:10.1534/
genetics.117.300627

Blischak, P.D., L.S. Kubatko, and A.D. Wolfe. 2018. SNP genotyping and 
parameter estimation in polyploids using low-coverage sequencing 
data. Bioinformatics 34:407–415. doi:10.1093/bioinformatics/btx587

Breiman, L. 2001. Random forests. Mach. Learn. 45:5–32. 
doi:10.1023/A:1010933404324

Broad Institute. 2016. Genome analysis toolkit: Understanding and 
adapting the generic hard-filtering recommendations. https://soft-
ware.broadinstitute.org/gatk/documentation/article.php?id=6925 
(accessed 3 Mar. 2018).

Clark, L.V., A.E. Lipka, and E.J. Sacks. 2019. polyRAD: Genotype calling 
with uncertainty from sequencing data in polyploids and diploids. 
G3: Genes, Genomes, Genet. 9:663–673.

Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, 
R.E. Handsaker, G. Lunter, G.T. Marth, S.T. Sherry, G. McVean, and 
R. Durbin. 2011. The variant call format and VCFtools. Bioinformat-
ics 27:2156–2158. doi:10.1093/bioinformatics/btr330

DePristo, M.A., E. Banks, R. Poplin, K.V. Garimella, J.R. Maguire, C. 
Hartl, A.A. Philippakis, G. Del Angel, M.A. Rivas, M. Hanna, A. 
McKenna, T.J. Fennell, A.M. Kernytsky, A.Y. Sivachenko, K. Cibul-
skis, S.B. Gabriel, D. Altshuler, and M.J. Daly. 2011. A framework 
for variation discovery and genotyping using next-generation DNA 
sequencing data. Nat. Genet. 43:491–498. doi:10.1038/ng.806

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. 
Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-by-
sequencing (GBS) approach for high diversity species. PLoS One 
6:e19379. doi:10.1371/journal.pone.0019379

Endelman, J.B., C.A. Schmitz Carley, P.C. Bethke, J.J. Coombs, M.E. 
Clough, W.L. da Silva, et al. 2018. Genetic variance partitioning and 
genome-wide prediction with allele dosage information in autotetra-
ploid potato. Genetics 209:77–87. doi:10.1534/genetics.118.300685

Felcher, K.J., J.J. Coombs, A.N. Massa, C.N. Hansey, J.P. Hamilton, R.E. 
Veilleux, C.B. Buell, and D.S. Douches. 2012. Integration of two 
diploid potato linkage maps with the potato genome sequence. PLoS 
One 7:e36347. doi:10.1371/journal.pone.0036347

Ferreira, R.C.U., L.A. de Castro Lara, L. Chari, S.C.L. Barrios, C.B. do 
Valle, J.R. Valerio, F.Z.V. Torres, A.A.F. Garcia, and A.P. de Souza. 

2019. Genetic mapping with allele dosage information in tetraploid 
Urochloa decumbens (Stapf) R.D. Webster reveals insights into spit-
tlebug (Notozulia entreriana Berg) resistance. Front. Plant Sci. 10:92. 
doi:10.3389/fpls.2019.00092

Fragoso, C.A., C. Heffelfinger, H. Zhao, and S.L. Dellaporta. 2015. Imput-
ing genotypes in biallelic populations from low-coverage sequence 
data. Genetics 202:487–495. doi:10.1534/genetics.115.182071

Garrison, E., and G. Marth. 2012. Haplotype-based variant detection 
from short-read sequencing. arXiv:1207.3907v2.

Gerard, D., L.F.V. Ferrão, A.A.F. Garcia, and M. Stephens. 2018. Genotyp-
ing polyploids from messy sequencing data. Genetics 210:789–807. 
doi:10.1534/genetics.118.301468

Hackett, C.A., K. McLean, and G.J. Bryan. 2013. Linkage analysis and 
QTL mapping using SNP dosage data in a tetraploid potato mapping 
population. PLoS One 8:e63939. doi:10.1371/journal.pone.0063939

Hickey, J.M., J. Crossa, R. Babu, and G. de los Campos. 2012. Factors 
affecting the accuracy of genotype imputation in populations from 
several maize breeding programs. Crop Sci. 52:654–663. doi:10.2135/
cropsci2011.07.0358

Jank, L., S.C. Barrios, C.B. do Valle, R.M. Simeão, and G.F. Alves. 2014. 
The value of improved pastures to Brazilian beef production. Crop 
Pasture Sci. 65:1132–1137. doi:10.1071/CP13319

Jank, L., C. Valle, and R. Resende. 2011. Breeding tropical forages. 
Crop Breed. Appl. Biotechnol. S1:27–34. doi:10.1590/S1984-
70332011000500005

Jungmann, L., B.B.Z. Vigna, K.R. Boldrini, A.C.B. Sousa, C.B. do Valle, 
R.M.S. Resende, M.S. Pagliarini, M.I. Zucchi, and A.P. de Souza. 
2010. Genetic diversity and population structure analysis of the 
tropical pasture grass Brachiaria humidicola based on microsatel-
lites, cytogenetics, morphological traits, and geographical origin. 
Genome 53:698–709. doi:10.1139/G10-055

Koning-Boucoiran, C.F.S., G.D. Esselink, M. Vukosavljev, W.P.C. van’t 
Westende, V.W. Gitonga, F.A. Krens, R.E. Voorrips, W.E. van de 
Weg, D. Schulz, T. Debener, C. Maliepaard, P. Arens, and M.J.M. 
Smulders. 2015. Using RNA-seq to assemble a rose transcriptome 
with more than 13,000 full-length expressed genes and to develop 
the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Front. Plant 
Sci. 6:249. doi:10.3389/fpls.2015.00249

Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with 
Bowtie 2. Nat. Methods 9:357–359. doi:10.1038/nmeth.1923

Li, H. 2013. Aligning sequence reads, clone sequences and assembly con-
tigs with BWA-MEM. arXiv:1303.3997.

Li, X., Y. Wei, A. Acharya, Q. Jiang, J. Kang, and E.C. Brummer. 2014. A 
saturated genetic linkage map of autotetraploid alfalfa (Medicago 
sativa L.) developed using genotyping-by-sequencing is highly syn-
tenous with the Medicago truncatula genome. G3: Genes, Genomes, 
Genet. 4:1971–1979. doi:10.1534/g3.114.012245

Liaw, A., and M. Wiener. 2002. Classification and regression by random-
Forest. R News 2:18–22. doi:10.1177/154405910408300516

Lutts, S., J. Ndikumana, and B.P. Louant. 1991. Fertility of Brachiaria 
ruziziensis in interspecific crosses with Brachiaria decumbens and 
Brachiaria brizantha: Meiotic behavior, pollen viability and seed set. 
Euphytica 57:267–274. doi:10.1007/BF00039673

Martin, M. 2011. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal 17:10–12. 
doi:10.14806/ej.17.1.200

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Ker-
nytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. 
DePristo. 2010. The genome analysis toolkit: A MapReduce frame-
work for analyzing next-generation DNA sequencing data. Genome 
Res. 20:1297–1303. doi:10.1101/gr.107524.110

Melo, A.T.O., R. Bartaula, and I. Hale. 2016. GBS-SNP-CROP: A refer-
ence-optional pipeline for SNP discovery and plant germplasm 
characterization using variable length, paired-end genotyping-by-
sequencing data. BMC Bioinformatics 17:29. doi:10.1186/s12859-
016-0879-y

Miles, J.W. 2007. Apomixis for cultivar development in tropi-
cal forage grasses. Crop Sci. 47:S238–S249. doi:10.2135/
cropsci2007.04.0016IPBS

https://doi.org/10.1093/bioinformatics/btt213
https://doi.org/10.1007/s00122-014-2300-4
https://doi.org/10.1139/gen-2017-0236
https://doi.org/10.1038/nbt.2196
https://doi.org/10.1534/genetics.117.300627
https://doi.org/10.1534/genetics.117.300627
https://doi.org/10.1093/bioinformatics/btx587
https://doi.org/10.1023/A:1010933404324
https://software.broadinstitute.org/gatk/documentation/article.php?id=6925
https://software.broadinstitute.org/gatk/documentation/article.php?id=6925
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1038/ng.806
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1534/genetics.118.300685
https://doi.org/10.1371/journal.pone.0036347
https://doi.org/10.3389/fpls.2019.00092
https://doi.org/10.1534/genetics.115.182071
https://doi.org/10.1534/genetics.118.301468
https://doi.org/10.1371/journal.pone.0063939
https://doi.org/10.2135/cropsci2011.07.0358
https://doi.org/10.2135/cropsci2011.07.0358
https://doi.org/10.1071/CP13319
https://doi.org/10.1590/S1984-70332011000500005
https://doi.org/10.1590/S1984-70332011000500005
https://doi.org/10.1139/G10-055
https://doi.org/10.3389/fpls.2015.00249
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1534/g3.114.012245
https://doi.org/10.1177/154405910408300516
https://doi.org/10.1007/BF00039673
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1186/s12859-016-0879-y
https://doi.org/10.1186/s12859-016-0879-y
https://doi.org/10.2135/cropsci2007.04.0016IPBS
https://doi.org/10.2135/cropsci2007.04.0016IPBS


matias et al. 9 of 9

Miles, J.W., C. Cardona, and G. Sotelo. 2006. Recurrent selection in a 
synthetic Brachiariagrass population improves resistance to three 
spittlebug species. Crop Sci. 46:1088–1093. doi:10.2135/crop-
sci2005.06-0101

Money, D., K. Gardner, Z. Migicovsky, H. Schwaninger, and G.Y. Zhong. 
2015. LinkImpute: Fast and accurate genotype imputation for 
nonmodel organisms. G3: Genes, Genomes, Genet. 5:2383–2390. 
doi:10.1534/g3.115.021667

Monteiro, L.C., J.R. Verzignassi, S.C.L. Barrios, C.B. do Valle, G. de L. 
Benteo, and C.B. de Libório. 2016. Characterization and selection of 
interspecific hybrids of Brachiaria decumbens for seed production in 
Campo Grande-MS. Crop Breed. Appl. Biotechnol. 16:174–181.

Ouyang, S., W. Zhu, J. Hamilton, H. Lin, M. Campbell, K. Childs, F. 
Thibaud-Nissen, R.L. Malek, Y. Lee, L. Zheng, J. Orvis, B. Haas, J. 
Wortman, and C.R. Buell. 2006. The TIGR rice genome annota-
tion resource: Improvements and new features. Nucleic Acids Res. 
35:D883–D887. doi:10.1093/nar/gkl976

Pessoa-Filho, M., A.M. Martins, and M.E. Ferreira. 2017. Molecular dat-
ing of phylogenetic divergence between Urochloa species based on 
complete chloroplast genomes. BMC Genomics 18. doi:10.1186/
s12864-017-3904-2

Poland, J.A., P.J. Brown, M.E. Sorrells, and J.-L. Jannink. 2012. Develop-
ment of high-density genetic maps for barley and wheat using a 
novel two-enzyme genotyping-by-sequencing approach. PLoS One 
7:e32253. doi:10.1371/journal.pone.0032253

R Development Core Team. 2017. R: A language and environment for 
statistical computing. R Foundation for Statistical Computing. 
Vienna, Austria.

Rosyara, U.R., W.S. De Jong, D.S. Douches, and J.B. Endelman. 2016. 
Software for genome-wide association studies in autopolyploids and 
its application to potato. Plant Genome 9:1–10. doi:10.3835/plantge-
nome2015.08.0073

Rutkoski, J.E., J. Poland, J.L. Jannink, and M.E. Sorrells. 2013. Imputa-
tion of unordered markers and the impact on genomic selection 
accuracy. G3: Genes, Genomes, Genet. 3:427–439. doi:10.1534/
g3.112.005363

Schmitz Carley, C.A., J.J. Coombs, D.S. Douches, P.C. Bethke, J.P. Palta, 
R.G. Novy, and J.B. Endelman. 2017. Automated tetraploid genotype 
calling by hierarchical clustering. Theor. Appl. Genet. 130:717–726. 
doi:10.1007/s00122-016-2845-5

Schnable, P.S., D. Ware, R.S. Fulton, J.C. Stein, F. Wei, S. Pasternak, et al. 
2009. The B73 maize genome: Complexity, diversity, and dynamics. 
Science 326:1112–1115. doi:10.1126/science.1178534

Serang, O., M. Mollinari, and A.A.F. Garcia. 2012. Efficient exact maxi-
mum a posteriori computation for Bayesian SNP genotyping in 
polyploids. PLoS One 7:e30906. doi:10.1371/journal.pone.0030906

Silva, P.I.T., A.M. Martins, E.G. Gouvea, M. Pessoa-Filho, and M.E. Fer-
reira. 2013. Development and validation of microsatellite markers 
for Brachiaria ruziziensis obtained by partial genome assembly of 
Illumina single-end reads. BMC Genomics 14. doi:10.1186/1471-
2164-14-17

Su, S.Y., J. White, D.J. Balding, and L.J. Coin. 2008. Inference of hap-
lotypic phase and missing genotypes in polyploid organisms and 
variable copy number genomic regions. BMC Bioinformatics 9:513. 
doi:10.1186/1471-2105-9-513

Sverrisdoìttir, E., S. Byrne, H.E.R. Sundmark, H.Ø. Johnsen, H.G. Kirk, T. 
Asp, L. Janss, and K.L. Nielsen. 2017. Genomic prediction of starch 
content and chipping quality in tetraploid potato using genotyping-
by-sequencing. Theor. Appl. Genet. 130:2091–2108. doi:10.1007/
s00122-017-2944-y

Swarts, K., H. Li, J.A.R. Navarro, D. An, M.C. Romay, S. Hearne, C. 
Acharya, J.C. Glaubitz, S. Mitchell, R.J. Elshire, E.S. Buckler, and 
P.J. Bradbury. 2014. Novel methods to optimize genotypic imputa-
tion for low-coverage, next-generation sequence data in crop plants. 
Plant Genome 7. doi:10.3835/plantgenome2014.05.0023

Swenne, A., B.P. Louant, and M. Dujardin. 1981. Induction par la colchi-
cine de formes autotétraploïdes chez Brachiaria ruziziensis Germain 
et Evrard (Graminée). Agron. Trop. 36:134–141.

Uitdewilligen, J.G.A.M.L., A.M.A. Wolters, B.B. D’hoop, T.J.A. Borm, 
R.G.F. Visser, and H.J. van Eck. 2013. A next-generation sequenc-
ing method for genotyping-by-sequencing of highly heterozygous 
autotetraploid potato. PLoS One 8:e62355. doi:10.1371/journal.
pone.0062355

Vigna, B.B.Z., L. Jungmann, P.M. Francisco, M.I. Zucchi, C.B. do Valle, 
and A.P. de Souza. 2011. Genetic diversity and population structure 
of the Brachiaria brizantha germplasm. Trop. Plant Biol. 4:157–169. 
doi:10.1007/s12042-011-9078-1

Voorrips, R.E., G. Gort, and B. Vosman. 2011. Genotype calling in tet-
raploid species from bi-allelic marker data using mixture models. 
BMC Bioinformatics 12. doi:10.1186/1471-2105-12-172

Worthington, M., C. Heffelfinger, D. Bernal, C. Quintero, Y.P. Zapata, J.G. 
Perez, J. De Vega, J. Miles, S. Dellaporta, and J. Tohme. 2016. A par-
thenogenesis gene candidate and evidence for segmental allopoly-
ploidy in apomictic Brachiaria decumbens. Genetics 203:1117–1132. 
doi:10.1534/genetics.116.190314

Zheng, C., R.E. Voorrips, J. Jansen, C.A. Hackett, J. Ho, and M.C. 
Bink. 2016. Probabilistic multilocus haplotype reconstruction in 
outcrossing tetraploids. Genetics 203:119–131. doi:10.1534/genet-
ics.115.185579 5579

https://doi.org/10.2135/cropsci2005.06-0101
https://doi.org/10.2135/cropsci2005.06-0101
https://doi.org/10.1534/g3.115.021667
https://doi.org/10.1093/nar/gkl976
https://doi.org/10.1186/s12864-017-3904-2
https://doi.org/10.1186/s12864-017-3904-2
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.3835/plantgenome2015.08.0073
https://doi.org/10.3835/plantgenome2015.08.0073
https://doi.org/10.1534/g3.112.005363
https://doi.org/10.1534/g3.112.005363
https://doi.org/10.1007/s00122-016-2845-5
https://doi.org/10.1126/science.1178534
https://doi.org/10.1371/journal.pone.0030906
https://doi.org/10.1186/1471-2164-14-17
https://doi.org/10.1186/1471-2164-14-17
https://doi.org/10.1186/1471-2105-9-513
https://doi.org/10.1007/s00122-017-2944-y
https://doi.org/10.1007/s00122-017-2944-y
https://doi.org/10.3835/plantgenome2014.05.0023
https://doi.org/10.1371/journal.pone.0062355
https://doi.org/10.1371/journal.pone.0062355
https://doi.org/10.1007/s12042-011-9078-1
https://doi.org/10.1186/1471-2105-12-172
https://doi.org/10.1534/genetics.116.190314
https://doi.org/10.1534/genetics.115.185579
https://doi.org/10.1534/genetics.115.185579

