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ABSTRACT Genomic selection is an efficient approach to get shorter breeding cycles in recurrent selection
programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping
techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in
diploid species. The major challenge is to distinguish the different types of heterozygotes present in
polyploid populations. In this work, we evaluated different genomic prediction models applied to a
recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We
also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or
diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic
traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotyping-
by-sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype
calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was
estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed
considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with
GS-DD data. However, different predictive models had similar predictive ability performance. In this work,
we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that geno-
mic selection may lead to additional gains in recurrent selection program of P. maximum.
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Many agricultural and forage crops of economic importance are auto-
tetraploids, such as potato (Solanum tuberosum) (Allard 1960), alfalfa

(Medicago sativa) (McCoy and Bingham 1988), and guinea grass
(Panicum maximum Jacq.) (Warmke 1954; Jank et al. 2014). For these
species, marker alleles can be represented with different dosages rang-
ing from 0 to 4. This allele dosage refers to the number of copies of
the reference allele, ranging from aaaa for nulliplex, Aaaa for sim-
plex (single dose), and so on up to AAAA (quadruplex), where A is
the reference allele, for a biallelic marker, such as Single Nucleotide
Polymorphisms (SNPs).

Historically, genetic analysis in polyploids has been based on single
dosemarkers,mostly for building geneticmaps (Wu et al. 1992;Hackett
and Luo 2003). With the development of Next-Generation Sequencing
(NGS) technologies and the advance of genetic and statistical methods,
new possibilities have arisen to enable studies of the complex poly-
ploid genomes for many crops (Garcia et al. 2013). In these species,
the evaluation of SNP throughout the genome allows one to assess the
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relative abundance of each allele (Voorrips et al. 2011; Serang et al.
2012; Garcia et al. 2013; Hackett et al. 2013; Mollinari and Serang 2013;
Schmitz Carley et al. 2017; Gerard et al. 2018).

According to Osborn et al. (2003), the allele dosage is expected to be
related to different expression levels of some target traits. Thus, poly-
ploidy can increase the potential variation in its genic expression,
reflecting in phenotypic variation. Therefore, the inclusion of allele
dosage information has become important for genetic studies in
polyploid species (Garcia et al. 2013; Hackett et al. 2013; Endelman
et al. 2018). In addition, it will allow the development of new statistical
models in autopolyploid species, such as in the forage P. maximum.

Panicum maximum Jacq. (Syn. Megathyrsus maximum Jacq. B. K.
Simon & S. W. L. Jacobs) is a perennial tropical autotetraploid forage
grass (2n ¼ 4x ¼ 32) that reproduces by facultative apomixis (Warmke
1954), which means a high percentage of asexual reproduction by seeds.
Cross-breeding started with the doubling of chromosomes by colchicine
of rare diploid sexual plants (2n ¼ 2x ¼ 16) found in the center of or-
igin in East Africa (Pernès 1975). This enabled the successful crossing
between apomictic and sexual plants on a tetraploid level, giving rise to a
progeny of sexual and apomictic hybrids in a 1:1 ratio (Savidan 1978).
This means that it is possible to fix the hybrid vigor by apomixis in the
F1 generation. Also, superior sexual hybrids can be used as newparents in
sexual · apomictic crosses or as donors of favorable alleles in sexual
populations.

Few breeding generations separate the founder diploid accessions
from the current sexual parents, and increase in the frequency of
favorable alleles by selection for traits such as disease resistance,
regrowth, biomass and seasonal yield, and nutritive value is necessary.
Currently, conventional methods such as half-sib recurrent selection
(RS) scheme (Hallauer and Carena 2012) have been carried out in
sexual populations to increase the general combining ability of sexual
parents.However, RS is a long termprogramas each cycle requires from
three to five years for developing, evaluating, selecting and recombining
superior plants. The evaluation phase needs two years for phenotyping
the target traits in different harvests and seasons (rainy and dry sea-
sons), and is the most time and expensive phase of the RS program.
Thus, methods that accelerate the RS cycles will speed up the develop-
ment of superior sexual parents for crossing with apomictic plants and
increase the probability of releasing improved apomictic cultivars in the
market. This is one of the goals of EMBRAPA, the Brazilian Agricul-
tural Research Corporation. The unit Embrapa Beef Cattle is respon-
sible for forage breeding programs, where the main crops are
Brachiaria spp. and P. maximum (Jank et al. 2011). This research
was established into the P. maximum recurrent genomic selection
program.

Initially proposed by Meuwissen et al. (2001), genomic selection
(GS) is an approach that uses statistical methods to predict breeding
values from markers distributed throughout the genome. It uses all
markers simultaneously to calculate the genomic estimated breeding
values (GEBVs) of individuals for ranking and progeny selection
(Meuwissen et al. 2001; Bernardo 2014). GS has recently been proposed
as a useful tool for rapid genetic gains in RS (Massman et al. 2013;
Müller et al. 2017; Zhang et al. 2017). It is a promising approach to
accelerate cycles of recurrent selection since an established prediction
equation can be used repeatedly for multiple cycles of selection (Müller
et al. 2017). Furthermore, GS promises to increase genetic gain per unit
of time, reduce costs for phenotyping, and increase the accuracy of
selection.

Most of the availableGSmodelswere developed for diploids, and are
notwell adapted andevaluated for polyploid species. Thehuge challenge
in working with polyploid species is in the correct distinction among

different types of heterozygotes. Hidden heterozygotes lead to
pseudo-diploid models, that are commonly applied in polyploid
species (Annicchiarico et al. 2015; Biazzi et al. 2017). However,
the impact of this approximation for GS models has only been
reported in a few studies (Endelman et al. 2018; Oliveira et al. 2019).

The goal of this research was to develop and to evaluate predictive
models for genomic selection in P. maximum. For this purpose,
we compared different predictive models considering tetraploid and
diploid allele dosage to obtain the GEBVs. The genotype calling was
performed to allow the identification of different dose levels, showing
all heterozygous genotypes and six different GS models were extended
to incorporate the tetraploid allele dosage. To our knowledge, this is the
first study that includes tetraploid dosage in whole-genome regression
models for genomic selection in this tropical forage grass, combined
with a high throughput genotyping in a sexual recurrent selection
population of P. maximum.

MATERIALS AND METHODS

Panicum maximum population
We generated P. maximummulti-parental population using 20 selected
plants (JA, S7, S13, S16, A42, B87, T103, T4610, A47, A72, B107, C48,
C16, B22, Y34, C54, B74, B96, BX4, and B103) as male parents and
19 sexual plants (the same set of plants except B107) as female parents
in a polycross mating design. These parents were selected based on
relevant agronomic performance in the forage breeding program at
Embrapa Beef Cattle during the last 30 years. After the crossing process,
we synthesized 19 half-sibs progeny families, each family composed of
30 individuals, resulting in a total of 570 tetraploid sexual plants.

Phenotypic evaluation
Themulti-parental population was evaluated in a split-plot randomized
complete block design with six replications at Embrapa Beef Cattle, in
CampoGrande city,MatoGrosso do Sul state, Brazil (20∘27’S, 54∘37’W,
530m). Half-sib progenies (represented by each female parent) were
treated as the whole plot factor, while individuals were treated as sub-
plot factors. Experimental units were 5m by 2m sized plots containing
5 individual plants of a family or 5 clones of one of three apomictic
cultivars (B107, Mombaça, and Tanzânia). Thus, each block consisted
of a total of 22 (19 half-sib families and three check cultivars) and a total
of 110 individual plants (Figure S1). Therefore 660 plants were evalu-
ated in the experiment, in which 570 were individuals from the 19 half-
sib progenies and 90 were clones from the apomictic cultivars.

Each individual plant was evaluated for six traits: leaf dry
matter (LDM - g/plant), regrowth capacity (RC), percentage of leaf
blade (PLB - %), organic matter (OM - %), crude protein (CP - %), and
in vitro digestibility of organic matter (IVD - %). The RC trait was
evaluated seven days after the harvest using density notes and speed
notes of sprouted stems. We considered these traits due their agro-
nomic importance for forage breeding, especially for better forage qual-
ity properties for animal consumption. Thus, forage value is measured
indirectly by being converted into animal products (such as meat, milk,
leather, and furs) (Jank et al. 2011). The first three traits were evaluated
for eight harvests, during the years of 2013 (four harvests), 2014 (one
harvest), and 2015 (three harvests), and the last three were evaluated for
four harvests, during the years of 2013 and 2015 (two harvests each).

Statistical analysis of phenotypic data
For each trait, wefitted the following longitudinal linearmixedmodel to
obtain predicted means later used in genomic selection analysis. The
model is
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yijkl ¼ mþ hl þ bkðlÞ þ pjðlÞ þ bpkjðlÞ þ til þ eijkl (1)

where yijkl was the phenotypic value of the ith plant from the parent
j in the block k at the harvest l,mwas the fixed overall mean, hl was the
fixed effect of the lth harvest (l ¼ 1; . . . ; L, with L ¼ 8 for LDM, RC,
and PLB traits, and L ¼ 4 for OM, CP, and IVD traits), bkðlÞ was the
random effect of the kth block (k ¼ 1; . . . ;K , with K ¼ 6) at the
harvest l, pjðlÞ was the random effect of the jth parent (j ¼ 1; . . . ; J ,
with J ¼ 22) at the harvest l, bpkjðlÞ was the random interaction effect
of block k and parent j at the harvest l, til was the effect of the ith plant
(i ¼ 1; . . . ; I, with I ¼ 573) at the harvest l, and eijkl was the random
environmental error. The plant effects (til) were separated into two
groups, in which gil was the random effect of the ith individual geno-
type (i ¼ 1; . . . ; Ig , with Ig ¼ 570) at the harvest l, and cil was the
fixed effect of the ith apomictic cultivar (i ¼ Ig þ 1; . . . ; Ig þ Ic, with
Ic ¼ 3) at the harvest l. For genotypes, the vector g ¼ ðg11; . . . ; gIgLÞ9
was assumed to follow a multivariate normal distribution with zero
mean and genetic VCOV matrix G ¼ GL5IIg , i.e., g � Nð0;GÞ. For
residuals, e � Nð0;RÞ, where e ¼ ðe1111; . . . ; eIJKLÞ9 and R ¼ RL5II�J�K .
For parents, pjðklÞ � Nð0;s2

pÞ and for blocks, bkðlÞ � Nð0;s2
bÞ.

The choice of the genetic (GL) and residual (RL)VCOVmatriceswas
performed hierarchically as follows. First, we picked the model with the
best fit for the VCOV structures of the genetic effects among nine
different VCOV structures (Table 1). This was done assuming an iden-
tity matrix (ID) as the VCOV matrix of the residual effects. Then, this
picked model was evaluated assuming nine different VCOV structures
for residual effects. Finally, the model with the best fit for the VCOV
structure of the residual effect was selected. The models’ goodness
of fitness were computed with Akaike Information Criterion (AIC)
(Akaike 1974) and Bayesian Information Criterion (BIC) (Schwarz
1978). These analyses were performed in the R package ASReml-R
(Butler et al. 2009). The generalized heritability (broad-sense heritabil-
ity) for each trait was calculated using the same model as before men-
tioned but considering GL matrix as CS and RL as ID, according
to Cullis et al. (2006) as:

Ĥ
2
C ¼ 12

PEV
2s2

G
(2)

where, PEV is the prediction error variance (average variance of in-
dividual plant comparisons) and s2

G is the genetic variance.

Molecular data
Due to losses of individuals in the field, we sequenced a total of
530 offspring. DNA of these 530 offspring were extracted using the
DNeasy Plant kit (QIAGEN) and sequenced along with female parents
each repeated twice. To provide a higher sequence depth, genotyping-
by-sequencing (GBS) was conducted in NextSeq 500 platform for
96-plex Pst1 libraries and following the protocol from Genomic Di-
versity Facility, Cornell University (Elshire et al. 2011). Raw data were
analyzed using Tassel-GBS pipeline (Glaubitz et al. 2014) modified to
obtain the exact read counts for each SNP allele (Pereira et al. 2018). As
this pipeline requires a reference genome and P. maximum does not
have one, we aligned the GBS tags against six pseudo-references from
other diploid and tetraploid forage genomes, and P. maximum tran-
scriptomes: (i) Panicum hallii genome (v. 2.0, DOE-JGI; �554 Mb
arranged in 9 chromosomes and 8,405 scaffolds; diploid forage); (ii)
Panicum virgatum genome (v 1.0, DOE-JGI; �1,230 Mb arranged in
total of 18 chromosomes, 9 chromosomes named as A and B each,
and 220,646 contigs; allotetraploid forage); (iii) Setaria italica genome
(v 2.2;�405.7Mb arranged in 336 scaffolds; diploid forage) (Bennetzen

et al. 2012); (iv) Setaria viridis genome (v 1.0, DOE-JGI; �394.9 Mb
arranged in 9 chromosomes and 724 scaffolds; diploid forage); (v)
transcriptome of P. maximum obtained by EMBRAPA institution
(43,803 transcripts with mean length of 841.334 bases); and (vi) tran-
scriptome of P. maximum obtained by UNICAMP institution (138,853
transcripts with mean length of 695.658 bases). All the genomes are
available in Phytozome website (http://www.phytozome.jgi.doe.gov/)
(Goodstein et al. 2011). The transcriptomes were provided di-
rectly by the mentioned institutions. The transcriptome obtained by
UNICAMP was published by Toledo-Silva et al. (2013). The transcrip-
tome obtained by EMBRAPA has not yet been published. Bowtie2
algorithm (Langmead and Salzberg 2012) was used to align tags against
each reference with -D and -R parameters defined as 20 and 4, re-
spectively, and with very-sensitive-local argument. Common reads that
aligned to the different genomes were called as different SNP markers.
Then, we performed a preliminary analysis evaluating the prediction
accuracy of models containing all the markers against models contain-
ing only non-redundant markers in genomic prediction models. As
predictive accuracies between them did not differ, we chose to use all
the markers in the subsequent analyses.

In Tassel-GBS pipeline, the minimum minor allele frequency
(mnMAF) considered was 1%. The counting information derived from
the Tassel-GBS pipelinewas used to estimate the tetraploid allele dosage
for each loci using SuperMASSA (Serang et al. 2012; Pereira et al. 2018).
This software is designed especially for SNP calling in polyploid species
based on probabilistic graphical models. In SuperMASSA software,
the minimum overall depth considered was 25 reads and the model
used was “Generalized Population Model”. Markers were fitted and
filtered to ploidy 4. Triallelic SNPs and markers with more than 5%
of missing data were filtered out. Since the selection of markers with up
to 5% of missing data are a very strict filter, it is expected to include few
percentage of errors due to the imputation process. The imputationwas
made using random sampling considering the frequency of each dose
within each marker. Redundancy among markers was analyzed and
displayed using R package circlize (Gu et al. 2014). The name of the
markers was formed by: reference genome plus chromosome number
plus position of SNP in the chromosome.

As linkage disequilibrium (LD) can affect the prediction accuracy
of GS, the LD was estimated using squared Pearson correlation, r2

(Vos et al. 2017). Correlations were calculated on tetraploid dosage
(0, 1, 2, 3, and 4) between marker pairs with up 1500 bp of distance

n Table 1 Variance and covariance structures examined for
genetic (GL matrix) and residual effects (RL matrix)

Model nPARa Description

ID 1 Identical variation
DIAG L Heterogeneous variation
CS 2 Compound symmetry with

homogeneous variation
CSHet L + 1 Compound symmetry with

heterogeneous variation
AR1 2 First-order autoregressive model

with homogeneous variation
AR1Het L + 1 First-order autoregressive model

with heterogeneous variation
Po 2 Power model with homogeneous

variation
PoHet L + 1 Power model with heterogeneous

variation
US L(L+1)/2 Unstructured model
a
The number of parameters for the models, where L is the number of harvests.
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for each reference genome. The average r2 between adjacent markers
were calculated and, subsequently, the pairwise correlations were
pooled over all chromosomes for each reference genome. A principal
component analysis (PCA) was performed on the genotype data to
detect population structure and displayed using ggplot2 (Wickham
2009). The relatedness among individuals was assessed computing (i)
a pedigree-based additive relationshipmatrix (Amadeu et al. 2016), and
(ii) a marker-based genomic relationship matrix (VanRaden 2008)
using the R package AGHmatrix (Amadeu et al. 2016).

Genomic prediction models using tetraploid dosage
Here,wegeneralizedwellknownGSmodels fordiploid to tetraploidspecies
using the informationof tetraploid allele dosage.Our response variablewas
the marginal predicted values of individual plants across harvests (BLUPs
considering all harvests simultaneously). We evaluated both bayesian and
frequentist approaches: BayesianRidgeRegression (BRR) (Whittaker et al.
2000;Meuwissen et al. 2001); BayesA (BA) (Meuwissen et al. 2001); Bayes
B (BB) (Meuwissen et al. 2001); Bayes C (BC) (Habier et al. 2011);
Bayesian LASSO (BL) (Park and Casella 2008); and Genomic Best Linear
Unbiased Predictor (GBLUP) (VanRaden 2008).

All bayesian models expanded for tetraploid allele dosage (TD
models) share the same predictive multiple linear regression model
(a complete description of these models can be seen at Pérez and de los
Campos (2014) and de los Campos et al. (2013)),

y ¼ 1nmþ Xbþ e (3)

where, y (n· 1) is the n adjusted entry mean response vector (mean
values across harvests obtained from the phenotypic analysis); 1n is a
vector of 1’s; m is a scalar representing the population mean; X (n · p)
is the tetraploid allele dosage incidence matrix of pmarker loci coded
as xij⊂f0; 1; 2; 3; 4g according to the copy number of the reference
allele for individual i at marker j; b (p · 1) is the vector of (unknown)
marker with tetraploid dosage genetic (TDG) effects; and e (n· 1) is
the vector of residual effects, e � MVNð0n; Is2

e Þ.
Different assumptions of TDG effects were evaluated. BRR-TD

model assumes that all marker loci share the same normal prior
distribution, bj

�
�
�s2

b � Nð0;s2
bÞ, where the common genetic variance

hyperparameter (s2
b) follows a scaled inverse chi-squared hyperprior

distribution s2
bjd:f :b; Sb � x22ðd:f :b; SbÞ, where d:f :b is the number

of degrees of freedom and Sb is the scale parameter of the distribution.
BA-TD model is an extension of the above model, which assumes

that each TDG prior effects follows specific normal densities,
bj

�
�
�s2

bj
� Nð0;s2

bj
Þ. As before, each specific genetic variance hyper-

parameter (s2
bj
) follows a scaled inverse chi-squared distribution. Due

to its property, we expect that BA-TD model tends to shrink TDG
effects with different prior strength (desirable for highly parameter-
ized models, p � n), as opposed to the BRR-TD that assumes a
common genetic variance hyperparameter. Genetically, these as-
sumptions mean that the analyzed traits are controlled by many genes
of small effects and few genes of large effects.

BB-TD model is an extension of BA-TD model, that takes into ac-
count the TDG effects prior as a mixture of two normal densities,
bjjd;s2

bj
;p � p  Nð0; dÞ þ ð12pÞ  Nð0;s2

bj
Þ, where d is the genetic

variance hyperparameter assumed as a known infinitesimal small value.
In this model, we can interpret the mixture proportion (p) as a known
expectation of a Bernoulli randomvariable, that is, the expectation ofwhich
mixture component best describes theTDGeffects (Dos Santos et al. 2016).

BC-TDmodel is a parsimonious variant of the BB-TDmodel, which
considers that all TDGeffects follows a commonmixture of two normal
distributions, bjjd;s2

b;p � p  Nð0; dÞ þ ð12pÞ  Nð0;s2
bÞ.

BL-TD model assumes that all markers follows specific normal
priors, with genetic variance hyperprior given by the product s2

es
2
bj
.

However, the key difference of BL-TD is the assumption that one
component of genetic variance hyperparameters follows exponential
distributions,s2

bj

�
�lb � ExpðlbÞ. The hyperparameter lb measures the

knowledge (precision) about the genetic variance hyperparameter. As
the usual procedure for all the above models, we assume the residual
genetic variance hyperparameter follows s2

e

�
�d:f :e; Se � x22ðd:f :e; SeÞ.

The frequentist model GBLUP-TD was:

y ¼ 1nmþ Zg þ e (4)

where y, 1n, m, and eij are the same as previously defined; Z (n· n) is
an identity indicence matrix, and g (n· 1) is the vector map-
ping the individuals total dosage genetic effects (random effect).
The GBLUP-TD model assumes that the random variable g
follows a multivariate normal distribution, g � MVNð0n;K�s2

gÞ,
where s2

g represents the genetic variance of the population and
K� ¼ 0:99K þ 0:01A, where K is the genomic relationship matrix
and A the additive relationship matrix (VanRaden 2008; Aguilar
et al. 2010; Isik et al. 2017). This normalization is necessary to obtain
a invertible genomic relationship matrix (Isik et al. 2017) and the use
of such weight does not result in critical differences in the outputs
(VanRaden 2008; Aguilar et al. 2010). The K matrix, for tetraploid
organisms, can be expressed as K ¼ WWT

trðWWT Þ=n, wereW is the centered
marker score matrix. Each ki9i onK can be interpreted as a correlation
between genotypes of different individuals (genomic relationship),
and each kii as the correlation of the genotypes of an individual
with itself (inbreeding). K and A matrices were computated using
R package AGHmatrix (Amadeu et al. 2016).

Tofit all bayesianmodels,weused theRpackageBGLR(Pérezandde
los Campos 2014), choosing the default package settings for all known
hyperparameters. To obtain the posterior distribution of the unknown
parameters and hyperparameters, we used the Gibbs sampler with
20,000 iterations; the first 2,000 cycles were discarded as burn in.
The GBLUP-TD model was analyzed using the R package ASReml-R
(Butler et al. 2009).

Model evaluation
The best statistical model was selected for each of the phenotypic traits.
Cross-validationwithfivefolds has been repeated 100 times for bayesian
approaches (computationally intensive) and 1,000 times for the fre-
quentist approach, to obtain an asymptotic empirical distribution of the
predictive ability. In each replication, the populationwas randomly split
into five disjoint subsets of genotypes. Whereas one subset was used as
validation population (20%or 106 individuals), the remaining fourwere
combinedas trainingpopulation (80%or424 individuals) topredicte the
left-out genotypes in the first population. Subsequently, another subset
was used as validation population and the left-out genotypes of this set
were predicted. These stepswere repeated until all five subsetswere used
as validation population once.

We calculated Pearson correlation between observed (y) and pre-
dicted (ŷ) adjusted entry means for the validation sets, considering,
simultaneously, all five cross-validations of each replication. Predictive
ability was calculated as the mean of these correlations. In addition, we
also derived the empirical distribution of the predicted residual error
sums of squares (PRESS), given by the sum of squares of the difference
between the predicted and observed adjusted entrymeans. The narrow-
sense heritability was calculated as:

ĥ
2 ¼ s2

A

s2
P

(5)
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where, s2
A is the additive genetic variance and s2

P is the phenotypic
variance from GBLUP analysis. Therefore, this estimate corresponds
to a genomic heritability, using the additive relationship matrix from
molecular markers.

Genomic prediction models using diploid dosage
Wealso performed a comparison betweenGSmodels using diploid and
tetraploid alleledosage (GS-DDandGS-TDmodels, respectively). Todo
so, the three possible heterozygotes (Aaaa, AAaa, and AAAa) were
coded as a single heterozygote (Aa), while the two tetraploid homozy-
gotes (AAAA and aaaa) as diploid homozygotes (AA and aa). Molec-
ular data were filtered to eliminatemarkers containing only doses 0 and
1. This step was necessary since the offspring were closely related
among them and most of the genotypes in the full data were classified
as aaaa or Aaaa (84.27% and 12.57%, respectively). Therefore, the
molecular data set decreased from 41,424 to 1,223 markers. In these
new data, tetraploid molecular matrix contains 1,223 markers coded as
0, 1, 2, 3, and 4, and diploid molecular matrix contains the same 1,223
markers coded as 0, 1, and 2. Usual GBLUPmodel with diploid dosage
(GBLUP-DD) was evaluated using R package ASReml-R (Butler et al.
2009), considering the genomics relationship matrix as described by
VanRaden (2008). Bayesianmodels with diploid dosage were evaluated
using R package BGLR (Pérez and de los Campos 2014). The model
evaluation was performed as previously described.

Data Availability
Phenotypic and molecular data and R code files can be found
at: ,https://github.com/leticia-lara/PM_data.. GBS data have been
submitted to the NCBI Sequence Read Archive with the BioProject
ID: PR-JNA510446. Additional information can also be found in the
supplementary material. Figure S1 contains an illustrative scheme of
the experimental design. Figure S2 contains the proportion of missing
data in molecular dataset. Figure S3 contains the heatmaps of relation-
ship matrices. Figure S4 contains the principal component analysis.
Figure S5 contains the linkage disequilibrium analysis. Table S1 con-
tains model selection for phenotypic traits. Table S2 contains the align-
ment rate for each reference genome. Table S3 contains the PRESS of
predictive models for each trait. Table S4 contains the mean predictive
ability of genomic selection models using tetraploid dosage for all
markers. Table S5 contains the comparison between individual plant
values based on half-sib family means and the genomic prediction of
individuals. Supplemental material available at FigShare: https://
doi.org/10.25387/g3.7762958.

RESULTS

Phenotypic models
All VCOV structures selected for GL and RL matrices allowed for
heterogeneous variation and/or correlations across harvests for genetic
and residual effects (Table S1). When the selection by AIC was not in
agreement with the selection by BIC, we calculated the differences be-
tween these two selected models considering both criteria and selected
by the criteria that obtained the higher difference. For example, con-
sidering the OM trait and GL matrix, the PoHet had the lowest AIC
value (with AIC criteria of 2774.400 and BIC criteria of 2826.809) and
the Po had the lowest BIC value (with AIC criteria of 2782.262 and BIC
criteria of 2817.201). The differences between these two selectedmodels
were 7.862 for AIC (2782.262 - 2774.400) and 9.608 for BIC (2826.809 -
2817.201). As BIC criteria had the higher difference, this criteria was
used and the Po matrix was selected for GL matrix in OM trait. The
most commom selected matrix for genetic effects was AR1Het , which

was selected for CP and IVD, and different VCOV matrices were
selected for residual effects. Generalized heritabilities were 0.66, 0.42,
0.48, 0.89, 0.85, and 0.43 for OM, CP, IDV, LDM, RC, and PLB, re-
spectively. On average, traits evaluated in four harvests had lower her-
itability than traits evaluated in eight harvests.

Genotype calling
Approximately 485 million of reads per lane were obtained from short
read sequencing, where 81.73% were good barcoded reads. The align-
ment of 6,596,939 read tags using P. hallii, P. virgatum, S. italica,
S. viridis, and two transcriptomes of P. maximum (Table 2) showed
that the overall alignment ranged from 19.05 to 24.24%. Although
transcriptomes obtained by UNICAMP had the highest overall align-
ment rate, transcriptomes obtained by EMBRAPA had the highest
unique alignment rate, followed by S. viridis and S. italica (Table S2).
A total of 476,904 markers were obtained as the sum of the final
number of markers for each reference genome (Table 2).

Due to the nature of GBS technique, the sequencing coverage of
different samples are random. It is possible that the samegenomic region
was not sequenced for all samples. Furthermore, sequences that have
mutation in the restriction site of the enzyme are also not observed
(Elshire et al. 2011). Therefore, a large amount of missing data are
expected. The reference genomes of P. hallii, P. virgatum, S. italica,
and S. viridis had around 5,000 markers with 87% missing data
(Figure S2). Markers with a high proportion of missing values were
eliminated in subsequent steps. Besides, most part of the selected
markers had 0% missing data after the Tassel-GBS pipeline. S. italica,
S. viridis, and transcriptome obtained by EMBRAPA had more than
15,000 markers with 0% missing data.

VCF files obtained from Tassel-GBS pipeline were used as input in
the SuperMASSA software. A total of 78,289 markers was selected
with minimum average depth for the population of 25 reads (Table 2).
From this, 32,619 markers had more than 100 minimum overall depth.
For example, the scatterplot of marker Hallii.1_3461595 (Figure 1)
shows the intuition of how SuperMASSA uses count reads of two alleles
to classify individuals according to their genotype using a probabilistic
graphical model (Serang et al. 2012).

High level ofmissingdata can impact the performanceofGSmodels,
and precise imputation of missing entries can be complex, especially
when considering polyploid genomes. Therefore, markers were selected
with up to 5% of missing data, aiming to reduce imputation bias. The
final number of markers was 41,424, which were used in GS models
(Table 2). Subsequently, imputation was made using random sampling
and considering the dose frequency for each marker.

The redundancy among markers was inspected (Figure 2) and a
large similarity was verified within three specific groups of reference:
Panicum genus, Setaria genus, and transcriptomes. This result is
expected due to phylogenetic proximity of the groups (Aliscioni et al.
2003; Bennetzen et al. 2012). More than half of the markers identified
by the different reference genomes have non-redundant information,
and 31,046 markers were classified as unique (74.95%). This may be
due to the great genomic variability still persistent in each genome,
since they are relatively new in terms of breeding.

Population structure and linkage disequilibrium
Atraceof population structurewas detected for the additive relationship
matrix based on pedigree information (Figure S3A) as expected, since
these pedigrees consider only female parental information.However, no
clear population structure was detected for the genomic relationship
matrix based on molecular markers (Figure S3B). We also confirmed a
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relevant trace of population structure for female parents by principal
component analysis of their genotype data, in which the three first
principal components explained, respectively, 20.88, 11.98, and
10.23% of the total variability in these parents (Figure S4A). On
the other hand, the principal component analysis for the 19 half-sib
families (530 individuals) did not detected the population structure
in these population. Their first three principal components
explained, respectively, 6.20, 4.91, and 4.03% of the total variability
in the breeding population (Figure S4B).

Average linkage disequilibrium (LD) between marker pairs was
0.3063, 0.3321, 0.3155, 0.3165, 0.2401, and 0.2810 formarkers identified
from P. hallii, P. virgatum, S. italica, S. viridis, and transcriptomes of
P. maximum obtained by EMBRAPA and UNICAMP, respectively
(Figure S5). The LD decay was lower for P. hallii, S. italica, and S. viridis
than for others.

Genomic prediction using tetraploid dosage
Genomic selectionmodels were evaluated using all markers (41,424
markers) and only non-redundant ones (31,046 markers). The
predictive accuracy did not differ between these two data sets
(results not shown), since the predictive models deal well with
multicollinearity. From now on, only predictive models using all
markers will be presented.

Mean values of predictive ability ranged from 0.1610 (BL-TD for
LDM) to 0.4229 (BB-TD for OM) (Table S4). LDM showed the lowest
accuracies for all analyzed GS-TD models and OM showed the highest
ones (Figure 3). No clear difference in predictive ability was observed
among models (Figure 3A). The BL-TD model for LDM showed the
highest estimates of standardized PRESS (Figure 3B, Table S3).

Comparison between GS-TD and GS-DD models
The mean predictive ability showed clear differences between GS-TD
and GS-DD models (Figure 4 and Table 3). Almost all GS-TD models
were superior to GS-DD models for most of the analyzed traits. The
higest superiority was for LDM, with an average superiority of 50.96%
for GS-TD model in relation to GS-DD model. The narrow-sense
heritability ranged from 0.11 for LDM to 0.53 to OM. These results
were consistent with those obtained for the predictive abilities, which is
expected since both were calculated considering the additive effects
(Table 3).

DISCUSSION
The aimof this studywas todeveloppredictivemodels considering allele
dosage for autotetraploid species, with applications in P.maximum.We
extended six different GS models to autotetraploid species and com-
pared the accuracy of predicted breeding values of these models. To the
best of our knowledge, this is for the first time where the efficiency of
genomic selection models considering the information from hidden
heterozygotes in the autotetraploid tropical forage P. maximum has

been reported. Furthermore, we evaluated strategies for modeling re-
sidual effects during phenotypic analysis, and performing quantitative
genotype calling in autotetraploid species. This methodology can be
applied to other autotetraploid species as well as can be extended to
species with higher ploidy levels.

Before the development of GS models considering tetraploid allele
dosage(GS-TDmodels), it is important toperformaphenotypic analysis
carefully since the sucess of GS in breeding for quantitative traits largely
depends of phenotyping process (Cabrera-Bosquet et al. 2012). We
performed a two stage approach for genomic selection, where we con-
sidered only phenotypic data in the first stage and incorporated mo-
lecular data in the second stage. In the first stage, for each trait, we fitted
a longitudinal linear mixed model and treated genotypes as random.
We recognized there is a discussion about fit genotype as random in the
first stage (Schulz-Streeck et al. 2013). However, as we have multiple
harvests and we are modeling genotype effects nested within harvests,
with VCOV structure for genotype values across harvests, the model
requires to treat genotype as random. The gain in information by in-
corporating the correlations among harvests is corroborated in the
VCOV structures selection, in which the matrices allowing heteroge-
neous genetic and residual variation as well as allowing correlation
among harvests provided a better fit than other models for most ana-
lyzed traits (Table S1). Moreover, there was reported in the literature
that the use of BLUPs (Best Linear Unbiased Predictor, and in this case,
it refers to the marginal predicted values of individual plants across
harvests) does not result in significant differences for selection purposes
(Galli et al. 2018), and it has been already applied in other GS studies
as a simple approach to include correlations among traits/harvests/
environments (Asoro et al. 2011; Resende et al. 2017; Ferrão et al.
2017; de Oliveira et al. 2018). Furthermore, we calculated the dereg-
ressed BLUPs, but the GS models had lower predictive ability than

n Table 2 Overall alignment rate and total number of markers obtained after Tassel-GBS pipeline, allele dosage in SuperMASSA software,
and selection of up to 5% of missing data (Filter NA), for each reference genome

Reference Genome Overall alignment rate Tassel-GBS SuperMASSA Filter NA

Panicum hallii 19.05% 77,105 12,835 6,945
Panicum virgatum 22.66% 84,119 11,230 5,598
Setaria italica 22.04% 92,494 15,047 8,066
Setaria viridis 22.07% 92,591 15,271 8,118
Transcriptome (EMBRAPA) 20.11% 74,049 14,129 7,665
Transcriptome (UNICAMP) 24.24% 56,546 9,777 5,032
Total – 476,904 78,289 41,424

Figure 1 Tetraploid allele dosage for marker Hallii.1_3461595.
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using the marginal predicted values of individual plants across harvests
(results not shown).

In the second stage, molecular markers were considered in the
predictivemodels. For this, the genotype calling took into consideration
the allele dosage, discriminating among the five possible genotypes.
According to Uitdewilligen et al. (2013), a high sequence depth is re-
quired to identify the genotypic class accurately for autotetraploid

species, where 60–80 depth leads to 98.4% accuracy in genotypic calls.
Reads were also selected with minimum overall depth of 100 reads.
However, as the predictive ability of GS-TD models was similar for
both criteria (results not shown), we chose to keep only the analysis
with an overall depth of 25 reads (approximately 78.7% of markers
selected with minimum overall depth of 25 reads were also selected
with minimum overall depth of 100 reads). This is a less strict filter for

Figure 2 Redundancy among markers. Re-
gions in red represent redundant markers
within each reference, while regions in black,
pink, blue, green, and orange represent re-
dundant markers among six, five, four, three,
and two references, respectively. Gray re-
gions represent markers with unique infor-
mation for each reference.

Figure 3 Comparison among six genomic selection models using tetraploid dosage (GS-TD) for organic matter (OM), in vitro digestibility of
organic matter (IVD), crude protein (CP), leaf dry matter (LDM), regrowth capacity (RC), and percentage of leaf blade (PLB). Molecular data
contains 41,424 markers. (A) Predictive ability. (B) Standardized Predicted Residual Error Sum of Squares.
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the practical pipeline of breeding and contains a larger number of
markers.

The underlying assumption of genomic selection is the presence of
SNPsat some loci in linkagedisequilibrium(LD)withQuantitativeTrait
Loci (QTL) alleles that affect traits which are subject to selection (Calus
et al. 2008). LD represents the non-random association between alleles
at different loci and it can be estimated using the correlation among
markers when the SNP alleles at those loci are coded with numerical
values. Vos et al. (2017) calculated several estimators for LD in a sim-
ulated and real panel of tetraploid potato and concluded that LD1=2;90

values provides the most consistent estimates of LD decay. This esti-
mator consists of 90% percentile r2 the short-range LD. Short-range LD
is calculated across a defined interval of physical distances between
marker pairs (Vos et al. 2017). One major reason for the minor differ-
ences in prediction accuracies among prediction models is the high
level of LD found in breeding populations (Riedelsheimer et al.
2012). Riedelsheimer et al. (2012) obtained similar accuracies of
GS models in elite maize germplasm, which had high level of LD.

Accuracies did not differ regardless whether the effect of large QTL
were precisely captured or spread over a larger region. In this work, we
also obtained a high level of LD betweenmarkers pairs with up 1500 bp
of distance (r2 from 0.2401 to 0.3321), which can explain the similarity
among GS-TD models for prediction purposes.

Population structure is another important factor inGS andcan result
in biased estimates of the predict abilitywhen it is not taken into account
(Riedelsheimer et al. 2013). As our population is composed by half-sib
families, a stratified sampling was performed for the cross-validation
process, in which 20% of individuals in each family were taken from the
validation population and 80% from the training population. There-
fore, all families were represented in both populations. The GS models
and the evaluation process were performed as described in Materials
and Methods section. We did not observe differences in the predic-
tive abilities between stratified sampling and random sampling (re-
sults not shown) and we are presenting in this paper only results
using random sampling. This similarity is expected, since no clear
population structure was detected in this population of P. maximum

Figure 4 Comparison between genomic selection models using tetraploid dosage (GS-TD) and diploid dosage (GS-DD), for organic matter (OM),
crude protein (CP), in vitro digestibility of organic matter (IVD), leaf dry matter (LDM), regrowth capacity (RC), and percentage of leaf blade (PLB).
Molecular matrices containing 1,223 markers for each data set.
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(Figure S3 and S4B). When we observe the genotypes of the parents,
few parents are different from the others (Figure S4A). The absence of
population structure occurs because most parents are closely related
and the individuals analyzed have a high level of relationship among
them. Similar results have been reported in wheat (Arruda et al. 2015)
and in potato (Sverrisdóttir et al. 2017), with typical values for data with
family structure, but without substantial population structure. As re-
ported by Sverrisdóttir et al. (2017), the absence of population structure
could in principle be caused by an extremely narrow genetic base of the
parents. This is in line with our study since all parents were derived
from a common female tetraploidized ancestor.

Synthetic populations are usually formed by crossing several parents
and posteriorly cross-pollinating the F1 individuals for one or several
generations (Falconer and Mackay 1996). These populations have
played an important role in quantitative genetic research on gene action
in complex heterotic traits and comparison of selection methods
(Hallauer et al. 2010; Schopp et al. 2017). As in our population, the
number of parents is usually small and parents are often related, leading
to small effective size (Ne) (Müller et al. 2017). We estimated broad and
narrow sense heritabilities for the evaluated traits. Besides we did not
expect high heritabilities for traits related with yield, we observed a high
broad sense heritability (0.89) and low narrow sense heritability (0.11)
for LDM (Table 3). Such low value reflects the difficulty to breed for this
trait. Differences inmagnitude between these estimates were previously
reported by Resende et al. (2014b), which observed broad-sense heri-
tability ranging from 0.47 to 0.75 and narrow-sense heritability ranging
from 0.15 to 0.24 for LDMconsidering different years of evaluation. For
individual harvests, the same authors found a narrow-sense heritability
of 0.05 for LDM. Similar to our results, broad-sense heritabilities were
reported in Paspalum for LDM with 0.82 and PLB with 0.55 (Pereira
et al. 2017). In respect to the nutritive traits, moderate values were
reported by Matias et al. (2016) for narrow-sense heritability consid-
ering themean of seven harvests in Brachiaria decumbens progenies for
CP (0.31) and IVD (0.14). Similar moderate values for CP and IVD
were also reported in our study (Table 3).

The prediction of the breeding values was made using the marginal
predicted values of individual plants across harvests that were obtained

in thefirst stage of the analysis. The goalswere to select individuals in the
present recurrent selection cycle (already phenotypically evaluated) as
well as to select non-phenotyped individuals from the next cycle. Since
one selection cycle requires three tofive years to complete (Resende et al.
2014a), P. maximum breeding program with genomic selection will
reduce from five to one year for each recurrent cycle. This one year
is necessary to grow the selected plants and cross them to obtain the
new population. In addition, the P. maximum breeding programs for
releasing cultivars will be benefited since superior sexual plants can be
selected every year to, posteriorly, cross with apomictic plants. From
these crosses, new apomictic hybrid combinations will be obtained and
tested as new cultivars for releasing the best one in the market. Lipka
et al. (2014) applied genomic selection in P. virgatum species with the
objective of evaluating genomic selection efficiency to accelerate breed-
ing cycles in this species. Since P. virgatum is an allotetraploid species,
the authors used diploid dosage and obtained high prediction accuracy
for most of the traits, using association panel and considering seven
morphological and thirteen biomass quality trais. Although analyzed
traits were different from ours, the range of values were similar. The
higher mean prediction accuracy obtained by Lipka et al. (2014) was
0.52 for standability and the lower was -0.08 for minerals. Our higher
mean predictive ability was 0.4229 for organicmatter and the lower was
0.1610 for leaf dry matter (Table S4). Similar accuracies were also
obtained for oats (Asoro et al. 2011), maize (González-Camacho
et al. 2012), and rice (Spindel et al. 2015). Despite the difference among
traits, the accuracy did not differ among models. Besides that, we
suggest to use GBLUP-TDmodel for all traits, since it is more intuitive
for breeders and it is less computational demanding.

Wealsocomparedthepredictionsof individualplantvaluesbasedon
genomic prediction at the level of half-sib family means with that at the
individual level. To achieve this, we removed the maternal effect of the
phenotypicmodel and included it in the genomic selectionmodel. Then,
we predicted individuals based only on the maternal effects and com-
pared with prediction of individuals (Table S5). The genomic predicted
values are more accurate because they capture not only information on
the familymeans, but also the within-family deviations. The accuracy of
prediction using only maternal effect ranged from 0.0452 for PLB to

n Table 3 Mean predictive ability of genomic selection models using tetraploid dosage (GS-TD) and diploid dosage (GS-DD) for organic
matter (OM), crude protein (CP), in vitro digestibility of organic matter (IVD), leaf dry matter (LDM), regrowth capacity (RC), and
percentage of leaf blade (PLB). GS-TD and GS-DD models with the highest mean predictive ability for each trait are indicated in bold.
Molecular matrices containing 1,223 markers for each data set. The broad-sense heritability is Ĥ

2
C and the narrow-sense heritability is ĥ

2

Model OM CP IVD LDM RC PLB

GBLUP-TD 0.3782 0.2237 0.2211 0.1282 0.2475 0.1957
GBLUP-DD 0.2905 0.1578 0.1869 0.0685 0.1829 0.1968
BRR-TD 0.3866 0.2299 0.2157 0.1390 0.2621 0.2058
BRR-DD 0.2966 0.1633 0.1837 0.0997 0.1951 0.2155
BA-TD 0.3931 0.2251 0.2174 0.1308 0.2514 0.2001
BA-DD 0.2958 0.1585 0.1835 0.0854 0.1876 0.2067
BB-TD 0.3955 0.2242 0.2190 0.1311 0.2501 0.2004
BB-DD 0.2960 0.1560 0.1843 0.0886 0.1885 0.2110
BC-TD 0.3879 0.2282 0.2186 0.1374 0.2577 0.2049
BC-DD 0.2958 0.1612 0.1855 0.1006 0.1944 0.2161
BL-TD 0.3821 0.2233 0.2187 0.1333 0.2468 0.1991
BL-DD 0.2923 0.1594 0.1849 0.0870 0.1853 0.1998
Average GS-TD 0.3872 0.2257 0.2184 0.1333 0.2526 0.2010
Average GS-DD 0.2945 0.1594 0.1848 0.0883 0.1889 0.2076
Average 31.48 41.59 18.18 50.96 33.72 23.18
superiority

Ĥ
2
C 0.66 0.42 0.48 0.89 0.85 0.43

ĥ
2

0.53 0.23 0.25 0.11 0.31 0.12
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0.1843 for LDM. The prediction of individuals usingmolecularmarkers
and family effect ranged from 0.1786 for LDM to 0.3466 for OM.
Therefore, theGS can operate on individual plants without needing trait
data on sibs with considerable accuracy of prediction and genetic gains
with selection.

There are few studies on GS for autotetraploid species using allele
dosage, most of them are for potato (Slater et al. 2016; Endelman et al.
2018; Stich and Inghelandt 2018). To our knowledge, this is the first
study that applied genomic selection with allele dosage in an autotet-
raploid tropical forage grass. Slater et al. (2016) developed an extension
of genomic relationship matrix proposed by Yang et al. (2010) for
autotetraploids and applied genomic selection in potato. The authors
found accuracies ranging from 0.2, under conditions of low heritability
and small reference populations, to 0.8 in larger reference populations.
Endelman et al. (2018) and Stich and Inghelandt (2018) analyzed the
inclusion of additive and non-additive components (digenic domi-
nance and two order epistasis) for the accuracy of predictive models.
The inclusion of dominance effects in GS when selecting the per-se
performance of the individuals is fundamental, mainly when working
with species that are highly heterozygous, which allows dominance
effects to contribute to phenotypic variation (Stich and Inghelandt
2018). Concordantly, Endelman et al. (2018) extended the genomic
relationship matrix proposed by VanRaden (2008) for autotetraploids
and highlighted the importance of genotypic and additive values for
selection. However, for both studies, when the goals is selecting new
parents for several cycles, only the additive value needs to be considered
since the contribution of digenic dominance diminishes exponentially
over the generations (Gallais 2003; Endelman et al. 2018), in other
words, non-additive effects are less efficiently transmitted to progeny.
In our work, we modeled only additive effects since our study aims to
select superior sexual parents in a recurrent genomic selection program
in the current and next selection cycles.

A comparison of GS-TD models with GS models considering the
usual diploid allele dosage (GS-DD models) was also performed.
Although being a rougly approximation, this strategy has been applied
in several polyploid crops, such as alfafa (Annicchiarico et al. 2015;
Biazzi et al. 2017), and sugarcane (Gouy et al. 2013), as GS software for
polyploids have only recently emerged. To investigate the impact of
using diploidized markers, Endelman et al. (2018) also compared dip-
loid and tetraploid dosage. The authors observed that the accuracy of
the diploidizedmodel was consistently lower. In our study, the accuracy

of GS-DD models were also lower than for GS-TDmodels for all traits
(Table 3 and Figure 4). This reinforces that GS models using tetraploid
allele dosage are superior for autotetraploid populations, and exten-
sions can and should be applied to other ploidy levels.

Implementation of genomic selection in
forage breeding
Recent research shows thepotential of genomic selection toreshapecrop
breeding programs. In particular, the results obtained here imply that
GS has great potential for P.maximum breeding programs, especially in
a recurrent genomic selection program.

Usually, one cycle of half-sib recurrent selection is split in: i) devel-
opment of progenies; ii) phenotypic evaluation; and iii) selection and
recombination of the best selected individuals to obtain an improved
population (Figure 5A). The recurrent genomic selection is a modifi-
cation to get shorter breeding cycles and greater genetic gains with
selection. Therefore, genomic prediction is implemented by genotyping
and phenotyping the base population and estimating marker effects to
predict hybrid performance in the subsequent recurrent selection
cycles and recombine the best individuals based only on the GEBVs
(Figure 5B). The persistency of predictive accuracy in GS is fundamen-
tal for practical breeding because it determines the number of cycles
that can be advanced until it is necessary to retrain the predictive
models (Müller et al. 2017). This is because in each cycle of recombi-
nation and selection, the individuals of breeding population can accu-
mulate genetic diversity and gene frequencies may differ from the
training population (Heffner et al. 2010; Bassi et al. 2016). Therefore
the breeder needs to update the GS models by phenotyping the pop-
ulation and re-estimating marker effects each three recurrent selection
cycles (Heffner et al. 2009) or whenever necessary.

To compare the efficiency of GS approachwith phenotypic breeding
programs, the breeders’ equation can be used. In this equation, expected
genetic gains per unit of time is defined as DG ¼ ðirsAÞ=T , where i is
the selection intensity, r is the selection accuracy, sA is the square root
of the additive genetic variance, and T is the length of time to complete
one breeding selection cycle (Falconer and Mackay 1996). The success
of GS approach is determined by its ability to predict phenotypes that
were not evaluated as well as by its ability to increase the rate of DG

while maintaining affordable costs. Assuming similar selection inten-
sity and similar genetic variance for both methods, greater gains per
unit of time can be achieved as long as the reduction in the time of each

Figure 5 Forage breeding program in a: (A) recurrent phenotypic selection. (B) recurrent genomic selection.
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breeding cycle by GS compensates for the reduction in selection accu-
racy (Bassi et al. 2016). Furthermore, GS becomes cheaper than phe-
notypic selection for traits that have a long generation time or are
difficult and expensive to evaluate.

Another crucial aspect for implementation of genomic selection in
forage breeding programs is the generation of accurate genotypic data.
Several softwares have been developed to perform quantitative geno-
type calling for autotetraploid species, such as R packages fitTetra
(Voorrips et al. 2011) and ClusterCall (Schmitz Carley et al. 2017);
for “diploidizing” tetraploid species, such as R package breadarrayMSV
(Gidskehaug et al. 2010); and species with any ploidy level, such as R
packages fitPoly (Voorrips et al. 2011), updog (Gerard et al. 2018), and
software SuperMASSA (Serang et al. 2012; Pereira et al. 2018). There-
fore, the evaluation of allele dosage for polyploid species has become
more accessible by several available softwares.

This is the first work of genomic selection in the tropical forage grass
P. maximum which uses a high throughput genotyping and considers
tetraploid allele dosage in Bayesian and frequentist models. GBS and
allele dosage showed to be promising strategies for genomic analysis in
autotetraploid species. Furthermore, the accuracy of predictive models
and the time reduction in the breeding cycles justifies the implementa-
tion of genomic selection in P. maximum breeding programs.
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