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Abstract 

Pfaffia glomerata (Amaranthaceae), “Brazilian Ginseng”, is a medicinal plant used in folk medicine. Roots are 
used as a tonic to restore and enhance wellbeing and for treatment of arthritis, gastritis and rheumatism. 
Conservation of P. glomerata germplasm is a priority and cryopreservation is the most promising technique for 
long-term storage of plant genetic resources. Hence, the objective of this work was to develop a cryopreservation 
protocol for shoot tips of P. glomerata using vitrification techniques. For cryopreservation, shoot tips (ST) from 
in vitro grown plants were pre-cultured for 19 hr on MS medium containing 0.3 M sucrose, treated with loading 
and vitrification solutions prior to rapid freezing by direct plunge in liquid nitrogen, rapid thawing on a water 
bath at 38±2 °C and treatment with a dilution solution. Three vitrification solutions (PVS2, PVS3 and PVS4), 
three exposure times (20 min., 40 min. and 60 min.) and two temperatures (25 °C and 0 °C) were tested. After 
cryopreservation, rewarmed shoot tips were inoculated on MS growth medium and the best regeneration 
percentages were 63%, 42% and 65% for shoot tips treated with PVS2, PVS3 and PVS4, respectively, for 60 
min., at 25 °C. The results obtained show that vitrification with PVS2 and PVS4, at 25 °C, for 60 min were the 
best treatments for successful cryopreservation of shoot tips of in vitro grown plantlets of P. glomerata and that 
cryopreservation is suitable for ex situ conservation of the germplasm of this medicinal species.  

Keywords: cryopreservation, ecdysterone, genetic resources, vitrification solutions 

1. Introduction 
Roots of plants of the genus Pfaffia, Amaranthaceae, known as “Brazilian Ginseng”, are used in folk medicine as 
an herbal remedy for a range of medical conditions. They are used as a tonic to stimulate physical and mental 
activity and enhance wellbeing, reduce stress, boost energy and memory and as an aphrodisiac (Freitas et al., 
2004; Marques et al., 2004; Mendes & Carlini, 2007; Rates & Gosmann, 2002). Medical applications as an 
analgesic and anti-inflammatory for gastritis, arthritis and rheumatism have also been reported (Freitas et al., 
2003; Neto et al., 2005). One of the most important species of Brazilian ginseng is Pfaffia glomerata (Spreng.) 
Pedersen, whose main habitat is the riparian forests of the Central-West region of Brazil and the Paraná River 
basin. Recent research investigated the effect of hydroalcoholic extracts of P. glomerata roots and found 
evidence that it protected the gastric mucosa and reduced intestinal inflammation and ulcers (Neto et al., 2005). 
The adaptogenic effect of this species is attributed to compounds present in the roots, namely β-ecdysone 
(ecdysteroid used as a chemical marker of root quality), glomeric acid (triterpenoid), pfameric acid 
(nortriterpenoid), ecdysterone, rubrosterone, oleanolic acid and β-glucopyranosil oleanolate (Nakai et al., 1984; 
Nishimoto et al., 1984; Nishimoto et al., 1987; Nishimoto et al., 1988; Shiobara et al., 1993). The isolation and 
characterization of active compounds from roots of “Brazilian Ginseng” and the confirmation of their 
pharmacological properties increased the use of Pfaffia species in natura or in commercial preparations (Leal et 
al., 2010; Shiobara et al., 1993).  

Despite the great phytotherapeutic and economic potential of “Brazilian Ginseng”, its domestication and 
cultivation is limited due to lack of knowledge about seed germination, phenology, seedling production and 
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propagation techniques. These problems restrict large-scale production of Pfaffia for pharmaceutical use, and as 
a result, raw material supply is still dependent on extractivism and predatory collection, resulting in rapid 
depletion of native populations in natural habitats and increased risk of disappearance of these species. This 
situation led to the proposal of policies and research actions on several fronts to enable the establishment of 
sustainable management plans in areas of occurrence and the development of technologies for propagation and 
germplasm conservation of Pfaffia species. In this context, the development of methodologies for the 
establishment of ex situ collections of P. glomerata germplasm in gene banks, under conditions that guarantee 
maximum genetic and biological integrity has become a priority.  

Cryopreservation is the technology for conservation of biological material at ultra - low temperatures, generally 
in liquid nitrogen at -196 °C, or in its vapor phase at -150 °C (Engelmann, 2011; Matsumoto, 2017; Santos & 
Salomão, 2017). It has become an ideal approach for long-term conservation of plant germplasm because during 
storage at such temperatures all metabolic activities are suspended, thus preventing biological deterioration and 
ensuring high genetic stability, while requiring minimal space and maintenance (Matsumoto, 2017; Santos & 
Salomão, 2017). Cryopreservation can be applied for the conservation of a variety of plant structures and tissues 
such as shoot tips, axillary buds, zygotic embryos, somatic embryos, callus and cell suspensions (Matsumoto, 
2017). The greatest challenge for successful cryopreservation is to avoid the formation of ice crystals inside the 
cells during rapid cooling in liquid nitrogen (Sakai & Engelmann, 2007; Sakai, et al., 1990). Ice crystals cause 
rupture of cell membranes, resulting in loss of semi-permeability, cellular compartmentation, and structural 
integrity, leading to cell death (Engelmann, 2011; Panis & Lambardi, 2005; Sakai et al., 1990; Sakai & 
Engelmann, 2007; Santos & Salomão, 2017). Formation of ice crystals will occur when the cell water content is 
high, therefore to prevent ice formation cellular water content must be reduced. One of the approaches available 
to promote cell dehydration and avoid formation of crystalline ice within the cells during cryopreservation is 
osmotic dehydration induced by treatment with highly concentrated cryoprotectant solutions, called vitrification 
solutions. Vitrification solutions enable the passage of the water present in the cells directly from the liquid phase 
to an amorphous solid phase, called a “glass” (Panis & Lambardi, 2005).  

Cryopreservation protocols using vitrification-based techniques have been developed for cell suspensions, callus, 
shoot apices and somatic and zygotic embryos of many different plant species, including tropical and subtropical 
species which are not naturally tolerant of ultralow temperatures, with high regrowth rates (Engelmann, 2011; 
Santos & Salomão 2017; Suranthra et al., 2012; Vandenbussche et al., 2000; Volk & Walters, 2006). The most 
widely used vitrification solution is “plant vitrification solution 2”, PVS2 (Sakai et al., 1990). Thus, 
vitrification-based cryogenic protocols are promising approaches to viabilize long-term storage of valuable plant 
germplasm. Therefore, the objective of this work was to develop a cryopreservation protocol for shoot tips of P. 
glomerata excised from plantlets growing in vitro using vitrification with three different cryoprotectant 
solutions.  

2. Materials and Methods 
2.1 Plant Material 

Young branches collected from adult plants of one genotype of P. glomerata, accession 2209-09, growing in the 
field collection of medicinal plants of Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil, were 
the source of explants for this study. Branches were stored in a glass jar containing sterile distilled water, and the 
jar was closed with a lid until arrival at the Laboratory of Plant Cryobiology where all the experiments described 
were carried out. In the laboratory, leaves were clipped out of the branches, and they were divided into 5.0 cm 
long segments and disinfected with a solution containing sodium hypochlorite (2.0-2.5% active chlorine), 
streptomycin (ml) and “Tween 20” (1.0 ml). 

2.2 Establishment and Multiplication of stock Cultures in vitro 

Nodal segments (NS, 0.5 cm long) containing two lateral buds were excised from disinfected branches and 
innoculated into glass tubes (25 × 150 mm) containing 10 ml of MS culture medium (Murashige & Skoog, 1962) 
without growth regulators, supplemented with 3% sucrose and solidified with 0.7% agar. The pH of the medium 
was 5.7, adjusted prior to autoclaving at 121 °C, 1.5 at, for 20 min. The cultures were maintained in a growth 
room at 25±2 °C, under 16 h photoperiod, with a light intensity of 40 µm m-2 s-1 supplied by white LED tubes. In 
vitro multiplication to obtain the stock of plantlets needed for the cryopreservation experiments was carried out 
by subculture of shoot tips (ST) and NS collected from plantlets obtained in vitro on the same growth medium, 
without growth regulators, and cultivated under the same growth conditions described previously.  
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2.3 Nodal Segments Subculture and Shoot Tips Excision for Cryopreservation 

NS were excised from 30-day-old plantlets growing in vitro on MS basic medium solidified with agar (0.7%) 
and transferred to Magenta boxes containing 50 ml of MS medium supplemented with sucrose (3.0%), BAP 
(0.02 mg L-1), ANA (0.01 mg L-1), GA3 (0.1 mg L-1) and solidified with agar (0.7%). These cultures were 
maintained in a growth room under the same growth conditions described above, for 15 days. After 15 days, 
shoot tips (ST 1.0-2.0 mm long) were isolated from the shoots sprouted on the NS for use in all cryopreservation 
assays.  

2.4 Cryopreservation Procedures  

To start the cryopreservation trials, ST (1.0-2.0 mm long) were transferred to Petri dishes containing 30 ml of 
solid pre-culture medium (MS supplemented with 0.3 M sucrose) and cultured overnight (approximately 18 
hours), at 25±2 ºC, in the dark. For the vitrification treatments, pre-cultured ST were transferred to cryovials and 
2.0 ml of loading solution (LS, MS supplemented with 2.0 M glycerol and 0.4 M sucrose) at room temperature 
(25±2 °C) was added to the vial and held for 20 min. at room temperature (25±2 °C). Subsequently, LS was 
removed and 2.0 ml of PVS2 vitrification solution (MS supplemented with 30% glycerol, 15% ethylene glycol, 
15% DMSO, 0.4M sucrose; Sakai et al., 1990) was added to the vial and held for 20, 40 and 60 min. at 25 °C or 
at 0 °C. For the treatment with PVS2 at 0 °C, the cryovials containing STs and the PVS2 solution were kept in a 
Styrofoam box with crushed ice throughout the procedure, and the temperature was monitored with a 
thermometer. The same vitrification procedures described above were performed using the cryoprotectant 
solutions PVS3 (MS supplemented with 50% sucrose and 50% glycerol) and PVS4 (MS supplemented with 35% 
glycerol, 20% ethylene glycol and 0.6 M sucrose). Eighteen different vitrification treatments, resulting from the 
combination of three vitrification solutions (PVS2, PVS3 and PVS4), three exposure times (20, 40 and 60 min.) 
and two temperatures (25 °C or 0 °C) were tested. The same eighteen vitrification treatments were carried out for 
control non-frozen ST, resulting in 36 treatments. After each step described here (pre-culture, loading and 
treatment with each vitrification solution and dilution) samples of 60 ST were transferred to test tubes (25 × 150 
mm) containing 10 ml of solid basic MS medium and cultivated under the growth conditions described above for 
regeneration and evaluation. These samples were used as controls. After each vitrification time was completed, 
PVS2 solution was removed from the cryovials and 2.0 ml of fresh PVS2 solution was added to the same 
cryovials. Cryovials were capped and plunged directly into liquid nitrogen (LN, -196 °C) for at least 60 min. 
Cryovials were retrieved from LN and thawed rapidly in a water bath at 38±2 °C, with constant shaking, for 
approximately 1.5 min. Immediately after thawing, PVS2 solution was drained from the vials and 2.0 ml of 
dilution solution (DS, MS supplemented with 1.2 M sucrose) was added to the vials and held for 60 min, at room 
temperature (25±2 °C).  

2.5 Regeneration and Evaluation of Shoot tips 

Thawed ST were immediately transferred into test tubes (25 × 150 mm) containing solid basic MS medium for 
regeneration. The cultures were kept in a growth room at 25±2 °C, in the dark for 48 h, in diffuse light for 3 days 
and after that, cultures were maintained under standard growth conditions described above. Samples of 60 ST 
that underwent all treatments described (excision, pre-culture, loading, vitrification with PVS and dilution) but 
were not stored in LN were used as controls. These control ST were transferred to test tubes (25 × 150 mm) 
containing 10 ml of solid basic MS medium after each step of the cryopreservation procedure and cultivated 
under the growth conditions established for this study for regeneration and evaluation.  

2.6 Statistical Analysis 

Statistical design was the factorial, with four factors, type of vitrification solution (PVS2, PVS3 and PVS4), time 
of exposure to the vitrification solution (20, 40 and 60 min.), temperature of treatment with vitrification solution 
(25 °C and 0 °C) and freezing or not in liquid nitrogen (LN+ and LN-). These 36 treatments (combinations of 
factors) were replicated six times and the 216 experimental units were arranged in a completely randomized 
design. For the statistical analysis, the data was submitted to analysis of variance (ANOVA) and the means were 
compared by the Tukey test at the 1% probability level (p = 0.01). Analyzes were performed using the program 
GraphPad Prism 5.0 and GENES. Each experiment was performed for 5 days and the regeneration and growth of 
control (LN-) and frozen ST (LN+) was monitored for up to 60 days.  

3. Results and Discussion 
3.1 Plant Regeneration From Nodal Segments Innoculated in vitro 

There was no contamination on NS excised from field-grown plants and innoculated in vitro. Normal plantlets 
with well-developed shoots and roots were produced on 92% of the NS innoculated (Figure 1). The first signs of 
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3.2 Regeneration of Cryopreserved Shoot Tips  

ST that were pre-cultured and treated only with the loading solution did not survive freezing in liquid nitrogen. 
Therefore, treatment with a vitrification solution was essential for ST survival and shoot recovery after 
cryopreservation. Regeneration percentages of ST treated with PVS2, PVS3 and PVS4 at 25 °C and 0 °C for 20, 
40 and 60 min are in Figure 2.  

The regeneration percentages of control ST ranged from 92% to 100% regardless of the vitrification solution 
tested and the temperature and duration of the treatment with the vitrification solutions (Figure 2). The highest 
regeneration percentages after cryopreservation were for ST treated with vitrification solutions at 25 °C, for 60 
min (Figure 2). These results indicate that the immersion of P. glomerata ST in vitrification solution for 20 and 
40 min probably was not sufficient to promote proper dehydration of these explants. In that case, they probably 
still had high free water content when exposed to liquid nitrogen, resulting in intracellular ice formation, which 
is one of the most important factors leading to cryoinjury (Sakai & Engelmann, 2007). Regeneration percentages 
of P. glomerata ST treated with PVS2 at 25 °C and 0 °C for 20, 40 and 60 min are in Figure 2A. Regeneration of 
cryopreserved ST treated with PVS2 at 25 °C for 20, 40 and 60 min was 32%, 19% and 63%, respectively 
(Figure 2A, LN+). Regeneration of non-frozen control ST (LN-) treated with PVS2 at 25 °C ranged from 99 to 
100%, a difference that is not statistically significant (p ≤ 0.01). Regeneration of cryopreserved ST treated with 
PVS2 at 0° C for 20, 40 and 60 min was 24, 20 and 34%, respectively (Figure 2A, LN+). Regeneration of 
non-frozen controls treated with PVS2 at 0 °C for 20, 40 and 60 min. was 100, 100 and 95%, respectively, rates 
that are not statistically different (Figure 2A, LN-).  

Regeneration percentages of ST treated with PVS3 solution at two different temperatures (0 °C and 25 °C) for 20, 
40 and 60 min. are in Figure 2B. For ST treated with PVS3 and cryopreserved in liquid nitrogen (LN+, black 
bars), the highest regeneration rates were 42% and 25%, attained by ST treated for 60 min with PVS3 at 25°C 
and 0°C, respectively (Figure 2B). For non-frozen control ST (LN-, clear bars), the regeneration percentages 
after treatment with PVS3 at 0 °C for 20, 40, and 60 min were 97, 100 and 100%, respectively (LN-, clear bars), 
and after treatment at 25 °C for 20, 40, and 60 min, were 100, 92 and 100%, respectively.  

The percentages of regeneration of P. glomerata ST after vitrification with PVS4 0 °C and 25 °C, for 20, 40 and 
60 min are in Figure 2C. Clear bars represent the controls (without freezing, LN-) and the black bars represent 
the percentages of ST regeneration after cryopreservation in liquid nitrogen (LN+). Non-frozen ST (LN-, clear 
bars) showed 100% regeneration after treatment with PVS4 at 25 °C for 20, 40, and 60 min. (Figure 2C). For ST 
submitted to these same treatments and then frozen in liquid nitrogen (LN+, black bars), 53, 44 and 65% of 
regeneration percentages were achieved (Figure 2C). Regeneration rates of ST treated with PVS4 solution at 0° 
C for 20, 40 and 60 min are in Figure 2C. Regeneration was 100% for non-frozen ST (LN-, clear bars) and 25, 
32 and 44% for frozen (LN+, black bars).  

Shoot tips treated at 25 °C for 60 min, showed the highest regeneration rates after cryopreservation in liquid 
nitrogen (LN+), regardless of the vitrification solution tested. These regeneration rates were statistically different 
(P = 0.01) from the regeneration rates of shoot tips exposed to other treatments (Figure 2).  

ST treated with PVS2 or PVS4 showed better regeneration rates after cryopreservation than those treated with 
PVS3 (Figure 2). Since PVS2 and PVS4 are more complex vitrification solutions, these results suggest that the 
combination of sucrose and glycerol, the cryoprotectants present in PVS3, at the concentrations tested were not 
efficient to promote vitrification and to protect P glomerata cells from ice crystal damage during freezing or 
warming.  
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In the present work, three different cryoprotectant solutions were applied to condition shoot tips of “Brazilian 
Ginseng” for cryopreservation. In all solutions tested (PVS2, PVS3 and PVS4) the highest percentage of 
regeneration of both control (LN-) and frozen (LN+) ST occurred when they were treated at room temperature 
(25±2 °C) for 60 min, the highest exposure time to the cryoprotectant solution tested. These results suggest that 
treatment of ST with vitrification solutions for 60 min promoted the necessary dehydration of the explants, 
avoiding intracellular ice formation and growth, thus preventing irreversible damage to cell membranes and 
allowing their survival after exposure to liquid nitrogen (Mazur, 1984; Suranthran et al., 2012). The time of 
exposure to vitrification solutions affording optimal osmotic dehydration varies widely among different plant 
species and tissues of the explant. In the case of P. glomerata 60 min was ideal. In many studies, explants are 
treated with vitrification solutions at 0 °C to allow longer treatment durations, thereby reducing vitrification 
solution effects and increasing efficiency of the treatment to afford higher survival rates after cryopreservation 
(Best, 2015; Fahy, 2010). In the case of P. glomerata, vitrification treatment at 25 °C proved to be more efficient.  

The capacity for regrowth after cryopreservation is unquestionable evidence of the structural integrity of the 
explant. The age and physiological status of the stock plants at the time of explant excision can influence 
post-cryopreservation regrowth (Harding et al., 2001; Reed, 2000). Therefore, the subculture to Magenta boxes 
was a step of the procedure designed to synchronize growth of AB and produce shoots of similar age and 
physiological maturity for the cryopreservation tests. Two weeks after subculture of NS, AB elongated and 
produced shoots 1.0-1.5 cm long with structures differentiated enough to facilitate handling and excision of ST. 
The size of the explant can also affect post-thaw recovery rates. Smaller explants tend to be homogeneous and 
consist of smaller, actively dividing cells with few vacuoles. Tissues with these characteristics generally have 
lower water contents and are more tolerant to dehydration than highly vacuolated and differentiated cells. Shoot 
tips, containing the apical dome and one or two leaf primordia, sized 0.5-1.0 mm, are ideal explants for 
cryopreservation, not only because they are genetically stable, but also because they generally show high 
post-thaw recovery. The results obtained in this study indicate that the shoot tip size selected and the 
physiological maturity stage were appropriate, and allowed them to survive vitrification and cryopreservation in 
liquid nitrogen.  

4. Conclusions 
Shoot tips of Pfaffia glomerata (Spreng.) Pedersen, “Brazilian Ginseng”, can be cryopreserved successfully with 
high regeneration rates using the vitrification technique. Shoot tips pre-cultured and treated with the loading 
solution did not survive freezing in liquid nitrogen, therefore treatment with a vitrification solution was essential 
for shoot tip survival after cryopreservation. The best regeneration percentages were obtained after treatment 
with the vitrification solutions PVS2 and PVS4 at 25 °C, for 60 min. Cryopreserved shoot tips that remained 
viable resumed growth within a week upon transfer to growth medium and developed into normal plantlets after 
fifteen days after innoculation. There is no previous report of cryopreservation of P. glomerata, “Brazilian 
Ginseng”, so the present work brings new and relevant information and suggest that the cryopreservation 
procedures described can be applied for long-term conservation of P. glomerata genetic resources.  
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