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A B S T R A C T

The BRS Violeta grape presents pulp and skin with high content of phenolic compounds (PCs) and intense
purplish color. It was used as raw material for the production of juice and dehydrated products using foam mat
drying at 60, 70 and 80 °C and freeze drying (control). HLPC-DAD-ESI-MSn allowed the evaluation of the
quantitative and qualitative changes of the main PCs (anthocyanins, flavonols and hydroxycinnamic acid de-
rivatives (HCAD)) present in the grapes during the processing. The use of the steam extraction method to obtain
grape juice allowed a greater extraction of flavonols and, mainly derivatives of hydroxycinnamic acids, when
compared with anthocyanins. Drying at 70 °C was the most suitable for the preservation of the PCs and, at the
same time, for the reduction of the processing time. The powdered products presented considerable con-
centrations of total PCs (3–5mg/g) and antioxidant activity (32–79 (DPPH) or 17–27 (FRAP) mg/g).
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1. Introduction

Fruit and vegetable juices and extracts have been widely used for
the elaboration of colored dehydrated products rich in phenolic com-
pounds, especially anthocyanins. These products have great potential
for use as natural coloring in foods intended to confer attractive col-
oring, in addition to the appeal of health benefits (Cortez, Luna-Vital,
Margulis, & De Mejia, 2017; Lao & Giusti, 2017; Moser et al., 2017;
Wilkowska, Ambroziak, Czyzowska, & Adamiec, 2016; Yamashita et al.,
2017). However, it is known that each plant matrix is different, con-
taining remarkably different quantities and kind of sugars and bioactive
compounds. It is also known that the technology and temperature
employed during elaboration can affect the sensory characteristics and
the functional qualities of the dehydrated extracts. Spray drying and
freeze-drying have been the most widely used methods for obtaining
coloring in powder form due to the satisfactory preservation of ther-
molabile compounds, such as anthocyanins present in the fruits and
vegetables (Cortez et al., 2017; Wilkowska et al., 2016). However, these
dehydration techniques are more expensive and require skilled labor
compared to other simpler and cheaper ones, such as foam mat drying
(FMD). By this drying technique, a liquid product is converted into a

stable foam by the addition of foaming, stabilizers and/or anti-moisture
agents, followed by air drying, at relatively low temperatures and for
short times in comparison to conventional drying, to form a thin porous
layer which is crumbled to give a powder (Tavares et al., 2017).

The inclusion of additives (carbohydrates, proteins and gums) to
obtain the foams may cause a dilution effect on the final products but
this effect can be offset by the benefits that they can bring to the pro-
cess, such as its complexation with pigments from the raw material (Lao
& Giusti, 2017) and an increase in its shelf-life (Duangmal, Saicheua, &
Sueeprasan, 2008).

Different raw materials have already been dehydrated using the
FMD technique (Ekpong, Phomkong, & Onsaard, 2016; Guimarães,
Figueirêdo, & Queiroz, 2017; Sangamithra, Venkatachalam, John, &
Kuppuswamy, 2015; Tavares et al., 2017). However, there is little in-
formation about the effect of the drying temperatures used on the
profile of the anthocyanins and other phenolic compounds of interest
present in the vegetable matrices to dehydrate by FMD. There are also
few reports exploring the potential of these powdered products for use
as a natural coloring rich in anthocyanins (Abbasi & Azizpour, 2016;
Tavares et al., 2017).

The BRS Violeta grape (a hybrid obtained from ‘BRS Rúbea’× ‘IAC
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Fig. 1. Flow diagram summarizing the stages of preparation of the powdered products.
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1398-21’), developed by the Brazilian Agricultural Research
Corporation (Embrapa) has interesting characteristics that make it a
possible raw material for research into its use for the elaboration of a
dehydrated product using the FMD method. This cultivar presents pulp
and, mainly, skins with high content of phenolic compounds (Rebello
et al., 2013). In the literature, this grape has been exploited for the
production of juices (Lima et al., 2014), wines (Lago-Vanzela et al.,
2014; Castilhos et al., 2016) and dehydrated products in powdered
form using a spray drier (Moser et al., 2017).

The objective of this study was to dehydrate BRS Violeta grape juice
using the FMD method testing different temperatures (60, 70 and 80 °C)
and comparing them to the freeze-drying dehydration process.
Quantitative and qualitative changes during dehydration in phenolic
compounds (anthocyanins, flavonols and hydroxycinnamic acid deri-
vatives (HCAD)) were determined using HPLC-DAD-ESI-MSn. In addi-
tion, changes in the total phenolic compounds (TPC) content and an-
tioxidant activity (AA) in both the juice and the powdered products
were also assessed.

2. Materials and methods

2.1. Materials

The chemical standards malvidin (mv) 3-glucoside, mv 3,5-diglu-
coside, peonidin (pn) 3,5-diglucoside, quercetin (Q) 3-glucuronide, p-
coumaric acid and trans-caftaric acid were from Phytolab
(Vestenbergsgreuth, Germany). The other chemical standards – cya-
nidin (cy) 3-glucoside, cy 3,5-diglucoside, Q, kaempferol (K), iso-
rhamnetin (I), myricetin (M), syringetin (S); the 3-glucosides of Q, K, I,
and S; 3-galactosides of Q, K, I – were from Extrasynthese (Genay,
France). The chemical standard caffeic acid was from Sigma Aldrich
(Tres Cantos, Spain). The chemical standard laricitrin 3-glucoside has
been previously isolated from Petit Verdot grape skins (Castillo-Muñoz
et al., 2009), because it is a commercially unavailable standard. All
solvents and chemical standards were of chromatographic (> 99%) and
analytical (> 95%) grades, respectively.

The additives used to aid in the formation and stability of the foam,
Emustab® (Selecta, Jaguará do Sul, Brazil), Super Liga Neutra® (Selecta,
Jaguará, Brazil) and maltodextrin 10 DE (Ingredion, Mogi Guaçu,
Brazil), were acquired from local trade.

BRS Violeta grapes (vintage of 2013), healthy and at a commercial
stage of maturation, were donated by the Embrapa, Jales, Brazil, lo-
cated at 20°15′08″ S and 50°33′29″ W, and 500m above sea level (refer
to WGS84 datum), according to World Geodetic System. 1984 (1984).
The BRS Violeta grape presented, on average, 66.84 ± 1.26% of the
pulp, 27.39 ± 0.71% of the skin and, 5.78 ± 0.65% of the seed. The
characteristics of the grape were determined according to the AOAC
(2005), in triplicate, the values being: moisture content,
76.33 ± 1.17%; pH, 3.49 ± 0.05; titratable acidity content (TAC),
1.49 ± 0.10 g of tartaric acid/100 g of grape; soluble solids (SS),
19.98 ± 0.99 Brix; and SS/TAC ratio of 12.58 ± 0.60. The berry size
is 15×14mm and the berry weight, 0,63 ± 0.05 g.

2.2. BRS Violeta grape juice powders

The steps for obtaining the powdered products are shown in Fig. 1.
First, 2 kg of BRS Violeta grapes were used to obtain the juice, in tri-
plicate, by means of a stainless steel steamer pan (Sugar Sucos, Bento
Goncalves, Brazil). This pan is composed of a lower water tank, which is
heated to generate steam, followed by an intermediate container which
contains a tapered opening in the center for the passage of steam and a
lateral opening for the outflow of juice and a perforated upper con-
tainer where the grapes are placed. Extraction took place by means of
saturated steam for 2.5 h at 85 °C (Bresolin, Gularte, & Manfroi, 2013).
To maintain microbiological stability, the bottled juices were cooled
and stored (± 10 °C) until use. The percentage of juice yield was

88.60 ± 1.88% (w/w), corresponding to the ratio between the weight
of the juice extracted and the initial mass of the grapes. The physico-
chemical characteristics of the juice were determined according to
AOAC (2005), in triplicate, the values being: moisture content,
85.11 ± 2.33%; pH, 3.54 ± 0.04; TAC, 1.14 ± 0.12 g of tartaric
acid/100mL of juice; SS, 14.37 ± 0.70 °Brix; and SS/TAC ratio of
13.14 ± 0.85.

Dehydration of the grape juice using the FMD technique followed a
method similar to that described by Tavares et al. (2017). In the present
study, the foams used (200 g each) contained: juice, emulsifier
(Emustab®), stabilizer (Super Liga Neutra®) and anti-moisture (10 DE
Maltodextrin), in the proportions of 71.5:12.5:1.0:15.0, w/w, respec-
tively. In order to obtain the foams, these ingredients were subjected to
beating with the aid of domestic mixer (Philips Walita®, São Paulo,
Brazil), at full speed for 15min. The foams were placed in stainless steel
trays (150mm radius, 5 mm height), dried in a hot-air dryer (0.42m/s)
at 60, 70, and 80 °C until equilibrium moistures were achieved, and
immediately vacuum packed, anaerobically and in the dark. To obtain
powdered products (control), foams were frozen at −80 °C and dried in
a freeze-dryer FR-Dying Digital Unit (Thermo Fisher Scientific, Wal-
tham, USA) for 24 h. These samples were used as control. All dried
foams were removed from the stainless steel spatula. Pieces were cru-
shed with the aid of a pestle and mortar to obtaining the powdered
products and were immediately packed in metalized packages without
light and oxygen.

The physicochemical characteristics (moisture content, pH, TAC) of
the powdered products (from both FMD and freeze-drying) were de-
termined according to AOAC (2005) in triplicate, the values being:
moisture content, 3.99 ± 0.39% and 6.40 ± 0.23%; pH, 3.80 ± 0.11
and 3.83 ± 0.04; TAC, 2.51 ± 0.41 and 2.34 ± 0.14 of g tartaric
acid/100 g of powder, respectively.

2.3. Determination of PCs by HPLC-DAD-ESI-MSn

For the quantitative and qualitative determinations of anthocyanins,
flavonols, and HCAD profiles in the grape and derived products were
prepared different extracts. For the grape, the edible parts (skin and
flesh) were used for the extraction of phenolic compounds using
method described by Lago-Vanzela, Da-Silva, Gomes, García-Romero,
and Hermosín-Gutiérrez (2011). The juice samples as well as the ex-
tracts obtained from the parts of the grapes were lyophilized and at the
moment of analyses were re-dissolved in 50mL of HCl 0.1N. For the
acquisition of dehydrated products extracts, the method used was the
described by Tavares et al. (2017). All procedures were performed in
triplicate.

For the PCs (anthocyanins, flavonols and HCAD), analysis by HPLC-
DAD-ESI- MSn of the grape (edible parts – skin and flesh), juice and
dehydrated products using freeze drying and FMD (60, 70 and 80 °C)
additional steps were required. In the case of anthocyanins analyses,
aliquots of the prepared samples were diluted with HCl 0.1N (1:10, 1:9
and 1:0 v/v for the grape, juice, and powder extracts, respectively), and
directly injected onto the chromatographic column (10 μL for the grape
extracts, and 20 μL for the juice and powder extracts). For the analysis
of flavonols and HCAD, aliquots of grape (3mL), juice (2mL), and
powder (5mL) extracts were subjected to solid-phase extraction in
Bond Elut Plexa PCX cartridges (6 cm3, 500mg of adsorbent, Agilent,
Santa Clara, US) to remove anthocyanins (Castillo-Muñoz et al., 2009).
These anthocyanin-free extracts were filtered (0.20-μm polyester
membrane, Chromafil PET 20/25) and injected directly (20 μL) into the
same chromatographic system as that used for the anthocyanin ana-
lysis.

Phenolic extracts of the grape, juice, and powdered product samples
were analyzed according to a previously described method (Rebello
et al., 2013). For PCs identification, an ion trap ESI-MS/MS analyzer
was used in positive (for anthocyanins) and negative (for flavonols and
HCAD) ionization modes, as previously described (Rebello et al., 2013).
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The ionization and fragmentation parameters were optimized by a di-
rect infusion of the appropriate standard solutions (malvidin 3,5-di-
glucoside, mv-3,5-diglc, in positive ionization mode; quercetin 3-glu-
coside, Q 3-glc and caftaric acid in negative ionization mode). The
identification of PCs was mainly based on spectroscopic data (UV–Vis
and MS/MS) for standards or data previously reported (Castillo-Muñoz
et al., 2009; Lago-Vanzela et al., 2011; Rebello et al., 2013; Tavares
et al., 2016, 2017).

For quantitative determination of PCs, were extracted DAD chro-
matograms at 520 nm (for anthocyanins), 360 nm (for flavonols) and
320 nm (for HCAD) using external standard calibration curves. The
calibration standard solutions were prepared by dilution of an appro-
priate aliquot of the stock solutions of mv-3,5-diglc (from 1.5 to
125.0 mg/L) for anthocyanins, Q-3-glc (from 5.0 to 100.0 mg/L) for
flavonols and caftaric acid (from 0.0 to 100.0 mg/L) for HCDA. The
total concentrations of anthocyanins, of flavonols and of HCDA were
expressed as mg of mv-3,5-diglc equivalents, as mg of Q-3-glc equiva-
lents and mg of caftaric acid, respectively, per L or kg of sample. To
calculate the % age gain or loss of this compounds after processing the
grape into juice were used the average juice yield and the amount to
each compound in the grape and juice.

2.4. Determination of TPC content and AA

The method described by Ough and Amerine (1988) and Brand-
Williams, Cuvelier, and Berset (1995) were used for determination of
TPC. For the determination of AA were used two methods, the 2,2-di-
phenyl-1-picrylhydrazyl (DPPH) and the ferric reducing antioxidant
power (FRAP) method, described for Brand-Williams et al. (1995) and
Benzie and Strain (1996), respectively. For the prepare of the TPC and
AA calibration curves were used gallic acid (GA) and 6-hydroxy-
2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), respectively.
To facilitate the comparisons of the results with data from literature, a
calibration curve was also prepared using ferric sulfate (Fe2SO4, FS) for
quantification of AA by FRAP. The results were expressed in mg of GA
or Trolox or FS/g of grape or powdered product, or per mL of juice.

2.5. Statistical analysis

For data interpretation, the analysis of variance (ANOVA) was used
and the means of the data were compared using the Tukey test or t test
with significance level was set at 0.05. Statistical analyzes were per-
formed using the statistical software Minitab 17 Statistical Software.

3. Results and discussion

Before producing the powdered products from BRS Violeta grape
juice using FMD, several tests were carried out to determine the type
and quantity of additives to be mixed with the juice. Although the use
of Emustab® emulsifier and Super Liga Neutra® stabilizer have achieved
excellent results in producing mango (Guimarães et al., 2017) and ca-
jamanga (Spondias dulcis) powders (Breda, Justi, & Sanjinez-Argandoña,
2013), in the current research, using only these two additives did not
produce the desired powdered product. Fruit juices, such as grapes,
have a high content of low molecular weight sugars (such as fructose
and glucose). As a consequence, the powdered products with only these
two additives were viscous and gummy in appearance, agreeing with
the description of other authors (Saavedra-Leos, Alvarez-Salas,
Esneider-Alcalá, Toxqui-Terán, & Ruiz-Cabrera, 2012; Seerangurayar,
Manickavasagan, Al-Ismaili, & Al-Mulla, 2017).

The solution to this technological difficulty was found by adding
maltodextrin along with the two other additives to the juice, as it is
recognized as an efficient drying aid (Saavedra-Leos et al., 2012) for the
production of dehydrated products by freeze-drying (Duangmal et al.,
2008; Yamashita et al., 2017) and spray drying (Lao & Giusti, 2017;
Moser et al., 2017; Wilkowska et al., 2016) though it is still little used in

FMD (Abbasi & Azizpour, 2016; Ekpong et al., 2016; Sangamithra et al.,
2015; Tavares et al., 2017). The addition of maltodextrin resulted in a
powdered product in the form of flakes, which was then triturated to
obtain a more homogenous powder to perform the analyzes.

Once the foam formulation was defined, this foam was dehydrated
at 60, 70, and 80 °C until sample weights were constant (triplicates).
These powdered products were obtained after 6.25 ± 0.25,
3.17 ± 0.29, and 2.67 ± 0.24 h, respectively. The drying time de-
creased with increasing temperature: when compared to the drying
time of the foams at 60 °C, the mean time at 70 °C showed a reduction of
approximately 39% while a reduction of approximately 52% was ob-
served in the drying time at 80 °C. In a study by Bastos, Soares, Araújo,
and Verruma-Bernardi (2005) on mango pulp dehydration using FMD
at different temperatures, the authors used sorbitan monostearate
(Tween 60) as emulsifier for foaming and observed a 37.5% reduction
in process time when the drying air temperature increased from 70 °C to
85 °C. Similar reductions were also observed by other authors
(Guimarães et al., 2017; Ekpong et al., 2016; Tavares et al., 2017). The
reduction in the average drying time is important when considering an
industrial scale process because the lower the drying time, the lower the
energy expenditure and, consequently, the cost of production, reflecting
positively on the final value of the product that will be passed on to the
consumer. Moreover, longer drying times lead to longer exposure to
high temperature and oxygen of the compounds of interest, such as
phenolic compounds.

The quantitative and qualitative changes of grape PCs (anthocya-
nins, flavonols and HCAD), TPC and AA after processing to produce the
juice and the powdered products are reported below.

3.1. Anthocyanins

Thirty-five anthocyanins were detected in all samples (fruit, juice
and powdered products), present in the Table 1, namely the non-acy-
lated 3-glucosides (3-glc) of dp, cy, pt, pn and mv and their corre-
sponding acetyl and p-coumaroyl derivatives, except for the acetyl de-
rivative of mv; and the 3,5-diglucosylated (3,5-diglc) compounds
derived from dp, cy, pt, pn and mv in the non-acylated form and their
corresponding acetyl, p-coumaroyl and caffeoyl derivatives. The del-
phinidin 3-(6″-p-coumaroyl)-glucoside-5-glucoside was found in both
the cis and in trans forms. The anthocyanins with higher molar ratios in
the grape and derived products (juice and powdered products) were the
3,5-diglc derivatives of the three B-ring tri-substituted anthocyanidins
(dp, pt, and mv), with 36–48% of the total anthocyanin content.
Rebello et al. (2013) found a similar profile, with the exception of the
minor acetyl derivatives of the 3-glc of dp, cy, pt, and pn and the p-
coumaroyl derivative of dp-3,5-diglc, which in this work was identified
in two forms (cis and trans).

After processing the grape to obtain juice and subsequently pro-
cessing the juice to obtain the powders by FMD at the different tem-
peratures, there were significant reductions (P < 0.05) in the molar
ratios (sum) of 3-glc anthocyanins (24 to 13% and 13 to 9.5–11%, re-
spectively). Conversely, the molar ratios of 3,5-diglc anthocyanins in-
creased, from 76 to 87% from the grape to the juice and from 87 to
88.5–90% from the juice to the powdered products. There was no sig-
nificant difference between the 3-glc and 3,5-diglc molar proportions of
the juice and the lyophilized product (control).

The reduction was notably higher for the delphinidin derivatives
which has the largest molar ratio among the anthocyanins (3-glc and
3,5-diglc derivatives), with a consequent increase in the other three
principals, the 3,5-diglc derivatives of pt, pn and mv. Barcia, Pertuzatti,
Gómez-Alonso, Godoy, and Hermosín-Gutiérrez (2014) dried BRS Vio-
leta grape winemaking by-products (skins and less) by different
methods (oven drying at 50 °C, spray-drying and freeze-drying). When
comparing the profile of anthocyanins present in the skins dehydrated
by freeze drying with those dried at 50 °C they found the anthocyanins
derived from 3-glc and 3,5-glc of delphinidin decreased the most. On
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the other hand, especially the mv- and pn-derived non-acylated 3,5-
diglc anthocyanins increased their molar rations. This is very likely
because the 3,5-diglc anthocyanins derived from mv and pt, which are
methoxylated tri-substituted anthocyanidins, and from pn, which is a
methoxylated disubstituted anthocyanidin, seem to be more resistant to
thermal and/or oxidative degradation than the 3,5-diglc anthocyanins
derived from dp and cy, which are non-methoxylated tri- and dis-
ubstituted anthocyanins, respectively.

After the processing the fruit to obtain juice and, subsequently, the
juice to obtain the powdered products, there were the same or increased
molar proportions referring to the p-coumaroylated 3,5-diglc antho-
cyanins. In these anthocyanins, the p-coumaroyl group is present, which
is involved in the formation of both inter- and intra-molecular co-pig-
mentation complexes, thus contributing to increased stability of the
molecules. Similar results were reported by Lago-Vanzela et al. (2014)
who evaluated the degradation kinetics of the BRS Violeta wine an-
thocyanins after storage at 15, 25, 35 and 50 °C. In that study, the
authors reported that acylated anthocyanins, especially the p-coumar-
oylated ones, are more resistant to storage at higher temperatures when
compared to non-acylated ones, and that the 3-glc anthocyanins were
less stable than the respective 3,5-diglc derivatives. These results
strongly support the idea that the anthocyanin structure affects its
stability.

Regarding absolute concentration of anthocyanins, the BRS Violeta
grape, used as raw material, presented a concentration of anthocyanins
of approximately 3317mg/kg of fresh grape as equivalents of mv-3,5-
diglc (Table 1), a lower value to that found by Rebello et al. (2013)
(3950mg/kg) for the same cultivar. It is known, however, that vintage,
harvest and climatic conditions and other extrinsic factors such as in-
cidence of UV radiation and soil composition may influence the con-
centration of these and other grape phenolic compounds (Granato,
Carrapeiro, Fogliano, & Van Ruth, 2016).

Regarding the process of obtaining juice, the use of steam extraction

was able to extract 54% of the total anthocyanins present in the grape
(after conversion of the data using juice yield), which corresponds to a
concentration of anthocyanins of 2020mg equivalent of mv-3,5-diglc/L
of juice. This value is close to that found by Moser et al. (2017) in BRS
Violeta grape juice (1965mg/L) obtained by the same method of ex-
traction. This way of producing juice is commonly used in smallhold-
ings and on a semi-industrial scale. Extractor pans are available in
different sizes and capacities, which can, if desired, be used in series,
optimizing processing time and the amount of juice produced (Bresolin
et al., 2013). The use of saturated steam to extract the juice has other
advantages, besides being an easy and inexpensive process, because if
the juice is packaged in the correct way, it does not require subsequent
steps such as pasteurization and avoids turbidity by only extracting
soluble compounds (Dutra, Lima, Barros, Mascarenhas & Lafisca, 2014).
Producing grape juice by steam extraction is a good alternative for the
small producer, who can use their excess harvest to produce a higher
value product, and so increase the family income (Rizzon, Manfroi, &
Meneguzzo, 1998). On the other hand, exposure of the grapes to satu-
rated steam (2.5 h) and incorporation into the exogenous water pro-
duct, inherent in the steam extraction process, might have contributed
to the reduction of the content of anthocyanins. After destemming the
BRS Violeta grape, crushing, enzymatically treating with pectinase and
macerating at 60 °C for 1 h, Lima et al. (2014) obtained juice with an
anthocyanin concentration far below that found in this study (464mg
of cyanidin 3-glucoside (cy-3-glc)/L of juice or 677mg equivalent of
mv-3,5-diglc/L).

For the preparation of powdered products, some additives were
added to the grape juice to produce stable foams that were dehydrated
by freeze drying and drying at the three temperatures used in the study.
The concentration of anthocyanins in the powdered products ranged
from 3797 to 5491mg equivalent of mv-3,5-diglc/kg of powder (dry
basis). Moser et al. (2017) produced BRS Violeta grape juice powders,
with the addition of additives (maltodextrin and proteins), by spray

Table 2
Flavonols in BRS Violeta grape, juice and powdered products (foams dehydrated by freeze-drying and by FMD at 60, 70 and 80 °C) by HPLC-DAD-ESI-MS/MS
(negative ionization mode). MS and MS/MS spectra data, molar % (percentage of each individual flavonol regarding the total content), and total concentrations (as
equivalents of quercetin-3-glucoside). Given as mean values ± standard deviation (n= 3).

Flavonol Molecular ion; product
ions (m/z)

Molar %

Grape Juice Powdered products Foam mat drying

60 °C 70 °C 80 °C

M-3-glcU 493; 317 5.81 ± 0.59 a 5.13 ± 0.76 a 4.17 ± 0.54 a 4.68 ± 0.76 a 4.82 ± 0.02 a 1.53 ± 2.16b
M-3-glc 479; 317 66.30 ± 3.16 a 49.73 ± 6.27b 55.05 ± 3.49 ab 43.61 ± 11.06b 55.12 ± 0.10 ab 17.51 ± 14.41c
Q-3-glcU 477; 301 6.74 ± 0.95b 8.05 ± 1.53b 12.09 ± 1.59 a 8.56 ± 2.66 ab 8.60 ± 2.67 ab 5.52 ± 1.02b
Q-3-glc 463; 301 8.88 ± 0.17 ab 10.08 ± 1.45 a 10.99 ± 0.46 a 10.81 ± 3.23 a 11.90 ± 0.01 a 4.09 ± 3.76b
L-3-glc 493; 331 3.51 ± 0.53 a 3.59 ± 0.30 a 3.90 ± 0.51 a 3.83 ± 0.94 a 4.29 ± 0.09 a 3.73 ± 0.56 a
I-3-glc 477; 315 0.61 ± 0.06 ab 0.86 ± 0.18 a 0.78 ± 0.12 ab 0.89 ± 0.22 a 0.80 ± 0.01 a 0.28 ± 0.40b
S-3-glc 507; 345 3.00 ± 0.12b 4.00 ± 0.44 bc 7.59 ± 0.76 a 3.74 ± 0.60 bc 3.93 ± 0.07b 1.97 ± 1.28c
M free 317; 317 5.16 ± 1.59b 13.78 ± 5.61b 5.44 ± 4.97b 17.95 ± 14.79b 7.29 ± 0.23b 47.77 ± 16.94 a
Q free 301; 301 ND 3.44 ± 1.23b ND 4.31 ± 3.22 ab 2.22 ± 0.20b 11.32 ± 2.59 a
L free 331; 331 ND 0.321 ± 0.16 a ND 0.34 ± 0.49 a 0.18 ± 0.26 a 3.04 ± 3.08 a
I free 315; 315 ND 0.24 ± 0.20 a ND 0.28 ± 0.39 a 0.31 ± 0.08 a 0.63 ± 0.03 a
S free 345; 345 ND 0.79 ± 0.26b ND 1.00 ± 0.67 ab 0.45 ± 0.09b 2.61 ± 0.94 a
M-type 77.27 ± 1.70 a 68.65 ± 3.85b 64.65 ± 2.48b 66.24 ± 2.98b 67.23 ± 0.31b 66.81 ± 0.37b
Q-type 15.62 ± 1.11b 21.56 ± 3.13 ab 23.08 ± 1.79 a 23.68 ± 2.77 a 22.71 ± 0.27 ab 20.93 ± 2.18 ab
L-type 3.51 ± 0.53b 3.90 ± 0.22b 3.90 ± 0.51b 4.18 ± 0.45b 4.23 ± 0.35 ab 6.77 ± 2.52 a
I-type 0.61 ± 0.06b 1.10 ± 0.21 ab 0.78 ± 0.78 ab 1.16 ± 0.18 ab 1.21 ± 0.07 a 0.91 ± 0.37 ab
S-type 3.00 ± 0.12c 4.78 ± 0.46b 7.59 ± 0.76 a 4.74 ± 0.07b 4.37 ± 0.16b 4.57 ± 0.34b
% hydrolysis 5.16 ± 1.59b 18.56 ± 7.08b 5.44 ± 4.97b 23.88 ± 19.56b 10.45 ± 0.01b 65.37 ± 23.57 a
Total flavonols – wet basis

(fruit, mg/kg; juice, mg/L)
82.62 ± 7.25 A 76.00 ± 4.41 A

Total flavonols – dry basis
(mg/kg)

224.56 ± 2.97 A 110.19 ± 8.13B 112.79 ± 67.61B 82.49 ± 1.27C

Abbreviations: M, myricetin; Q, quercetin; L, larycitrin; I, isorhamnetin; S, syringetin; 3-glcU, 3-glucuronide, 3-glc, 3-glucoside. Different letters in the same line
indicate significant differences by analysis of variance (ANOVA) and multiple comparison Tukey test or Student t at P < 0.05. Lowercase letters are used for
comparison between all samples and capital letters for comparison only between fruit and juice or between foams dehydrated by freeze-drying and by FMD at 60, 70
and 80 °C.
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drying and measured anthocyanin concentrations of some samples
(ranging from 5850 to 9930mg/kg of powder) with values higher than
those found in this study. However, the proportion of juice used in the
formulations of the dry products were not comparable.

In order to evaluate the changes in anthocyanins as well as other
phenolic compounds present in these products after juice dehydration,
it is necessary to take into account not only the possible thermal or
oxidative degradation of the compounds but also the concentration
effect due to loss of water and dilution due to inclusion of additives to
grape juice. The lyophilized sample showed approximately 100% re-
tention of anthocyanins after comparison with the concentration of
anthocyanins determined in the juice and taking into account the in-
corporation of the additives, with their respective moisture content, as
well as the moisture content of the juice used and the final product.
These results show that the freeze-drying process did not lead to de-
gradation of the anthocyanins present in grape juice. In this way, this
lyophilized foam was used as control of the FMD process. There was a
statistically significant difference (P < 0.05) between anthocyanin
concentrations of the dehydrated products using FMD at the three
temperatures tested (60, 70 and 80 °C) and the control (lyophilized
sample), observing content losses between 22 and 31%. When com-
paring dehydrated products by FMD at different temperatures, it was
seen that there was no statistically significant difference (P < 0.05)
between the anthocyanin concentrations of the dehydrated products,
which indicates that the increase in drying temperature was compen-
sated by the reduction of the process time by up to approximately 57%.
This is different from the findings of other studies (Abbasi & Azizpour,
2016; Tavares et al., 2017) where the concentrations of the anthocya-
nins were influenced by the temperature.

Barcia et al. (2014) dried BRS Violeta grape winemaking by-pro-
ducts using different methods and observed much higher losses (close to
94%) of the anthocyanins content in the dried skin obtained by con-
ventional drying at 50 °C compared with this product obtained by
freeze-drying. Although there are losses during drying, these could be
considered low in relation to the control, and the FMD of the BRS
Violeta grape can be recommended for getting a dehydrated product
rich in anthocyanins at any of the temperatures tested, with much lower
energy spend.

In a paper from our research group, the FMD technique was used to
dehydrate jambolan juice at 60, 70 and 80 °C with drying times of 8.67,
5.33 and 4.17 h, respectively and lyophilized foam was used as process
control. Compared with the present work with grape juice, the drying
times of the jambolan juice were longer. However, the authors observed
a degradation of anthocyanins of up to 32%, a result quite close to that
of this study, which is possible due the different profile of the antho-
cyanin of the jambolan and/or the higher concentration of maltodextrin
(20%) that was added to the jambolan juice. The effectiveness of mal-
todextrin as a protective agent for anthocyanins against degradation
during extract or juice dehydration processes by freeze-drying and
spray drying (Lao & Giusti, 2017; Wilkowska et al., 2016; Yamashita
et al., 2017) or during the storage of dehydrated products (Duangmal
et al., 2008; Moser et al., 2017) has been well reported in the literature.
Maltodextrin can form complex molecules with the flavylium cation of
anthocyanins, preventing their transformation into less stable forms
(Chandra, Nair, & Iezzoni, 1993).

3.2. Flavonols

The flavonols profile of fresh grapes, juice and powdered products
are presented in Table 2 and include 3-glucoside (3-glc) derivatives of
myricetin (M), quercetin (Q), laricitrin (L), isorhamnetin (I) and syr-
ingetin (S), and 3-glucuronide derivatives (3-glcU) from M and Q. De-
rivatives of kaempferol K were not found. Rebello et al. (2013), in
describing the flavonols present in BRS Violeta grape, also identified 3-
galactoside derivatives of M and Q that were not found in this study.

Table 2 shows that the flavonols derived from M present in the juice

(M-3glc) and the dehydrated product at 80 °C (M-3glc and M-3glcU)
presented significant reductions (P < 0.05) of their molar proportions
compared to their respective values in the grape itself. Conversely,
there was a significant increase in the molar proportions of free myr-
icetin (M-free) thus suggesting that hydrolysis of M glycosides partially
occurred. In the products subjected to heat treatment (juices and de-
hydrated products obtained by FMD), other free aglycones (Q-free, L-
free, I-free and S-free) were also formed at lower molar proportions,
mainly in the product dehydrated at 80 °C. Especially in the latter
product, but also in some other cases, the standard deviations related to
these molar proportions were very high, probably because the tem-
perature is not the only factor affecting the degree of hydrolysis of the
flavonol glycosides during the dehydration process, even in samples
that are repetitions of the same dehydration experiment at the same
tested temperature.

In the case of the grape and the lyophilized product, the occurrence
of free M is considered to be produced by the use of acidic solutions
during the preparation of the samples for HPLC analysis of the flavonols
(Hermosín-Gutiérrez, Castillo-Muñoz, Gómez-Alonso, & García-
Romero, 2011). M is the major flavonol aglycone of these samples and
the most unstable in the case of degradative processes.

When recalculating the molar proportion data for the individually
identified flavonols by aglycone type (Table 2), the M-type flavonols
accounted for 66 to 77%, followed by Q-type flavonols (16 to 24%),
thus, together they accounted for approximately 88 to 93% of the total
flavonols present in the samples. This aglycone-type profile was similar
to that reported by Moser et al. (2017) when producing a dehydrated
product from the BRS Violeta grape juice using spray drying and by
Barcia et al. (2014) when dried BRS Violeta grape winemaking by-
products (skins and less) by different methods (oven drying at 50 °C,
spray-drying and freeze-drying). In addition, with the presentation of
the results in this way, no such large standard deviations were obtained
and, from the statistical analysis, it was concluded that the derived
products presented a significant decrease in the molar ratios for the
derivatives of M concomitantly with a significant increase, mainly, in
the derivatives of S. This fact is justified because M has three OH groups
in its B aromatic ring, while S has one OH group and two OCH3 groups
in the B ring. The OCH3 group enhances aglycone stability, especially
against oxidation and thermal degradation. Teleszko, Nowicka and
Wojdylo (2016) also report that the formation of the free aglycones in
the juices may be due to enzymatic hydrolysis of the flavonol glycosides
during thermal processing. In the powdered products, especially at the
highest temperature, the cleavage of the glycosidic bond was enhanced
by thermohydrolysis, releasing the corresponding aglycones.

The concentration of flavonols present in the grape was approxi-
mately 83mg/kg of fresh grapes as Q-3-glc equivalents (Table 2), which
is lower than that reported by Rebello et al. (2013) (156mg/kg). The
average concentration found in the juice was approximately 76mg/L of
juice as Q-3-glc equivalents, that is 81% of the content found in the
grape (after correction by the juice yield). The extraction of flavonols
from grapes to juice was higher than that observed for anthocyanins in
the same samples, likely because anthocyanins were more thermolabile
and could have had greater losses during juice production.

The concentration of flavonols (as Q-3-glc/kg equivalent) present in
the powdered products ranged from approximately 82 to 225mg/kg of
powder (dry basis). Moser et al. (2017), after dehydrating BRS Violeta
grape juice with different proportions of maltodextrin and proteins (soy
protein or whey protein) by spray drying, found concentrations of fla-
vonols ranging from 267 to 316mg/kg of product, some of the samples
having values near to those determined in the present study.

There was a significant statistical difference (P < 0.05) at con-
centration of flavonol between the samples dried at different tem-
peratures and between these samples and control (lyophilized sample).
As occurred for anthocyanins, the retention of flavonols in the lyophi-
lized sample relative to juice was approximately 100%. When com-
paring the flavonol content of the powdered products at the three
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temperatures with the lyophilizated (control), reductions in flavonol
concentrations ranging between 45 and 63%, approximately, were
seen, with the highest loss observed at 80 °C. There is no knowledge of
other studies that performed FMD in grape juice and determined the
concentration of flavonols. For comparison purposes, losses of 66% of
flavonols were reported in a winemaking by-product (grape skins) of
the BRS Violeta grape that was dehydrated by conventional drying at
50 °C and compared to the product obtained by freeze-drying (Barcia
et al., 2014). These results demonstrate that the flavonols present in
samples from BRS Violeta grapes are susceptible to high degradations
when exposed to temperatures equal to or higher than 50 °C.

Tavares et al. (2017), using similar conditions for FMD of the jam-
bolan juice did not found differences between the samples dried in the
driers and the control sample (lyophilized). This distinct behavior could
be inherent to the different flavonol profiles, along with other phenolic
compounds, of the matrices used, as well as different drying times and
concentration of additives.

3.3. Hydroxycinnamic acid derivatives (HCAD)

In the grape, juice and powdered products, a total of eleven HCAD
were found (Table 3), namely, trans-caftaric acid, trans- and cis-coutaric
acids, trans- and cis-fertaric acids, three isomeric combinations of caf-
feic acid with glucose (p-caffeoyl-glucose-1, p-caffeoyl-glucose-2 and p-
caffeoyl-glucose-3) and three isomeric combinations of p-coumaric acid
with glucose (p-coumaroyl-glucose-1, p-coumaroyl-glucose-2, p-cou-
maroyl-glucose-3). These same HCAD were found by Rebello et al.
(2013) when studying the different parts of the BRS Violeta grape and
are also in agreement with the results reported by Moser et al. (2017) in
BRS Violeta grape juice powder obtained by spray drying, except that in
those works did not find the cis-coutaric acid and the isomers of fertaric
acid, and that was also found free caffeic acid. The two most prevalent
individual HCAD in the samples analyzed were trans-fertaric acid de-
rivatives (16 to 34%) and trans-caftaric acid (9–25%).

In all the samples, the GRP (Grape Reaction Product or 2-S-glu-
tathionyl-trans-caftaric acid) was detected in high molar proportions
(21–29%). Barcia et al. (2014) also found this compound in BRS Lorena

grapes, which presented a large variability between different vintage
years: 7 and 29% respectively for the years 2011 and 2012. In the whole
grapes, the presence of the GRP is an artifact due to the manipulation of
the samples during the homogenization step to obtain the phenolic
extracts. The homogenization of the grape allows contact between the
oxidizable substrates (HCAD), the endogenous enzymes (poly-
phenoloxidase and peroxidase) and the necessary reactive oxygen that
triggers the oxidation process of the HCAD, which consequently results
in the formation of o-quinones. Subsequently, these o-quinones, which
are very reactive, can react with multiple compounds such as glu-
tathione, which is detected in the grapes and their corresponding dried
products, forming GRP.

The high formation of degradation products in the grape may ex-
plain the low concentration of HCAD found (39.57mg/kg of fresh grape
as caffeic acid equivalent) (Table 3), when compared to the value re-
ported by Rebello et al. (2013) for the same grape cultivar (133.90mg/
kg). However, it is important to note that the method of analysis for
HCAD determination has limitations, since only native grape deriva-
tives and one of their initial reaction products, GRP, can be identified
and quantified, apart from some of the hydrolysis products (hydro-
xycinnamic acids). In addition, the intermediate oxidation products,
such as o-quinones, formed during the degradation process are not
quantifiable by the method used and may continue to react until they
form polymerized compounds that are not extracted or that precipitate
in the extract.

In the juice, unlike the anthocyanins and flavonols, the concentra-
tion of HCAD (77mg/L juice as caftaric acid equivalent) was sig-
nificantly higher than that of the grape, resulting in an increase of
approximately 73% (after correcting for the juice yield). Genova,
Tosetti, and Tonutti (2016), after pasteurizing (30min at 78 °C) cold-
extracted Sangiovese (Vitis vinifera) grape juice reported an increase of
between 3.76 and 9.90% in the HCAD content, depending on the date of
harvest and the pre-treatment applied to the grape. In the present work,
the grape berry was placed intact in the extraction pan and extraction of
the juice was carried out using saturated steam. In these conditions, the
HCAD present in the grapes may have been better protected from en-
zymatic oxidative processes, likely because the temperature inactivated

Table 3
Hydroxycinnamic acid derivatives (HCAD) in BRS Violeta grape, juice and powdered products (foams dehydrated by freeze-drying and by FMD at 60, 70 and 80 °C)
by HPLC-DAD-ESI-MS/MS (negative ionization mode). MS and MS/MS spectra data, molar % (percentage of each individual HCAD regarding the total content), and
total concentrations (as equivalents of caftaric acid). Given as mean values ± standard deviation (n=3).

Molar %

HCAD Powdered products

Molecular ion; product ions
(m/z)

Grape Juice Freeze-drying Foam mat drying

60 °C 70 °C 80 °C

GRP 29.32 ± 1.45 a 26.86 ± 4.65 a 21.70 ± 1.22 a 23.99 ± 1.86 a 22.09 ± 1.09 a 20.84 ± 5.57 a
trans-caftaric acid 311; 179, 149, 135 12.24 ± 2.22 ab 12.80 ± 1.92b 10.46 ± 2.86b 9.35 ± 1.65b 8.39 ± 0.34b 25.10 ± 16.70 a
caffeoyl-glucose 1 341; 179, 161, 135 0.75 ± 0.23b 1.20 ± 0.71 ab 1.56 ± 0.35 ab 1.34 ± 1.01 ab 2.68 ± 0.03 a 0.81 ± 0.15 ab
caffeoyl-glucose 2 341; 179, 161, 135 1.15 ± 0.09c 2.75 ± 0.47 ab 1.71 ± 1.36 bc 3.93 ± 0.42 a 3.44 ± 0.03 ab 3.41 ± 0.26 ab
trans-coutaric acid 325; 193, 149, 119 3.31 ± 0.19 ab 1.94 ± 0.40 bc 1.01 ± 1.13c 1.90 ± 0.12 bc 1.84 ± 0.28 bc 4.67 ± 1.61 a
cis-coutaric acid 325; 193, 149, 119 1.68 ± 0.37 a 0.00 ± 0.00c 0.00 ± 0.00c 0.79 ± 0.09b 0.66 ± 0.21b 0.00 ± 0.00c
caffeoyl-glucose 3 341; 179, 161, 135 0.89 ± 0.12b 2.02 ± 0.36 ab 1.11 ± 0.69b 2.46 ± 0.63 a 2.06 ± 0.19 ab 1.64 ± 0.50 ab
p-coumaroyl-glucose 1 325; 163, 145 3.79 ± 1.89 a 1.36 ± 0.56b 1.02 ± 0.24b 1.07 ± 0.02b 1.67 ± 0.22 ab 1.62 ± 0.59 ab
trans-fertaric acid 325; 193, 149 15.98 ± 1.64b 30.95 ± 2.82 a 33.14 ± 1.32 a 33.63 ± 0.45 a 34.38 ± 0.64 a 23.03 ± 7.32b
cis- fertaric acid 325; 193, 149 3.64 ± 0.46 a 4.29 ± 0.70 a 5.27 ± 0.84 a 4.33 ± 0.56 a 4.04 ± 0.47 a 3.99 ± 0.50 a
p- coumaroyl-glucose 2 325; 163, 145 8.99 ± 0.63 ab 10.17 ± 2.06 ab 12.96 ± 2.60 a 11.21 ± 0.08 ab 12.05 ± 0.05 ab 6.98 ± 3.48b
p- coumaroyl-glucose 3 325; 163, 145 3.63 ± 0.46 a 4.29 ± 0.70 a 5.27 ± 0.84 a 4.33 ± 0.56 a 4.04 ± 0.75 a 3.99 ± 0.05 a
Total HCAD – wet basis
(fruit, mg/kg; juice, mg/L) 39.57 ± 2.86B 77.49 ± 3,53 A
Total HCAD – dry basis

(mg/kg)
263.10 ± 9.65 A 145.94 ± 6.25B 173.47 ± 5.39B 69.83 ± 10.45C

Abbreviations: GRP, 2-S-glutathionyl-trans-caftaric acid. Different letters in the same line indicate significant differences by analysis of variance (ANOVA) and Tukey
multiple comparison test or Student t at P < 0.05. Lowercase letters are used for comparison between all samples and capital letters for comparison only between
fruit and juice or between foams dehydrated by freeze-drying and by FMD at 60, 70 and 80 °C.
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the enzymes involved as well as the water vapor replacing, in part, the
air inside the extracting pan, which, in turn, resulted in a product with
higher concentration of these compounds.

The amount of HCAD present in the powdered products (as mg
equivalent of caftaric acid) ranged from approximately 70–263mg/kg
powder (dry basis). Moser et al. (2017), after dehydrating BRS Violeta
grape juice by spray drying, reported concentrations of HCAD in the
resulting powders (242.6–327.5 mg/kg of powder close to those ob-
tained in the present study. Barcia et al. (2014) studying the dried skin
by-products of BRS Violeta grape winemaking, observed a loss in the
HCAD content similar to this study (68%) when comparing the skin
dried by conventional drying at 50 °C to the same product obtained by
freeze-drying.

As for anthocyanins and flavonols, the retention of HCAD in the
lyophilized sample relative to juice was approximately 100%, which
shows that the freeze-drying process also did not lead to the degrada-
tion of the HCAD. Therefore, when comparing the HCAD concentrations
of the powdered products with heated air at different temperatures and
the lyophilized product (control) it was verified that there is statisti-
cally significant difference (P < 0.05), with reductions ranging from
35 to 73%, and higher losses at 80 °C. Unlike the marked effect of
thermal degradation that occurs in anthocyanins, for HCAD the most
important factor was oxidative degradation, when comparing powdered
products with hot air flow and lyophilized products (in the absence of
air). In addition, a significant difference (P < 0.05) was observed be-
tween the HCAD concentrations of the product dehydrated at 80 °C and
those determined in products dehydrated at 60 and 70 °C. Because the
derivatives of the hydroxycinnamic acids are chemically more suscep-
tible to oxidative degradation, the results in this case suggested that, by
raising the temperature above 70 °C, an accelerating effect of oxidative
degradation occurred, since the increase in the temperature increases
the rate of reaction, with consequent reduction in the total concentra-
tion of these compounds. Dehydrated products at 80 °C showed a 73%
reduction when compared to the control (lyophilized product).

3.4. Changes in TPC and AA

The content of total phenolic compounds (TPC) and the values of
antioxidant activity (AA) for the BRS Violeta grape, juice and powdered
products are presented in Table 4. The TPC of the BRS Violeta grape
was 3.51 ± 0.39mg/g of grape as GAE and and AA values were
32.79 ± 3.31 μmol/g grape as Trolox equivalent (or
76.53 ± 7.92 μmol/g as Fe2SO4 equivalent) by the FRAP method and
17.27 ± 0.08 µmol/g of grape as Trolox equivalent by the DPPH
method, respectively. For the Bordô grape (Vitis labrusca), Lago-Vanzela
et al. (2011) reported values for TPC and AA by the DPPH method of
1.13mg/g and 37.60 μmol/g, respectively.

Regarding the juice, a TPC concentration of 4.01 ± 0.27mg/mL
juice as GAE as well as AA of 42.19 ± 4.12 μmol/mL (FRAP method)

was determined as Trolox equivalents (or 99.11 ± 9.85 μmol/mL as
Fe2SO4 equivalent) and 32.95 ± 3.09 μmol/mL as Trolox equivalent
(DPPH method), respectively. Lima et al. (2014), after destemming the
BRS Violeta grape, crushing, treating enzymatically with pectinase
(3mL/100 kg of grape) and macerating at 60 °C for 1 h, obtained juice
containing a lower TPC concentration (2.72 mg GAE/mL), although this
value was higher than those reported for other cultivars such as Isabel,
BRS Cora and BRS Magna grapes (0.78, 1.9 and 2.10mg GAE/mL, re-
spectively). The latter study also reported an AA value for the BRS
Violeta grape by the DPPH method of 51.6mM Trolox/L, being higher
than that found in this study and even higher than the other mentioned
grapes (11.5, 44.2 and 49.2 mM Trolox/L, respectively for Isabel, BRS
Cora and BRS Magna grapes).

When comparing the TPC concentration of the grape and the juice
(taking into account the juice yield), only a slight increase of approxi-
mately 1.2% was observed. It is worth noting that many compounds
present naturally in fruits or that are incorporated during extraction
may interfere in the quantification of TPC by the Folin-Ciocalteu
method (Prior, Wu, & Schaich, 2005).

Regarding the AA determined by the DPPH method, there was an
increase of 69% from the grape to the juice (taking into account juice
yield). Literature data reported an increase in AA by processing using
higher temperatures. Nicoli, Anese, and Parpinel (1999) reported an
example of the different simultaneous reactions that may occur in the
plant matrix subjected to short or long term heat treatment. For short
heat treatments, a reduction in overall AA due to the loss of naturally
occurring antioxidants and/or the formation of pro-oxidants due to
Maillard reaction can be detected. A prolonged warm-up time, on the
other hand, generates a loss of these compounds which can be mini-
mized by a recovery or even an improvement in AA due to the forma-
tion of advanced Maillard reaction products. Castilhos et al. (2016) also
report that there was influence of temperature on the antioxidant ac-
tivity of BRS Violeta grape wines when alternative winemaking pro-
cedures of grape pre-drying.

In the present study, the powdered products still showed a high
concentration of TPC and relevant AA, even undergoing oxidative and
thermal degradation processes. Moser et al. (2017) when producing
powders also from BRS Violeta grape juice by spray drying, found
higher AA values (79.4–110.6 μmol/g as Trolox equivalent, by the
DPPH method) than those found in this work.

The analysis of the individual phenolic compounds indicated dif-
ferent responses of the compounds to the FMD processes at different
temperatures, and when analyzing TPC and AA in the samples, a sig-
nificant difference (P < 0.05) was observed between the values for the
lyophilized product and those air-dried at 60, 70 and 80 °C. The TPC
and AA by the DPPH and FRAP method had a reduction compared to
the lyophilized sample (control) of 8 to 16%, 9 to 21% and 7 to 17%,
respectively, being values of AA values found were higher when AA was
determined by the frap method than by the DPPH method. The AA of

Table 4
Concentration of total phenolic compounds and antioxidant activity of samples of BRS Violeta grape, its juice and powdered products obtained by freeze-drying and
by FMD at 60, 70 and 80 °C.

Samples1 TPC (mg of GAE)/g or mL Antioxidant Activity

FRAP (µmol of FS/g or mL) FRAP (µmol of Trolox/g or mL) DPPH (µmol of Trolox/g or mL)

Fruit 3.51 ± 0.39 A 76.53 ± 7.92B 32.79 ± 3.31B 17.27 ± 0.08B
Juice 4.01 ± 0.27 A 99.11 ± 9.85 A 42.19 ± 4.12 A 32.95 ± 3.09 A
Dehydrated product at freeze-drying 9.73 ± 0.01 a 207.42 ± 3.28 a 88.98 ± 1.36 a 39.75 ± 0.15 a
Dehydrated product at FMD (60 °c) 8.15 ± 0.64 ab 173.16 ± 2.32c 74.52 ± 0.97c 31.47 ± 0.79c
Dehydrated product at FMD (70 °c) 8.34 ± 0.27b 192.67 ± 3.55 ab 82.76 ± 1.15 ab 33.24 ± 0.83c
Dehydrated product at FMD (80 °c) 8.98 ± 0.61b 178.88 ± 6.42 bc 76.98 ± 1.36 bc 36.10 ± 1.10b

Abbreviations: TPC, total phenolic compounds, expressed as mg gallic acid equivalent (GAE)/g or mL. FS, ferric sulfate. The results for dehydrated products were
expressed on a dry basis. Different letters in the same column indicate significant differences by analysis of variance (ANOVA) using the Tukey multiple comparison
test at P < 0.05. Lower case letters are used for comparison between fruit and the juice only, whereas capital letters are used for comparison among the foams
dehydrated by freeze-drying and by FMD at 60, 70 and 80 °C.
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the dehydrated product at 70 °C, determined by the FRAP method, did
not differ from the AA determined in the lyophilized product (control).
Tavares et al. (2017), using similar conditions for FMD of the jambolan
juice did not found differences between the samples dried in the driers
and the control sample (lyophilized), also the values of AA values found
were higher when AA was determined by the frap method than by the
DPPH method. In a other study, by Sogi, Siddiq, and Dolan (2015),
dried Tommy mango cubes (10mm) were obtained by testing several
drying methods (freeze-drying, conventional drying and vacuum at
60 °C and infrared). After analyzing AA by several methods, no statis-
tical difference was found between samples dried by freeze-drying and
conventional drying by the DPPH method, whereas statistical differ-
ences were found regarding the ABTS, FRAP and ORAC methods.

Depending on the method used, there is a difference between the
values of AA due to the different mechanisms of determination of AA.
Being of paramount importance the analysis of AA by more than one
method, because the complexity of the composition of the materials
analyzed in the present study can lead to an underestimation of the AA.

4. Conclusions

Analyses of the qualitative and quantitative changes on the phenolic
compounds of the evaluated in the grape and juice showed that flavo-
nols and, especially HCADs extraction, by means saturated steam, were
favored in comparison to anthocyanins extraction. With regard to
deydrated products, those obtained by the FMD method at different
temperatures (60, 70 e 80 °C) showed PCs concentrations lower than
the freeze-dried product, however, at 70 °C these substances were more
preserved. Comparing effects of drying temperatures only on the pro-
ducts obtained by FMD, it is observed that anthocyanins were not sta-
tistically affected by the drying temperature changes, while, flavanols
and HCAD were affected by temperature increase. It is worth high-
lighting that at 80°, an important reduction in the drying time was
obtained. This work confirms the feasibility of using the FMD technique
to obtain dehydrated products of the BRS Violeta grape with potential
for use as an ingredient and/or coloring in the preparation of healthier
food products.
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