

XIII Simpósio Brasileiro de Melhoramento Animal Salvador, BA – 17 e 18 de junho de 2019

Haplótipos no gene CAST associados com medidas morfométricas em ovinos Santa Inês

Mayra Silva Dias¹, Alessandro de Lima Machado¹, Ariana Nascimento Meira², Luiz Lehmann Coutinho², Gerson Barreto Mourão², Hymerson Costa Azevedo³, Evandro Neves Muniz³, Victor Breno Pedrosa⁴, Luís Fernando Batista Pinto¹*

Resumo: O gene da calpastatina (CAST) é um candidato a estudos de associação com características de crescimento e carcaça tendo em vista que desempenha funções importantes no turnover proteico. Assim sendo, o objetivo do presente estudo foi avaliar a associação entre polimorfismos no gene CAST com medidas morfométricas em ovinos Santa Inês. Comprimentos e perímetros de diferentes regiões do corpo foram mensurados em 192 cordeiros aos 240 dias de idade. Um fragmento de 4107 pb, localizado entre o 20° e 23° exons, foi amplificado e sequenciado. Haplótipos foram identificados e uma análise de substituição de haplótipos via regressão foi então implementada. O fragmento aqui amplificado apresentou seis bloco de desequilíbrio de ligação, cada um deles contendo ao menos três haplótipos com frequência $\geq 1\%$. Foi encontrada associação sugestiva (P < 0.05) da substituição do haplótipo GGGGA pelo AAAGG no bloco 2 com perímetro torácico (-2,72 \pm 1,27 cm). Além disso, a substituição do haplótipo CGCCC pelo TAGTC, no bloco 4, foi associada com as variáveis comprimento do corpo (-3,38 \pm 1,49 cm) e perímetro da coxa (-2,84 \pm 1,37 cm). Existem haplótipos no gene CAST associados a características morfométricas em ovinos Santa Inês, os quais podem ser uteis em programas de melhoramento genético.

Palavras-chave: cordeiro, calpastatina, crescimento, morfologia, seleção.

Haplotypes in the CAST gene associated with morphometric traits in Santa Ines sheep

Abstract: - Calpastatin (*CAST*) is a candidate gene for association studies with growth and carcass traits in livestock because play a key role in protein turnover. Therefore, this study aimed to evaluate the association between haplotypes in the *CAST* gene and morphometric traits in Santa Ines sheep. Lengths and perimeters of different body regions were measured in 192 lambs at 240 days of age. A 4107 bp fragment, between 20th and 23rd exons, was amplified and sequenced. Haplotypes were identified and a haplotype regression analysis was performed. The fragment amplified here showed six linkage disequilibrium blocks, each containing at least three haplotypes with frequency $\geq 1\%$. A suggestive association (P <0.05) of the *GGGGA* by *AAAGG* replacement in block 2 was associated with thoracic girth (-2.72 \pm 1.27 cm). In addition, the *CGCCC* by *TAGTC* replacement in block 4 was associated with body length (-3.38 \pm 1.49 cm) and thigh girth (-2.84 \pm 1.37 cm). There are haplotypes in the CAST gene associated with morphometric traits in Santa Ines sheep, which may be useful in breeding programs.

Keywords: calpastatin, growth, lamb, morphology, selection

Introdução

A calpastatina é uma enzima que inibe a ação de enzimas proteolíticas conhecidas como calpaínas (Calvo *et al.*, 2014). Além disso, essas enzimas também apresentam importantes funções como reestruturação do citoesqueleto, a regulação do ciclo celular, a apoptose e a formação de tecido muscular (Goll *et al.*, 2003). A calpastatina atua nas fases embrionária e adulta do desenvolvimento muscular, através da degradação limitada de proteínas que constituem o citoesqueleto e a membrana da célula, favorecendo a formação dos miotubos que irão constituir a fibra muscular (Azari *et al.*, 2012). Há relatos de polimorfismo no gene *CAST* associado a características de crescimento como ganho de peso diário em

¹Universidade Federal da Bahia - UFBA, Salvador – BA, Brasil.

²Embrapa Tabuleiros Costeiros – Aracajú – SE, Brasil.

³Universidade de São Paulo – ESALQ/USP, Piracicaba – SP, Brasil.

⁴Universidade Estadual de Ponta Grossa – UEPG, Ponta Grossa – PR, Brasil.

^{*}Autor correspondente: luisfbp@ufba.br

XIII Simpósio Brasileiro de Melhoramento Animal Salvador, BA – 17 e 18 de junho de 2019

2019

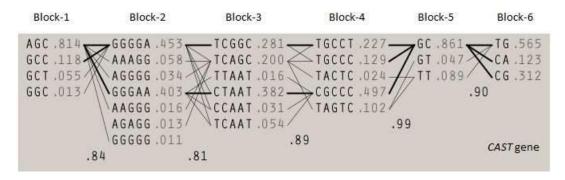
ovelhas das raças Kajil e Balkhi (Khan *et al.*, 2012). Porém, permanecem desconhecidos os possíveis efeitos de variantes no gene *CAST* com medidas morfométricas. Portanto, o objetivo deste estudo foi testar associação entre haplótipos no gene *CAST* com características morfométricas em ovinos Santa Inês.

Material e Métodos

Todos os procedimentos realizados neste estudo foram previamente aprovados pela Comissão de Ética no Uso de Animal da Escola de Medicina Veterinária e Zootecnia da Universidade Federal da Bahia (Protocolo No. 02/2010). Foram avaliados 192 cordeiros da raça Santa Inês, com aproximadamente 240 dias de idade. Destes, 106 pertenciam à fazenda experimental Pedro Arle da EMBRAPA Tabuleiros Costeiros e os demais à fazenda experimental da Universidade Federal da Bahia. Com o animal em estação-forçada foram mensuradas as alturas na cernelha e na garupa, os comprimentos do corpo e da garupa; as larguras do peito e da garupa, a profundidade do corpo e os perímetros torácico e da coxa, utilizando-se uma fita métrica e um hipômetro. Valores estatísticos descritivos estão na Tabela 1.

Para amplificação da região alvo do gene *CAST* foram utilizados os primers 5'-*AAAAGCCAAAGAAGAGATCG*-3' (forward) e 3'-*GGGAAACCACTTCAGAGACG*-5' (reverse), tendo obtido um fragmento de 4107 pb, localizado entre o 20° e o 23° exons. Nesta região foram identificadas 58 variantes, todas com menor frequência alélica >1%, mas apenas 25 em equilíbrio Hardy-Weinberg (Machado, 2018). Assim, 25 variantes foram utilizadas para identificação de haplótipos no gene, utilizando-se o software Haploview. As análises de associação foram realizadas com a sub-rotina haplo.glm do pacote haplo.stat versão 1.7.7, segundo Lake *et al.*, (2003). O nível de significância (P = 0,0037) foi determinado pela correção de Bonferroni a 5%.

Tabela 1. Tamanho amostral (N), média e desvio-padrão (DP) das variáveis analisadas


Características	N	Média	DP
Altura de cernelha (cm)	184	66,25	5,69
Altura de garupa (cm)	184	67,00	5,64
Comprimento de corpo (cm)	184	58,00	8,94
Comprimento de garupa (cm)	99	14,00	2,45
Largura do peito (cm)	184	17,80	2,11
Largura de garupa (cm)	180	15,50	3,36
Perímetro da coxa (cm)	184	40,00	8,23
Perímetro torácico (cm)	184	74,00	4,76
Profundidade do corpo (cm)	180	25,35	2,13

Resultados e Discussão

A análise de haplótipos identificou seis blocos de ligação e vários haplótipos formados em cada bloco (Figura 1). Algumas associações sugestivas foram encontradas (Tabela 2), mas nenhuma significativa ao nível da correção de Bonferroni. Foi observada associação sugestiva (P < 0.05) da substituição do haplótipo GGGGA pelo AAAGG, no bloco 2, com perímetro torácico (-2,72 \pm 1,27 cm). Além disso, a substituição do haplótipo CGCCC pelo TAGTC, no bloco 4, foi associada com comprimento do corpo (-3,38 \pm 1,49 cm) e perímetro da coxa (-2,84 \pm 1,37 cm). O sinal negativo destes coeficientes de regressão indica que essas substituições de haplótipos resultaram em redução das medidas corporais em análise. Prévios estudos relataram associações entre polimorfismos no gene CAST e medidas de crescimento em ovinos como nas raças Kajil e Balkhi ($Khan\ et\ al.$, 2012). Esses efeitos podem ser decorrentes do papel da calpastatina no turnover protéico e consequente formação de tecido muscular (Goll $et\ al.$, 2003, Azari et al., 2012).

Todos os polimorfismos aqui avaliados no gene CAST estão em região de intron. Assim, a principal hipótese é que estes haplótipos estejam em desequilíbrio de ligação com alguma mutação próxima. Neste contexto tem-se o SNP rs596673812, uma variante não-sinônima presente no exon 24, que causa a substituição dos aminoácidos *Ser/Asn* na posição 578 da calpastatina. Este SNP merece ser alvo de futuros estudos, pois pode ser o causador dos efeitos aqui encontrados.

XIII Simpósio Brasileiro de Melhoramento Animal Salvador, BA – 17 e 18 de junho de 2019

Figura 1. Haplótipos no gene CAST com frequência ≥ 1%.

Tabela 2. Coeficientes de regressão (β) e erros-padrão (EP) de associações entre haplótipos no gene *CAST* e variáveis morfométricas em ovinos Santa Inês

Característica	BDL^1	Substituição de haplótipos	В	EP	Probabilidade
Perímetro torácico	2	GGGGA > AAAGG	-2,72	1,27	0,033
Comprimento do corpo	4	CGCCC > TAGTC	-3,38	1,49	0,025
Perímetro da coxa	4	CGCCC > TAGTC	-2,84	1,37	0,040

¹BDL – Blocos de desequilíbrio de ligação

Conclusão

Haplótipos no gene *CAST* estão associados a características morfométricas em ovinos Santa Inês, informação que pode ser útil para programas de melhoramento genético.

Agradecimentos

À Embrapa Tabuleiros Costeiros pela infraestrutura e animais utilizados; Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio ao financeiro ao projeto (455611/2014-9). O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Literatura citada

Azari M.A., Dehnavi E., Yousefi S., Shahmohamadi L. 2012. Polymorphism of calpastatin, calpain and myostatin genes in native Dalagh sheep in Iran. **Slovak Journal of Animal Science**, 45, 1-6.

Calvo J.H., Iguácel L.P., Kirinus J.K., Serrano M., Ripoll G., Casasús I., Joy L., Pérez-Velasco, Sarto P., Albertí P. & Blanco M. 2014. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. **Meat science** 96, 775-782.

Goll D.E., Neti G., Mares S.W., Thompson V.F. 2008. Myofibrillar protein turnover: The proteasome and the calpains 1 2. **Journal of Animal Science**, 86, E19-E35.

Khan S.U.H., Riaz M.N., Ghaffar A., Khan M.F.U. 2012. Calpastatin (*CAST*) gene polymorphism and its association with average daily weight gain in Balkhi and Kajli sheep and Beetal goat breeds. **Pakistan Journal of Zoology** 44, 377-382.

Lake S.L., Lyon H., Tantisira K., Silverman E.K., Weiss S.T., Laird N.M., Schaid D.J. 2003. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. **Human Heredity**, 55, 56-65.

Machado A.L. 2018. **Polimorfismos nos genes** *LEP*, *GH*, *IGF1*, *CAPN1* e *CAST*, associados com características de crescimento e carcaça em ovinos Santa Inês. Tese (Doutorado em Zootecnia). Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia. Salvador, 64p.