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A B S T R A C T

Aphids are insects that attack crops and cause damage directly, by consuming the sap of plants, and indirectly,
by vectoring microorganisms that can cause diseases. Cereal crops are hosts for many aphid species, including
Rhopalosiphum padi (an economically important aphid species). Recording and classifying aphids are necessary
for evaluating and predicting crop damage. Thus, serving as a basis for decision making on the utilization of
control measures. It can also be useful to evaluate plant resistance to aphids. Traditionally, the recording process
is manual and depends on magnification and well-trained staff. The manual counting is also a time-consuming
process and susceptible to errors. With this in mind, this paper presents a method and software to automate the
counting and classification of Rhopalosiphum padi using image processing, computer vision, and machine
learning methods. The text also presents a comparison of manually counts from experts and values obtained with
the software, considering 40 samples. The results showed strong positive correlation in counting and classifi-
cation (rs =0.92579) and measurement (r=0.9799). Concluding, the software proved to be reliable and useful
to aphid population monitoring studies.

1. Introduction

Aphids can have an economic impact on agricultural production.
The yield losses are due to direct damage (sieve drain and plant reac-
tion) and indirect damage (often the most important, due to virus
transmission) (Dedryver et al., 2010). Cereal crops are hosts for many
aphid species, which are important pests like Sitobion avenae, Rhopa-
losiphum padi, Schizaphis graminum, Metopolophium dirhodum and others
(Shavit et al., 2018). These aphids are accountable for transmitting
Barley/Cereal yellow dwarf virus(B/CYDV) one of the most important
cereal viruses in the world (Shavit et al., 2018).

Wheat is among the crops affected by aphid species. This crop is the
second most produced cereal in the world, with significant importance
in the world economy. Direct damage by aphids is responsible for mean
annual losses of 700,000 tonnes of wheat in Europe (Dedryver et al.,
2010). According to Yahya et al. (2017), aphids have fast multiplication
rate and have potential to affect crop development within few days, and

the yield losses can be up to 7.9 to 34.2%.
Aphid counts may be required for crop monitoring as well as po-

pulation studies of these insects. In the first case, tools to monitor the
size of aphid populations and their growth are useful for control deci-
sion making. In the second, studies aimed at determining how the aphid
population reacts to biotic and abiotic factors require that both growth
and population structure be estimated (Savaris et al., 2013).

Considering that small populations can transmit diseases and mul-
tiply rapidly, chemical control is recommended based on a population
density threshold (calculated for each region and crop) (Hansen, 2000).
Therefore, counting, classification, and measuring aphids is critical to
estimate if there is a risk factor for crops (Shajahan et al., 2017).
Weekly evaluations should take place for monitoring aphid density at
random locations in the field (Martin et al., 2015).

Thus, several field samples are collected and taken to the laboratory
for aphid identification and counting. One of the methods traditionally
employed is the use of a stereoscopic microscope and a background grid
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of lines for visualization and counting (or sampling) of the insects. In
addition to counting, for aphid population studies, insects are separated
by developmental stage into nymphs, wingless adults and winged adults
(Carter et al., 1982). In samples with a high density of insects, partial
counting, and estimation of the total population of insects is required. It
is a time-consuming method that tends to have a high error rate, since
human beings are susceptible to physiological and psychological phe-
nomena like fatigue, visual illusions and boredom (Barbedo, 2014).

In this context, using computer vision techniques to evaluate the
dynamics of the aphid pest populations would have a value on in-
tegrated pest management and decision making in agriculture - in
particular, the wheat crop (Barbedo, 2014). With an automatic
counting system, it should be possible to shorten the examination time
per sample. It also should contribute to a more reliable and accurate
final result, indicating, for example, the infestation density of a given
area (Gonzalez and Woods, 2006).

Besides, through different computational systems and image col-
lections, different patterns of analysis can be configured (Nissimov
et al., 2015). The algorithm should include a standard method of
counting and classifying aphids defined by scientific methods (Parer
and Hamilton, 2010; Arambula Cosio et al., 2003). Another feature is
that the software is not susceptible to errors caused by human physio-
logical and psychological phenomena (Lu and Ferrier, 2004).

A computer program with this approach can contribute to the re-
duction in the processing time of aphid samples allowing, for example,
the fast and accurate collection of information (currently obtained
manually by counting and identifying each aphid in the sample). In
addition, a future application that enables automated monitoring of
field aphid populations can change the way pest management is carried
out, enabling near real-time decisions. Currently, the monitoring of
aphids in crops is extremely time consuming and depends on specia-
lized labor.

Hence, this paper presents details about the development of a
computer vision method for counting, classifying, and measuring
aphids using the OpenCV and TensorFlow libraries. This work aims to
offer a tool for agriculture specialists to improve monitoring aphid
population dynamics.

2. Related work

Several applications in agriculture involve or require the use of
image processing. Among them, a portion relates to aid in pest detec-
tion and decision making. By means of break-even analysis, it is pos-
sible to know if it is needed to apply a particular pesticide, considering
a pest population threshold at which the resulting damages are equal to
the costs of control measures. The proposed solution can also reduce the
use of pesticides and, thus, preserving the environment. Therefore, the
use of image processing techniques has become a trend in recent years
(Mande et al., 2018).

Some approaches for pest detection in plants have already been
presented in other studies. Barbedo (2014) showed whitefly counts on
soybean leaves, identifying the characteristics in each phase of the life
cycle of these insects, based on the staining of individuals at each stage
of growth. In the next step, he proposed an algorithm for counting units
of whitefly.

In another study, Liu et al. (2016) reported monitoring of aphid
populations and species identification, providing important data related
to pest population dynamics and integrated pest management. Within
this context, the authors developed software for counting and identi-
fying aphids in the wheat crop, which does not require traps or an
explicitly defined background. Images for processing are captured and
processed directly on infested plants.

In addition to direct plant detection, Xia et al. (2015) proposed
image processing techniques to identify three species of greenhouse
pests using low-resolution images. The process begins with the capture
of insects using adhesive traps, which are digitized and then processed.

Another computational method was artificial neural networks.
Wadhai et al. (2015) introduced a pest detection system in green-

houses using image processing and neural networks exclusively ap-
plicable to greenhouse whitefly (Trialeurodes vaporariorum) and aphids.

These studies demonstrated that the use of digital image processing
already brings satisfactory results, even without the use of recent ma-
chine vision techniques, like deep learning approach using convolution
neural networks. According to Abdullahi et al. (2017), this combination
is the most effective approach generating fast and excellent results for
image classification.

The use of the two methods, therefore, should increase the accuracy
and reliability of detection systems. Our computer vision proposal as-
sumes this as a feature of a software solution to count, classify, and
measure insects.

3. Materials

Embrapa Wheat supported the development of this work. The in-
stitution located in Passo Fundo is one of the 47 units of the Brazilian
Agricultural Research Corporation (Embrapa) (Embrapa Trigo, 2019).
It provided the materials needed to obtain the images used during the
development of the system.

This work proposes the development of a software (AphidCV) that
implements a method of aphids counting and classification using
computer vision resources. This software is a tool to enable aphid po-
pulation studies and factors affecting population growth. In general,
controlled population studies require countings, classification (devel-
opment stage count), and population morphometry. In developing the
software, we used the programming language Java 7, libraries OpenCV
3.0, and TensorFlow r1.1.

Java is one of the most important programming languages in the
world, based on the object-oriented paradigm. Maintained by Oracle
Corporation, it features security, portability, robustness, and multi-
threaded capabilities for applications in a neutral, interpreted, dis-
tributed, and dynamic architecture (Schildt, 2017).

OpenCV (Open Source Computer Vision) is an open-source, cross-
platform computer vision library with more than 2500 algorithms for
video and image analysis (OpenCV Library, 2019). Originally devel-
oped by Intel, it is currently openly maintained by its community. It has
interfaces for C++, C, Python, Java, and MATLAB.

TensorFlow is an open-source library for machine learning. Initially,
it was developed by the Google Brain Team for research purposes in
deep neural networks (Tensorflow, 2019), to detect and decipher pat-
terns and correlations, analogous to human learning and reasoning.

4. Methods

4.1. Acquisition

To the classification method definition, the image acquisition step is
essential, since it is necessary to establish a standard configuration for
sample acquisition and reduction of bias. This step, with the exception
of the digitization, is based on the manual counting method used at
Embrapa Wheat.

The process begins with the collection of samples by field re-
searchers, placing the aphids in test tubes containing aqueous solution.
Then, the samples are transferred to circular and transparent Petri
dishes, 14 cm in diameter. In the sequence, the dishes are scanned with
the collected materials. The scanning is done on ordinary desktop
scanner, at the resolution of 1200 dpi, dimensions of 7000× 7000
pixels and color image. The development of the software is performed
with samples containing colonies of the Rhopalosiphum padi. However,
our method is projected to support the study of any aphid species,
considering calibration by species.

Petri dish has 1 cm of height. Even closing the scanner cover, ex-
ternal light may input and affect the quality of the image. As the
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classification step depends on the small details present in the image it
was necessary to solve this problem using a black-box. Fig. 1 demon-
strates the device developed in a 3D printer in the dimensions of
15 cm×15 cm that completely seals the external light input on the
board.

Fig. 2 demonstrates a comparison, where (a) was scanned without
the use of the carton, resulting in a much darker image than (b),
scanned using the carton. Details of the wings of the aphids were more
visible with the use of the equipment.

Circles of 0.5 cm in diameter drawn in the four corners of the box
were used as reference objects (Fig. 3). These references can be easily
identifiable in image (based on either location or appearances), and
they have known dimensions (in terms of millimeters). So, we defined a
ratio in order to convert pixel to millimeter unit, measuring the real size
of aphids with computer vision.

To obtain the dataset of images for artificial neural network (ANN)
training, we developed an auxiliary software, called CropAphid, de-
veloped in Java language. From this tool, the inputs were processed
using the same digital image processing techniques described in the
next section. Objects similar to aphids were selected out constituting
the primary database. The sample with aphids was restrained in Petri
dishes, as shown in Fig. 4.

After, an aphid specialist separated the images classifying as
nymphs, adult wingless, winged adults, and false (plant tissue, soil,
debris, etc.).

4.2. Processing

For the image processing, three methods were used to extract the
regions of interest from the images, and to eliminate trash like exos-
keletons, using OpenCV resources.

The process begins with macro segmentation. A scanned image
contains the data outside the perimeter of the Petri dish. Therefore, it is
necessary to apply a method of excluding these external areas.

Fig. 5 represents this situation, where the black part was considered
unnecessary (right) in relation to the input image (left). For that, the
Hough gradient method was applied to detect circles in an image,
considering the gradient information of edges. The first stage involves
edge detection and finding the possible circle centers and the second
stage finds the best radius for each candidate center (Kaehler and
Bradski, 2016). This implementation enables the algorithm to run much
faster and helps to reduce the noise substantially.

The next step also performs segmentation but intending to exclude
the exoskeletons discharged by aphids as they grow. Remains of plant

Fig. 1. Black-box used during image acquisition.

Fig. 2. Comparison of the image obtained in a scanner (a) without the box and (b) scanned with the box.
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parts, in most cases, have a lighter color hue than insects. This was also
removed by a thresholding algorithm applied to the region of interest.

Thresholding is considered an essential and fundamental step
during the segmentation process (Szeliski, 2010). Its principle is to se-
parate areas of an image in two classes, such as the background and an
object. The function sets a cut-off value (T) for an image that, when
processed, will consider all pixel values higher than the threshold equal
to T, otherwise as zero. By means of calibration, the value of T was set
at 110. Fig. 6 shows the result of this step in an enlarged area of the
image. Thus, potential false positives are eliminated, since exoskeletons
have a high degree of resemblance with the insects.

In the third step, the contours of the objects found in the image are
recognized by edge detection techniques. After recognizing each con-
tour, the dimensions of areas of outstanding interest are examined to
determine whether it can be considered an aphid. The contour mea-
surements are the length, the width, and the perimeter.

If the contour is regarded as a likely insect, it will be extracted from
the image – the extraction results from a rectangular contour cut.

The weight and body measurements were recorded in a sample of
328 wingless adults of Rhopalosiphum padi. The measures with a high
precision ruler included the length, the perimeter, and the area of each
aphid. The weight of each aphid was recorded on a high precision scale.
A model was fitted to data to determine the relationship between
weight and measures. The model equations are shown in Table 1. The
estimated weight of each aphid is calculated by entering the area and
perimeter in the above equations.

4.3. Classification

Each recognized area is evaluated through z learning techniques to
determine the development stage. The characteristics of the current
image are compared with positive and false-positive images in the

database (generated by CropAphid).
After obtaining the potential contours, it is necessary to label the

insects in three classes according to the stage of development (nymphs,
wingless adults, and winged adults). Nymphs are aphids in the early
stages of life that are smaller in size if compared to adults. Also, they
have a less rounded morphology. Wingless adults are characterized by
their larger body size and more rounded morphology. Winged adults
have wings.

To make the classification, we used deep learning algorithms
available in the TensorFlow library. From a Java Console module, input
image clippings and a primary database were created, based on the
previously presented image processing steps.

To generate this dataset, 120 samples similar to Fig. 4 were used.
Out of these images, approximately 30,000 cutouts of 120× 120 pixels
were obtained. These cutouts were submitted to human classification,
considering four classes: “nymph”, “wingless”, “winged” and “false”.
For machine learning, we assigned 2475 images of the “winged” class
(Fig. 7), 4173 of “wingless” class (Fig. 8), 15896 of “nymph” class
(Fig. 9) and 4835 of “false” class (Fig. 10).

A portion of 90% of the dataset was used for training and 10% for
validation. The ANN model used was Inception-v3 (Szegedy et al.,
2016), a Google-structured model for the classification of general-pur-
pose color images. As a result, machine learning with a precision of
98.10% was obtained in the validation dataset after 30 epochs.

However, the validation accuracy may not be compatible with
reality since the results after each training cycle influence the back-
propagation algorithm. Therefore, a new test dataset was collected with
new 220 dishes never before analyzed by the trained model. The results
are described below.

Fig. 3. Reference objects in image to calculate the size of aphids using a pixel per metric ratio.
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4.4. Presentation

Our proposed method and tools mentioned above resulted in the
application called AphidCV. The system is for Windows platform, user-
friendly, without the need for advanced computer skills or complicated
configurations.

The user communicates with the software through a graphical user
interface built-in JavaFX. Simply, the user has to select a source folder
containing the images for processing. After that, each available image is
processed. Fig. 11 shows the window with processing results.

Output images are also saved for visual analysis by users. Fig. 12

shows an enlarged cutout of a post-processing image, where the out-
lines in yellow were considered nymphs, the wingless adults were in
red, and winged adults were in the purple. For the demonstration, the
numbers on the side represent the measures in millimeters of the area,
perimeter, length, and degree of certainty of the ANN classification. The
estimated weight derived from equations presented in Table 1.

In addition to the processed images, AphidCV also generates JSON
files for Embrapa Wheat third-party software, and CSV files with a list
of all detected insects and their data, as shown in Fig. 13. JSON is a
lightweight data-interchange formats used to transmit data objects
consisting of attribute–value pairs and array data types, and CSV is a

Fig. 4. Scanned dish example.

Fig. 5. Macro segmentation.
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common data exchange format that is widely supported by spread-
sheets. The software also creates a “Doubtful” folder containing the
insects in which the ANN has a degree of certainty less than 80%,
conceding a human reassessment in these cases.

5. Results

At the end of the proposed software development, the validation
step was conducted, comparing the data obtained by standard counting
and AphidCV. We also implemented an examination using the
CropAphid software to count and classify the cuts made by the
AphidCV.

The standard is the method currently in use at Embrapa Wheat. The
CropAphid cuts and detects contours, but the classification is done vi-
sually by experts. The AphidCV consisted of a fully computerized
method, with counting, sorting, and printed output.

A set of 40 samples was used to evaluate the software. The recorded
variables were the number of aphids, their classes, and time. First, the
number of aphids was recorded and classified by experts at the
Embrapa Wheat laboratory. Afterward, the samples were scanned and

submitted to CropAphid, and the number of aphids determined. The
classification was done by experts. Finally, the collection of images was
processed in AphidCV.

For statistical analysis, the Shapiro-Wilk test was used first to check
the data normality. All sets presented a non-normal distribution at

=n 40 with a significance level of 5%. The Spearman Correlation (rs)
examined the relationship between methods.

The comparison pairs were:

• Standard×AphidCV;
• CropAphid×AphidCV.

All tests considered the total number of aphids to evaluate the
counting method efficiency. The number of nymphs, wingless, and
winged adults was used to compare the effectiveness of the classifica-
tion method. Table 2 shows the number of aphids (total and stage of
development) for each method.

5.1. Standard×AphidCV

Fig. 14 indicates a marked association between the two methods
regarding the total number of aphids (rs =0.92579). The Spearman’s
correlation by stage was “nymph” (rs =0.89601), “wingless”
(rs =0.86138) and “winged” (rs =0.63149).

Fig. 6. Thresholding results.

Table 1
Transformation equations of area (mm )2 and length (mm) for weight (g).

Area (a) Length (l)

+ +a a0.0002 0.0002 0.000022 +l l0.0006 0.0009 0.00052

Fig. 7. Examples of “winged” class images.
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5.2. CropAphid×AphidCV

Fig. 15 also shows a marked association between the two methods
regarding the total number of aphids (rs =0.99249).The Spearman’s
correlation by stage was “nymph” (rs =0.98555), “wingless”
(rs =0.84755) and “winged” (rs =0.69146).

5.3. Measuring comparison

A sub-sample consisting of 40 randomly selected aphids was used.
The aphid body length, in millimeters, was determined by Motic mi-
croscopy software (Motic - Moticam Software Series, 2019).

A Shapiro-Wilk test was used to check the data normality. Normal
distribution was confirmed, and Pearson’s correlation was applied.

Aphid’s body length measures obtained under a microscope were
highly correlated (r=0.9799) with measures obtained in AphidCV
(Fig. 16).

A comparison of the aphid’s weight determined on a scale and in
AphidCV was also evaluated. First, we organized six samples re-
presenting aphid development stages: first-instar nymphs (N1=680),
second instar nymphs (N2=174), third-instar nymphs (N3=181),
fourth-instar nymphs (N4=227), winged adults (N5= 135), and
wingless adults (N=50). Next, we estimated the mean weight per
aphid.

Body length and area were determined in sub-samples of 30 aphids
at each development stage. Again, Motic software was used to obtain
length, perimeter, and total area. Based on the measurements, the mean

weight was estimated.he medium-weight of these populations.
Using the same sub-samples, we used AphidCV to generate length,

perimeter, area, and weight of each specimen.
The means of length, area, and weight of each subsample were used

for comparison. Shapiro-Wilk test confirmed normal distributions, and
Pearson’s correlation coefficient was applied.

The results showed a high correlation (r=0.995) between weight
values measured with the aid of a scale and with AphidCV (Fig. 17).

6. Discussion

The method implemented in AphidCV was efficient, especially when
the total number of aphids (the sum of all stages and morphs) are
compared. The sorting can be considered suitable for “nymph” and
“wingless” classes. However, the “winged” class presented a weaker
relationship in comparison to the others. The separation process for the
class ”winged” needs more elements in the training database. Data from
suction or tray traps could be a source for collecting more winged
adults.

The best correlation was between CropAphid×AphidCV.
CropAphid is a software that does not use machine learning (it depends
on humans for the classification). Due to the almost perfect positive
association, it is speculated a possible human error related to the total
number of aphids.

A possible source of error could be the presence of tiny nymphs (less
than 1mm) that, in some cases, are not visualized in the standard
method, but are detected by both software. For example, reviewing the

Fig. 8. Examples of “wingless” class images.

Fig. 9. Examples of “nymph” class images.
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total number of nymphs, in all samples, the figures were: 12095 in the
standard, 16329 in CropAphid, and 15784 in AphidCV. In the future,
for a better assessment, comparisons should also include different ex-
perts.

The most prominent gain in the use of the software is undoubtedly
the time need to evaluate a sample. Fig. 18 shows a comparison be-
tween the amount of time consumed by the three methods. AphidCV is
four times faster than the standard method. The time presented for the
AphidCV and CropAphid considers the sample preparation and scan-
ning.

Besides, AphidCV no longer depends on a human after having the
images scanned. The execution can be scheduled to start after working
hours. Obviously, the software is not susceptible to tiredness or fatigue,
allowing 24×7 evaluations with the same performance for all images.

Through this time saving, it will be possible to examine four times
more samples than currently attained with the standard method. Hence,
increasing data access and reliability.

There was a high correlation between the values obtained from a
microscopic ruler and the AphidCV. Currently, aphids are not measured
because of the amount of time required for such a task. Nevertheless, it
is important data for many studies that can be obtained with the
AphidCV. The acquisition of the added information is rapid, automated,
and reliable.

An AphidCV fault is the discarding of objects of interest that have
overlapping elements. Currently, our tool allows configuring size ranges
for body length and area of aphids according to the characteristics of
each species (Stroyan, 1984). AphidCV treats cases that extrapolate

these measures as “Doubtful” for, human reassessment. In the future,
modifications in the algorithm should include simple morphological
details about antennas and legs present in doubtful objects of interest.
In this case, we believe that it will be possible to use the same training
images already available and adjust AphidCV to support this new fea-
ture. On the other hand, other morphological details, such as wing,
should require extra care during capture to avoid damages in the wing
structure. In this case, there will be a need for the acquisition of new
images for training.

In terms of counting and detecting objects’ accuracy, AphidCV
performed better than studies that realized pest detection in plants
(Barbedo, 2014; Liu et al., 2016). Probably, this may have been due to
the use of the ANN, which ignores false-positive counts, and the use of
cleaner images, as it is in a controlled environment.

Moreover, in terms of ANN accuracy used for each stage, we ob-
tained a lower correlation compared to Inception-v3 itself in the vali-
dation of ImageNET (Szegedy et al., 2016) or wild animals classifiers
(Norouzzadeh et al., 2018). Almost certainly, this may have been due to
the dataset difference used in model training, since these models were
trained with datasets of 14 and 3 million images, respectively. In stu-
dies with smaller datasets, such as those that detect humans diseases,
our accuracy correlation becomes similar (Shen et al., 2019; Couture
et al., 2018; Coudray et al., 2018).

In spite of that, the results obtained in this first experiment were
extremely encouraging. They demonstrated that the software presents a
high degree of reliability when evaluating the total number of aphids.
Concerning classification, one can also consider that the results are

Fig. 10. Examples of “false” class images.

Fig. 11. Results presentation.
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reasonably good, but with low precision with the “winged” class. We
believe that with the improvement of the software in the classification
of winged aphids, it could become extremely reliable. Hopefully, it will
be conceivable to reach equivalent or higher levels of accuracy as
compared to standard methods done by experts. Importantly, it always
will be faster and will provide data regarding the size and the weight of
each insect.

We propose two potential uses for this software. Firstly, to study the
population dynamics of a given species under experimental conditions
where it is necessary to evaluate progress and population structure
according to factors under test. Secondly, to monitor field aphids for
decision making in pesticide management, for example. The current
version of Aphid CV is a first step that was born from the need of
counting Rhopalosiphum padi populations. A similar approach is in de-
velopment for other winter cereal species. One option for a wide variety
of users working with other aphid species would be to provide this
software with tools to facilitate machine learning, even for non-com-
puter users such as biologists and agronomists. These experts could
calibrate the program to their needs, creating a collaborative context to
share new images and learning parameters for the public in general. For
field monitoring, this solution can be useful as a background for
counting trap samples containing winged aphids, a major agricultural
challenge. Even for experts, identification still depends on accurate
microscope analysis. Our approach is an initial effort to characterize the
“body pattern” of aphids in order to develop computational tools
helpful in monitoring their populations (regardless of species) under
both laboratory and field conditions. These tools are intended to reduce
dependence on specialized labor, reducing sample processing time and
ensuring accurate identification and counting of aphids.

7. Conclusion

This work presented the explanation of a method to automate the
counting and classification of aphids of the Rhopalosiphum padi species
using image processing, computer vision, and deep learning. A software
named AphidCV was developed for implementing the proposed
method.

Based on the validation tests with the software, we concluded that it

is valuable for counting, sorting according to the development stage,
and taking measures of the aphid species Rhopalosiphum padi.

If compared with the standard method used in the laboratory, we
highlighted that the AphidCV saves time during the processes of
counting and sorting. Besides, it added data that was previously not
accounted for in samples, such as aphid morphometry. Also, AphidCV
displays a complete report of the results in tabular format. The mod-
ularity feature enables easy integration with third-party systems.

Fig. 12. Image details processed.

Fig. 13. Example report per sample.

Table 2
Comparison of counting and classification of aphids between the Standard,
CropAphid and AphidCV methods.

Class Standard CropAphid AphidCV

Nymph 12095 16329 15784
Wingless 2080 2380 4296
Winged 149 170 206
Total 14324 18879 20286

Fig. 14. Total number of aphids obtained by Standard and AphidCV methods.
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The software still needs some fine-tuning to correct some limitations
in sorting winged adult aphids, for example. To this end, it is re-
commended to balance and increase the training set, considering the
application of techniques such as data augmentation for deep learning.
Regular use of AphidCV may also feedback on the process.

Besides, we intend to test other ANN models to improve

classification accuracy. We also plan to apply object detection techni-
ques to classify more than one aphid in the same cropped image, since
currently overlapping insects are classified as one, reducing the rate of
success in the results.

The proposed method and the software developed is an important
move towards the application of computer vision in agriculture.
AphidCV is a software tailored for use in the field of entomology where
counting and sorting insects are common tasks. By using the software, it
is possible to increase the number of samples in the same amount of
time and with reproducible results.

Future work includes the use of a graphics processing unit (GPU) for
fast calculations. We also have plans to train the software to recognize
other cereal aphids species. Finally, a more challengeable goal is the use
of software in samples collected directly from the field. An automated
system for counting cereal aphids captured in traps installed in the field
would be a valuable tool in decision-making on integrated pest man-
agement.
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