
SoftwareX 10 (2019) 100271

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

jDSSAT: A JavaScriptModule for DSSAT-CSM integration
Jonas de Abreu Resenes a,∗, Willingthon Pavan a, Carlos Amaral Hölbig a,
José Maurício Cunha Fernandes a, Vakhtang Shelia b, Cheryl Porter b, Gerrit Hoogenboom b

a Graduate Program in Applied Computing, University of Passo Fundo, Brazil
b Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA

a r t i c l e i n f o

Article history:
Received 23 April 2019
Accepted 24 June 2019

Keywords:
DSSAT
Crop simulation
JavaScript

a b s t r a c t

The DSSAT is a collection of computer programs and tools integrated into a single software package in
order to facilitate the application of crop simulation models in research and decision making. The
DSSAT Shell, an user interface program, enables users to easily select and use any of the DSSAT
components. It reads text files, both input and output with fixed width format, to provide information
to the users and to be able to run the models. The logic to read DSSAT files and process the
information to display to the user relies on the Shell itself and cannot be reusable by any other system,
which makes it harder to implement alternatives for the DSSAT Shell since there are no frameworks
available that implements the complexity of processing DSSAT files. The DSSAT tools were built using
old programming technologies such Visual Basic which is in end-of-life support and Delphi, these
technologies should be replaced for a modern and standardized software development approach for a
better maintainability. Besides, these tools are stand-alone and they do not share code which increases
the effort to maintain them. This work presents the jDSSAT, a multiplatform JavaScript module. The
jDSSAT provides a standard and reusable approach for reading and processing DSSAT files. Through
this approach, we isolate the complexity of processing DSSAT files to allow DSSAT integration on any
environment. It also integrates with DSSAT-CSM to make it easier to run DSSAT models in Linux,
Windows and MacOS. As a result, we present a multiplatform user interface prototype created to run
DSSAT crop models using the main features of the jDSSAT. Also, the integration with the R environment
that expands the possibilities of the DSSAT integration.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 2.0.0-rc.24
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_156
Legal Code License List one of the approved licenses
Code versioning system used git
Software code languages, tools, and services used JavaScript
Compilation requirements, operating environments & dependencies Git and Node
If available Link to developer documentation/manual https://github.com/jabreuar/jdssat/
Support email for questions jabreu.ar@gmail.com

Software metadata

Current software version https://www.npmjs.com/package/jdssat
Permanent link to executables of this version https://www.npmjs.com/package/jdssat
Legal Software License List one of the approved licenses
Computing platforms/Operating Systems distributed/web based
Installation requirements & dependencies Git and Node https://www.npmjs.com/package/jdssat
If available, link to user manual - if formally published include a reference to the publication in the
reference list

https://www.npmjs.com/package/jdssat

Support email for questions jabreu.ar@gmail.com

∗ Corresponding author.
E-mail addresses: jabreu.ar@gmail.com (J. de Abreu Resenes),

pavan@upf.br (W. Pavan), holbig@upf.br (C.A. Hölbig),
mauricio.fernandes@embrapa.br (J.M.C. Fernandes), vakhtang.shelia@ufl.edu
(V. Shelia), cporter@ufl.edu (C. Porter), gerrit@ufl.edu (G. Hoogenboom).

https://doi.org/10.1016/j.softx.2019.100271
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.100271
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100271&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_156
https://github.com/jabreuar/jdssat/
mailto:jabreu.ar@gmail.com
https://www.npmjs.com/package/jdssat
https://www.npmjs.com/package/jdssat
https://www.npmjs.com/package/jdssat
https://www.npmjs.com/package/jdssat
mailto:jabreu.ar@gmail.com
mailto:jabreu.ar@gmail.com
mailto:pavan@upf.br
mailto:holbig@upf.br
mailto:mauricio.fernandes@embrapa.br
mailto:vakhtang.shelia@ufl.edu
mailto:cporter@ufl.edu
mailto:gerrit@ufl.edu
https://doi.org/10.1016/j.softx.2019.100271
http://creativecommons.org/licenses/by/4.0/


2 J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271

1. Introduction

Simulation of crop systems has significantly advanced over
the past 40 years [1]. Crop modeling can facilitate researchers’
ability to understand and interpret experimental results, and to
diagnose yield gaps [2]. It can also be useful as a means to help the
scientist define research priorities. Using a model to estimate the
importance and the effect of certain parameters, a researcher can
observe which factors should be more studied in future research,
thus increasing the understanding of the system [3].

Decision support tools are designed to help users make more
effective decisions by leading them through clear decision stages
and presenting the likelihood of various outcomes resulting from
different options [4]. These can be dynamic software tools, whose
recommendations vary according to the user’s inputs, and they
may suggest an optimal decision path.

Decision Support Systems for Agrotechnology Transfer (DSSAT)
were developed by the International Benchmark Sites Network
for Agrotechnology Transfer (IBSNAT) scientists’ group [5]. DSSAT
are the combination of crop simulation models (CSMs), database
management programs and decision support systems (DSSs).
CSMs are the computer programs that simulate crop growth
and yield based on previously established calculations and input
data of soil, weather and crop management practices [6]. The
DSSAT-CSM can simulate yield on a range of crops and has been
used by many scientists, decision-makers, and researchers all
over the world for more than two decades. It is designed to
facilitate the application of crop models in a systematic approach
to agronomic research composed of more than 42 models. Prior
to the development of the DSSAT, crop models were available, but
these were used mostly in labs where they were created [7] and
there were no sets of programs and a model suite that could be
used as a tool for decision-making as well as predicting one or
more crops within a cropping system [8].

The DSSAT Shell program provides a user-friendly working
environment in which various stand-alone tools and applications
are seamlessly integrated with the DSSAT crop models. Within
the shell, the user can launch applications for creating and mod-
ifying data files, running the crop models, and analyzing the
results [9]. However, the DSSAT Shell and other applications of
the DSSAT system, which are installed separately, were built
using technologies under end-of-life support such Visual Basic.
Another point is that the DSSAT tools, including the Shell, are
available for Windows OS only, which requires users from Linux
and MacOS to deal with the command line to run model in
DSSAT-CSM. This approach requires a very good understanding
of DSSAT-CSM commands that might be painful for some users.

Other tools like pyDSSAT [10], python library to execute orig-
inal Fortran program on Linux, were built to improve DSSAT’s
users experience over the terminal command line execution in
Linux OS, including the ability of controlling input files, analyzing
output files with Matplotlib tools, and providing a GUI toolkit
for efficient interactive work integrate with DSSAT-CSM. There
is also DASST, which is a R package for reading, processing and
writing DSSAT files [11]. It uses tools available in R for statistical
and graphical analyses. This package tends to simplify the post
processing of DSSAT simulated values stored in .OUT, files offering
methods that expose these data as belonging to a collection
of data.frame objects that can be thought like tables. However,
either pyDSSAT or DASST are not able to provide a full experience
as DSSAT Shell does. They also do not provide a multiplatform
approach and they were not built to provide alternatives to create
a modern DSSAT Shell.

This study is motivated by the need to apply software en-
gineering techniques to build a reusable approach for DSSAT
integration. We have implemented common functionalities in a

JavaScript module to allow any user interface easily read and
processes DSSAT files. Tools like DSSAT Shell reads files only what
is needed to provide info to the user and to be able to run the
model. The implementation of the files processing relies on DSSAT
Shell code itself, so it cannot be used anywhere else. Any code
that does anything with a user interface should only involve user
interface code [12]. There is also a need to implement software
engineering best practices such cross-platform principle, to allow
DSSAT users easily run and visualize simulations from Windows,
Linux and MacOs.

The jDSSAT is a JavaScript Module created to be standard
approach for DSSAT integration. The module is capable to pro-
cess different DSSAT files such CDE, OUTPUT, EXPERIMENTS and
TREATMENTS. It is designed as a module to either run on a
client1 or backend side2 and facilitates developers from DSSAT
community to create alternatives for DSSAT Shell, without hav-
ing to worry about interoperability and extra tools installation.
The jDSSAT module is cross-platform3 and provides a series of
JavaScript functions for DSSAT-CSM integration that allow any
developer to build their own user interface to run DSSAT model
in Linux, Windows and MacOS.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the key technical requirements that guided the
jDSSAT development. Section 3 presents the jDSSAT design and
architecture. Section 4 covers the main jDSSAT features and their
implementation details. Section 5 describes usage patterns for
jDSSAT functionalities. Finally, Section 6 presents our conclusions
and directions for future research.

2. Requirements

There are four primary functional requirements that have
guided jDSSAT implementation:

1. Portability: The jDSSAT should run the same code base
in different operational systems, it is the crucial issue for
development cost reduction. The operational systems sup-
ported are Linux, MacOS, and Windows. Also, it should
integrate with DSSAT-CSM to run models on the operating
system supported without the developer having to specify
it.

2. Reconfigurability: To avoid having to rewrite pieces of
code when a new DSSAT version is released, we would
design a configurable system that can be applied in vari-
ous scenarios. Below is a summarized list of the settings
options for jDSSAT:

• DSSAT work directory
• DSSAT versions supported
• Output files supported

3. Web-based: The jDSSAT module should be accessed over
HTTP where processing is done over the internet on an ex-
ternal server. A REST interface should be provided to allow
the integration with different programming languages.

4. Reusability: Reuse of jDSSAT artifacts in various formats.
It should be used as ‘‘plug-and-play’’ in the client side
using web technologies through NPM and in the server side
through REST API.

The jDSSAT is designed to return data in data structures that
are well-organized and ready to use, such as objects, lists and
vectors. We describe the data structures for jDSSAT as follows:

1 Requests pages from the Server, and displays them to the user. In most
cases, the client is a web browser or an offline application.
2 Responsible for serving pages.
3 Is computer software that is implemented on multiple computing platforms.



J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271 3

Fig. 1. Overview of jDSSAT using Facade design pattern. These entry point access the system on behalf of the facade client and hide the implementation details.

Fig. 2. The jDSSAT components architecture and operational system integration. The user interface sends a request to jDSSAT to retrieve and display the information
such as crops, experiments and treatments. The node modules are used by jDSSAT to run operations such as process FILEX and run commands in DSSAT-CSM.

• Vectors to represent lists with single values such crops
available in DSSAT.

• Complex objects containing property name and property
value.

• Array of objects as lists of complex objects such output and
experiment files.

3. The jDSSAT module design

We have implemented jDSSAT to make the architecture as
much optimized and straightforward as possible. The module
follows facade software-design pattern, Fig. 1, to provide a uni-
fied interface to a set of interfaces in a subsystem. Facade de-
fines a higher-level interface that makes the subsystem easier
to use [13]. The facade pattern provides a more isolated func-
tionalities implementation and reduce the risk of adding issues

to the sub-systems that are not being changed. This pattern
is particularly used when a system is very complex or diffi-
cult to understand because the system has a large number of
interdependent logic.

The jDSSAT runs in a Node environment. In Fig. 2, we show
the architecture components in a user interface context. The user
interface loads jDSSAT as dependency and it provides info to the
user through jDSSAT. Then, jDSSAT loads NodeJS [15] modules to
access the File System, Child Process and Operational System. For
instance, if the user interface needs to display the experiments
available for a given crop, jDSSAT will process the EXPERIMENT
file within crop folder and return a formatted object to the user
interface.

Before jDSSAT start any integration with DSSAT is must be
initialized. It first identifies the platform is running (Windows,
Linux or MacOS), it does that by using the Operational System



4 J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271

Table 1
CSM modes of operation adapted from Overview of DSSAT4 Cropping System Model (CSM) [14].
Run mode Description Command line arguments

Batch Experiments and treatments are listed in a batch file B batchfilename
Sensitivity analysis Screen user interface to interactively modify input parameters E FileX Treatment#
Sequence analysis Soil processes are continuous, crop sequence is listed in batch file Q batchfilename
Spatial analysis Simulates one or more crops over space. S batchfilename
Seasonal analysis Multiple years run with the same initial conditions N batchfilename
Interactive Screen user interface for interactive selection of experiment and treatment (none)
Run all treatments All treatments of specified experiment are run A FileX
Debug The input module is not called to read FILEX, soils files or cultivar file.

Instead, the temporary input file (inpfile) is read.
D inpfile

Table 2
Auxiliary jDSSAT functions and its description.
Function Description

jdssat.path() returns the local DSSAT installation path
jdssat.version() returns the DSSAT version in use by jDSSAT
jdssat.platform() returns the platform (Win32, Darwin or Linux) where jDSSAT is running
jdssat.tree() returns an array of folder model objects. The folders will be those who has experiments file inside
jdssat.experimentDescription(experiment, filePath) returns a string with the experiment description
jdssat.createBashFile(crop, experiments[]) creates a batch file using a template
jdssat.outFiles(crop) returns an array of output file names
jdssat.cde() returns an array of objects containing cde, label and description fields
jdssat.openExternalTool(name) opens a DSSAT Shell external tool
jdssat.openDssatFolder() opens the current DSSAT folder
jdssat.openFileInEditor(crop,fileName) opens a file in editor. The editor used depends on the platform
jdssat.getDataFiles(crop) returns all files in a crop that ending with .*A or .*T extension
jdssat.folders() returns all folders within DSSAT installation path
jdssat.filePreview(crop, fileName) returns a file content in html tags
jdssat.batchCommand creates a batch command
jdssat.runBatchFile(crop) runs a batch command using child process node module

module that provides an object containing the platform name
(win32, darwin or linux). Then, the configurations such DSSAT
CSM executable file name, file system pattern and folder name for
external tools. These configurations are stored in a configuration
file to avoid code changes in case some path changes in futures
DSSAT releases. Finally, jDSSAT finds what is the latest DSSAT
version installed on the user’s computer and make this version
as default to use during the simulations. As a result of jDSSAT
initialization, we can now make use of jDSSAT public functions
(Table 2) for reading, processing and writing DSSAT-CSM files.
When a function that requires a folder or file content read, jDSSAT
makes a file system call using File System (fs) module from
Node. The fs module provides an API for interacting with the
file system in a manner closely modeled around standard POSIX
function [16].

The DSSAT-CSM provides a mechanism to run a model sim-
ulation through command line, which is used by jDSSAT. The
command line integration in jDSSAT is made by child process
module, that enables access to the Operating System functionali-
ties. So, once jDSSAT simulation function is called, a command is
executed on the operational system.

Other components and implementation details are discussed
in later sections.

4. Implementation and testing

The jDSSAT implementation is divided into two main compo-
nents, DSSAT files processing and DSSAT-CSM integration. This
section discusses the implementation of the current release of
jDSSAT and also how we tested its functions.

4.1. DSSAT files processing

The jDSSAT is able to process FILEX for a specific experiment.
This files contains data on treatments, field conditions, crop man-
agement and simulation controls [14] and they are found within

crop folders with *.*X extension. Also, jDSSAT can process OUTPUT
file generated by the crop model that contains results of a simula-
tion. The General DSSAT Profile, named as DSSATPRO, is processed
to provide information such extension, command line and path
for each crop.

4.1.1. Crop folders
The jDSSAT uses DSSAT installation directory content to find

DSSATPRO file, which designates the locations of all programs and
data files used in DSSAT [9]. The DSSATPRO extension file depends
on the DSSAT version installed, on Windows, Linux and MacOS,
the latest DSSAT version released is v47. In other to provide a
list of available crops in DSSAT, the jSSAT must read and parse
the DSSATPRO.v47 file, on Windows, to build an array of objects
containing crop name, location folder and crop extension. The
folders that do not have FILEX in its content will not be returned.

4.1.2. Reading experiments
The read experiment function will look by all FILEX within

folder’s content. The function will look by files ending with *.*X
extension in the crop folder. For each FILEX file the algorithm
1 creates an array of experiments with an object containing the
description, modified date, name and number as object fields.

4.1.3. Reading treatments
The treatments function, Fig. 3, will receive an array of FILEX

names as input. Each FILEX contains a tratments section, as
shown in the Fig. 4 lines 17 to 22, that will be used to retrieve
tratments information. The jDSSAT first loads the FILEX content,
then it will parse the content by doing a substring of the index
of *TREATMENTS until the index of *CULTIVARS. After that, a loop
is made through lines of the substring to get the treatment,
treatment number and experiment to format an object to send
as part of the function response.



J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271 5

Fig. 3. Treatment function implementation. For each FILEX received as input the function load its content and finds the tratments section in the file and load a
treatments object array as result.

Fig. 4. Partial content of FILEX (IEBR8201.BAX) from Barley crop. The jDSSAT reads the tratments, lines 17 to 22, from this files and returns a formatted response
with treatments properties as number and (N) and name (TNAME).

4.1.4. Reading .OUT files
Crop simulation models can provide very detailed outputs of

the simulated crop. However, analyzing the outputs is challeng-
ing. The jDSSAT provides an easy way to read and process these
files. The result of a simulation are stored in .OUT extension files,
these files contains a fixed width format. As seen in Fig. 5, the line
11 are headers that represents the variable names, each row after

the header are the variable values, if a simulation ran with more
than one experiment (line 7) or treatment (line 9), this file will
have more headers and variable values on its content.

The read output file function receives the crop name and
output file name as input. The crop name variable value will be
used to identify where the output file is located in the user‘s



6 J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271

Fig. 5. Partial content of PlatGro.OUT file, the read output file function from jDSSAT will process the lines 11 to 31 and as result will return an array of objects with
the variable name and its values, so the number of columns in the output file will be the number of objects within the result array.

Algorithm 1: Get experiments for a given crop algorithm
Input : crop
Output: experiments array

1 while crop content is not null do
2 instructions;
3 if IS FILEX then
4 add object in the experiments array;
5 else
6 continue;
7 end
8 end

machine. Once the output file location is found, jDSSAT reads the
outfile file content as follows:

1. Initializes a header object with index, length, variable name.
2. Initialize an array of objects to store experiment, treatment

number, treatment and its values.
3. Loop through the lines.
4. Finds what is the run number, experiment and treatment.

Each of these information has one prefix. This step is per-
formed by looking at RUN, MODEL and EXPERIMENT re-
spectively in the begging of the line. If one of this identifier
is found, jDSSAT reads the content line that cames after.

5. Reads simulation values. The @ symbol followed by YEAR
variable is the first character of the data-headers line in
DSSAT output files. When jDSSAT finds this symbol in the
beginning of the line, it initializes an auxiliary array to store
the header. Each value between spaces will be one position
on the header array.

Fig. 6. Read output file function object result. It shows the total variables found
and partial variables and its values content.

6. Gets values for each header variable. The algorithm should
consider that next lines in the loop will contain the data,
similar to EasyGrapher ’ approach [17]. This process should
execute until the algorithm does not find another run.

7. Repeat all the steps if there are more than one run in the
output file.

The result of reading a DSSAT output file will be an array,
we seen in Fig. 6, containing an object for each run. The jDSSAT
also reads Summary.OUT and Overview.OUT to provide more
information about simulation results.



J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271 7

Fig. 7. An user interface to run DSSAT model built using jDSSAT functions responses. The UI has four main components: (a) selector, for the user select the crop;
(b) data, displays the experiments available for the crop select; (c) treatments available for the experiment selected; and (d) file preview, display FILEX preview. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Results of a Maize simulation experiment. The read output function from jDSSAT was used to retrieve the vegetative weight (orange line) and tops weight
(blue line) variables value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. DSSAT-CSM integration

The DSSAT-CSM incorporates models of all crops within a
single set of code. The run mode is specified by the command
line arguments when the model is called. If the model is run
using the DSSAT shell, these command lines are transparent to the
user [14]. There are set of commands available for CSM, Table 1,
the run modes batch and sensitivity are available in the current
jDSSAT version. The child process Node module within jDSSAT
enables access Operating System functionalities by running any
system command.

4.2.1. Running a simulation
To run a CSM model first we need to select the experiments

and treatments to be simulated. A group of experiments and
treatments can be run in a single simulation or in batch mode. A
single experiment/treatment can be run either as a batch simula-
tion or in sensitivity mode [18]. The jDSSAT approach is a batch
simulation. The simulation is divided into two steps.

1. Creating a batch file: The batch file is a set of configura-
tions to run a model such experiments and treatments list.
There is a pre-built template of this file within jDSSAT. The
function uses this template to fill up the configurations to
run a model in batch mode.

2. Running a command: After the batch file is created, jDSSAT
uses child process node module [19] to execute the com-
mand created in the command-line interpreter.

4.3. Auxiliary functions

There are also auxiliary functions in other to help users to
know additional information, such as the DSSAT version and path
being used. The complete list of auxiliary functions can be seen
at Table 2.

4.4. Module testing

We have used jDSSAT functions to create an user interface,
shown in Fig. 7, to run DSSAT models. This user interface provides
functionalities to the user to choose a crop, experiment, and
treatments. Also, it displays a preview of the file that is being
processed. The option to run a simulation is available in the blue
button on the screen. The user interface also provides a Graph
builder, Figure Fig. 8, for the user to visualize the simulation
results, it provides options for select the crop, what output file
and what variables to plot in a graph.

A simple R package was created to test the jDSSAT over HTTP.
This package download jDSSAT in the local machine and start
a API to send request from R to jDSSAT. In Fig. 9 we show a
experiment function response in R.

5. Practical usage

This section discusses the practical usage of jDSSAT and its
functions. There is a skeleton project with the basic configuration
that needs to be used to run the jDSSAT functions according next
sessions’ instructions.

https://github.com/jabreuar/electron-skeleton


8 J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271

Fig. 9. Experiment function running in R through jDSSAT API. The right side shows a code sample to retrieve the experiments from Barley crop and the left side
shows a frame if the result of the experiments function.

Fig. 10. Sample of jDSSAT functions to initialize, read experiments and treatments, run simulation and retrieve results.

5.1. Installation

The jDSSAT is available through Node package manager (npm),
the package manager for JavaScript [20]. The download can be
done by running npm install jdssat command. Once the jDSSAT
download is completed, a folder is automatically created under
node modules.

project
app
node_module

jdssat
source

5.2. Functions

The code seen in Fig. 10 shows how to initialize and use
experiments, treatments, simulation and read output files func-
tion. The initialize function requires jdssat module, the default
initialization function identifies the platform windows (win32),
linux and MacOS(darwin) then it finds the latest DSSAT version
installed on user’s machine by looking at "C:/" on Win32 or "/"
on Darwin and Linux platform. Also, it loads a series of config-
uration, such base path for the operating system, the version of
DSSATPRO [7] and other extra data for managing the fixed width
format properties. The experiments function input is a crop, it
reads all FILEX from the crop selected. Also, the experiments are
used as input for the treatments function. To run a DSSAT model

https://www.npmjs.com/package/jdssat


J. de Abreu Resenes, W. Pavan, C.A. Hölbig et al. / SoftwareX 10 (2019) 100271 9

simulation, the jDSSAT run simulation function expects the crop
and an array of objects with the experiments selected. As seen
in Fig. 10 (lines 18, 19 and 20), the objects within the array
are composed by experiment, treatment and treatment number.
Finally, the read output function input is a crop selected and
output file name.

6. Conclusions and future work

In this paper, we have presented jDSSAT, a flexible and pow-
erful JavaScript module that abstracts the complexity of reading
and processing DSSAT files. The module integrates with DSSAT-
CSM in different operational system for running models. The
implementation of jDSSAT also highlights interoperability ben-
efits, which have been an issue in the DSSAT tools. Also, the
jDSSAT is designed to be a standard module for DSSAT integration
which reduces the effort to build integrations with DSSAT in other
programming languages such as R.

The jDSSAT is an ongoing project. We intend to reuse its code
to have a version to run DSSAT models on the web. There is also
a need of develop an end-to-end user interface as an alternative
for the current DSSAT Shell.

Declaration of competing interest

One or more of the authors of this paper have disclosed
potential or pertinent conflicts of interest, which may include
receipt of payment, either direct or indirect, institutional support,
or association with an entity in the biomedical field which may be
perceived to have potential conflict of interest with this work. For
full disclosure statements refer to https://doi.org/10.1016/j.softx.
2019.100271.

Acknowledgments

Many thanks for my Advisor Prof. Dr. Willingthon Pavan and
my Co-Advisor, Prof. Dr. Carlos Amaral Holbig for all the support
and feedbacks. Also, thanks to Prof. Dr. José Maurício Cunha
Fernandes for the feedbacks and partnership during this work.
Special thanks to Dr. Gerrit Hoogenboom for all the support and
also to be open and accept this work on the DSSAT community.

References

[1] Boote KJ, Jones JW, Hoogenboom G, White JW. The role of crop systems
simulation in agriculture and environment. Int J Agric Environ Inform Syst
2010;1(1):41–54. http://dx.doi.org/10.4018/jaeis.2010101303.

[2] Liu H, Liu H, Lei Q, Zhai L, Wang H, Zhang J, Zhu Y, Liu S, Li S, Zhang J,
Liu X. Using the DSSAT model to simulate wheat yield and soil organic
carbon under a wheat-maize cropping system in the North China Plain.
J Integrative Agric 2017;16(10):2300–7. http://dx.doi.org/10.1016/S2095-
3119(17)61678-2.

[3] Dourado-Neto D, Teruel D, Reichardt K, Nielsen D, Frizzone JA, Bacchi OOS.
Principles of crop modeling and simulation: I. Uses of mathematical models
in agricultural science. Sci Agric 1998;55(SPE):46–50.

[4] Rose DC, Sutherland WJ, Parker C, Lobley M, Winter M, Morris C, Twining S,
Ffoulkes C, Amano T, Dicks LV. Decision support tools for agriculture:
Towards effective design and delivery. Agric Syst 2016;149:165–74.

[5] Sarkar R, et al. Use of DSSAT to model cropping systems. CAB Rev
2009;4(025):1–12. http://dx.doi.org/10.1079/PAVSNNR20094025.

[6] Sarkar R, Kar S. Evaluation of management strategies for sustainable
rice–wheat cropping system, using DSSAT seasonal analysis. J Agric Sci
2006;144(5):421–34.

[7] Jones J, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L, Wilkens P,
Singh U, Gijsman A, Ritchie J. The DSSAT cropping system model.
Eur J Agron 2003;18(3):235–65. http://dx.doi.org/10.1016/S1161-0301(02)
00107-7.

[8] Sarkar R. Decision support systems for agrotechnology transfer. In: Licht-
fouse E, editor. Organic fertilisation, soil quality and human health.
Dordrecht: Springer Netherlands; 2012, p. 263–99. http://dx.doi.org/10.
1007/978-94-007-4113-3_10.

[9] Wilkens PW, Hoogenboom G, Porter CH, Jones JW, Uryasev O. DSSAT v4
data management and analysis tools: Vol. 2. International Consortium for
Agricultural Systems Applications; 2004, p. 177.

[10] He X, Peng L, Sun H. pyDSSAT Documentation release 1.0. 2015, http:
//xiaoganghe.github.io/pyDSSAT/doc/index.html. [Accessed 16 September
2018].

[11] Lozza H. Dasst: tools for reading, processing and writing DSSAT files, R
package version 0.3.3, Buenos Aires, Argentina. 2017, https://github.com/
hlozza/Dasst. [Accessed 10 July 2018].

[12] Fowler M. Separating user interface code. IEEE Softw 2001;18(2):96–7.
[13] Gamma E. Design patterns: elements of reusable object-oriented software.

Pearson Education India; 1995.
[14] Porter CH, Wilkens PW. DSSAT v4.5 overview: Vol. 1.
[15] Nodejs Foundation. Node.js. 2018, https://nodejs.org/en/. [Accessed 24

September 2018].
[16] Herron D. Node web development. Packt Publishing Ltd; 2013.
[17] Yang J, Huffman ET. EasyGrapher: software for graphical and statistical

validation of DSSAT outputs. Comput Electron Agric 2004;45(1):125–32.
http://dx.doi.org/10.1016/j.compag.2004.06.006.

[18] Jones JW, Tsuji GY, Hoogenboom G, Hunt LA, Thornton PK, Wilkens PW,
Imamura DT, Bowen WT, Singh U. Decision support system for agrotech-
nology transfer: DSSAT v3. In: Tsuji GY, Hoogenboom G, Thornton PK,
editors. Understanding options for agricultural production. Dordrecht:
Springer Netherlands; 1998, p. 157–77. http://dx.doi.org/10.1007/978-94-
017-3624-4_8.

[19] Wilson J. Node.js 8 the right way: practical, server-side javascript that
scales. Pragmatic Bookshelf; 2018.

[20] npm Inc. Node package manager. 2018, https://www.npmjs.com/.
[Accessed 10 July 2018].

https://doi.org/10.1016/j.softx.2019.100271
https://doi.org/10.1016/j.softx.2019.100271
https://doi.org/10.1016/j.softx.2019.100271
http://dx.doi.org/10.4018/jaeis.2010101303
http://dx.doi.org/10.1016/S2095-3119(17)61678-2
http://dx.doi.org/10.1016/S2095-3119(17)61678-2
http://dx.doi.org/10.1016/S2095-3119(17)61678-2
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb3
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb3
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb3
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb3
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb3
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb4
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb4
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb4
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb4
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb4
http://dx.doi.org/10.1079/PAVSNNR20094025
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb6
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb6
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb6
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb6
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb6
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1007/978-94-007-4113-3_10
http://dx.doi.org/10.1007/978-94-007-4113-3_10
http://dx.doi.org/10.1007/978-94-007-4113-3_10
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb9
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb9
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb9
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb9
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb9
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb10
http://xiaoganghe.github.io/pyDSSAT/doc/index.html
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb10
http://xiaoganghe.github.io/pyDSSAT/doc/index.html
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb10
http://xiaoganghe.github.io/pyDSSAT/doc/index.html
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb10
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb10
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb11
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb11
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb11
https://github.com/hlozza/Dasst
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb11
https://github.com/hlozza/Dasst
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb11
https://github.com/hlozza/Dasst
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb12
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb13
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb13
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb13
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb15
https://nodejs.org/en/
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb15
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb15
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb16
http://dx.doi.org/10.1016/j.compag.2004.06.006
http://dx.doi.org/10.1007/978-94-017-3624-4_8
http://dx.doi.org/10.1007/978-94-017-3624-4_8
http://dx.doi.org/10.1007/978-94-017-3624-4_8
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb20
https://www.npmjs.com/
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb20
http://refhub.elsevier.com/S2352-7110(19)30158-X/sb20

	jDSSAT: A JavaScript Module for DSSAT-CSM integration
	Introduction
	Requirements
	The jDSSAT module design
	Implementation and testing
	DSSAT files processing
	Crop folders
	Reading experiments
	Reading treatments
	Reading .OUT files

	DSSAT-CSM integration
	Running a simulation

	Auxiliary functions
	Module testing

	Practical usage
	Installation
	Functions

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


