Abstract #119997

Above and Belowground Biomass Characteristics of Rhizoma Peanut Entries and Their Relationship with Soil C and N

Liliane Severino da Silva¹, Lynn E. Sollenberger¹, Katie D. Cooley¹, Marta M. Kohmann², Parmeshwor Aryal³, Bruno Carneiro Pedreira⁴, Gabriel Baracat Pedroso¹, Maria Lucia Silveira⁵ and Jose C.B. Dubeux Jr.⁶, (1)Agronomy Department, University of Florida, Gainesville, FL, (2)Range Cattle Research and Education Center, University of Florida, Gainesville, FL, (3)University of Florida, University of Florida, Gainesville, FL, (4)EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Gainesville, FL, (5)Range Cattle Research and Education Center, University of Florida, Ona, FL, (6)North Florida Research and Education Center, University of Florida, Marianna, FL, US

Abstract Text:

In forage systems, soil C and N are affected by many factors including above- and belowground biomass, root exudation, defoliation management, and tissue turnover dynamics. There is need to understand the main drivers of soil C and N accumulation under perennial forages, especially those factors associated with differences in growth and canopy characteristics. The objective was to determine soil C and N status and their relationship with above- and belowground characteristics of six rhizoma peanut (RP, Arachis glabrata) entries. Treatments were Apalachee, Chico, Ecoturf, Ona33, Peace, and Tito RP arranged in four replicates of a randomized complete block design. Stands were planted in 2010 and harvested twice per year after establishment. The area was previously a longterm bahiagrass (BH, Paspalum notatum) sward. Herbage accumulation (HA) and root-rhizome mass (RRM) and accumulation rate (RRA) were measured in 2016 and 2017. Existing litter and soil to 0-5, 5-10, and 10-20-cm depths were sampled in September and December 2018. Herbage and litter samples were harvested using two, 0.25-m² guadrats per plot. Three 10-cm diameter cores (20-cm depth) were taken per plot to measure RRM, while RRA was measured using ingrowth cores. Soil C and N concentrations were determined by dry combustion. Among entries, HA ranged from 6.7 to 10.5 Mg ha⁻¹, RRM from 5.5 to 8.6 Mg ha⁻¹, RRA from 10 to 33 kg ha⁻¹ ¹ d⁻¹, and litter mass from 1800 to 2300 kg ha⁻¹. Litter mass and RRA were negatively correlated to C and N stocks in the 0-5 cm layer and positively correlated with those in the 10-20 cm layer. This may be due to mineralization of nutrients in surface soil and use by plants to accumulate biomass, followed by release of exudates and tissue turnover at depth. Soil C and N stocks were less responsive to sward characteristics than expected.

Title:

Above and Belowground Biomass Characteristics of Rhizoma Peanut Entries and Their Relationship with Soil C and N

Submitter's E-mail Address:	lssilva@ufl.edu
Division/Section:	C06 Forage and Grazinglands
Session:	Robert F. Barnes Ph.D. Oral (includes Society-wide student competition selection)
Preferred Format:	Oral

First Presenting Author

Presenting Author

Liliane Severino da Silva Email: lssilva@ufl.edu -- Will not be published

University of Florida Agronomy Department Graduate Student 390 Maguire Village Apt 7 Gainesville FL 32603 USA

Second author

Lynn E. Sollenberger Email: lesollen@ufl.edu -- Will not be published

University of Florida Agronomy Department 3111 McCarty B Gainesville FL 32611-0500 USA

Third author

Katie D. Cooley Email: katiecooley@ufl.edu -- Will not be published

University of Florida Agronomy Department 3105 McCarty Hall B Gainesville FL 32611 USA

Fourth author

Marta M. Kohmann **Email:** mkohmann@ufl.edu -- Will not be published

University of Florida Range Cattle Research and Education Center 3105 McCarty Hall B 3401 Experiment Station Gainesville FL 32611 USA

Fifth author

Parmeshwor Aryal **Email:** paryal@ufl.edu -- Will not be published

University of Florida University of Florida 3105 McCarty Hall B Agronomy Department, Gainesville FL 32611 USA

Sixth author

Bruno Carneiro Pedreira Email: brunocpedreira@gmail.com -- Will not be published

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria Dr. 3700 Windmeadows BLVD Apt D21 Gainesville FL 32608 USA

Seventh author

Gabriel Baracat Pedroso

Email: gabrielpedroso@ufl.edu -- Will not be published

University of Florida Agronomy Department Agronomist 2601 SW Archer Road, Apt. C111 Gainesville FL 32608 USA

Eighth author

Maria Lucia Silveira Email: mals@ufl.edu -- Will not be published

University of Florida Range Cattle Research and Education Center 3401 Experiment Station Ona FL 33865 USA

Ninth author

Jose C.B. Dubeux Jr. **Email:** dubeux@ufl.edu -- Will not be published

University of Florida North Florida Research and Education Center Dr. 3925 HWY 71 Marianna FL 32446 US