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ABSTRACT. Triazole fungicides have not been effective for managing the wheat blast disease in Brazil. A 

broad analysis across six geographical populations of Pyricularia graminis-tritici in central-southern Brazil 

indicated a high level of resistance to triazole fungicides. Since P. graminis-tritici is also associated with 

others poaceous species, here, we analyzed whether triazole-resistant isolates of the blast pathogen could 

be recovered from other poaceous hosts that are invasive of sprayed wheat fields. In addition to P. 

graminis-tritici (Pygt), we also evaluated the levels of sensitivity of three other grass-associated blast 

pathogens, which included P. grisea (Pg), P. pennisetigena (Pp), and P. urashimae (Pu). Resistance to the 

triazole fungicides tebuconazole and epoxiconazole was assessed phenotypically based on EC50 values and 

molecularly by analysis of the presence of mutations in the CYP51A gene, which encodes for the target 

enzyme 14-alpha-demethylase. We detected triazole-resistant Pyricularia spp. (Pg, Pp, Pu and Pygt) that is 

associated with Avena sativa, Cenchrus echinatus, Chloris distichophylla, Cynodon sp., Digitaria horizontalis, 

D. sanguinalis, Panicum maximum or Urochloa spp. The major outcome from our study was the evidence 

that invasive poaceous species from wheat fields could be an important source of triazole resistant fungal 

inoculum for the initial phases of the wheat blast epidemics. 
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Introduction 

Since the late 1980’s, wheat blast has been considered a major disease, causing high yield losses on crops 

from central-southern Brazil (Maciel, 2011; Maciel et al., 2014). After its first report in 1986 in northern 

Paraná State, Brazil (Igarashi, 1986), it has rapidly spread to all of the wheat cropping areas of the country 

as well as to Argentina, Bolivia, and Paraguay (Maciel, 2011). Initially restricted to South America, wheat 

blast was recently introduced in Bangladesh in Southeastern Asia (Callaway, 2016; Islam et al., 2016). 

Management of wheat blast disease is considered particularly difficult due to the inexistence of durable 

varietal resistance and the lack of effective systemic fungicides (Maciel et al., 2014; Pagani, Dianese, & Café 

Filho, 2014; Castroagudin et al., 2015). Despite their low efficacy for controlling blast disease on wheat ears, 

systemic fungicides such as triazoles have been extensively and widely used in Brazilian wheat fields since 

the 1990’s for managing other fungal diseases, including leaf rust, powdery mildew, leaf spots and gibberella 

diseases (Navarini & Balardin, 2012; Tormen et al., 2013; Debona, Favera, Corte, Domingues, & Balardin, 

2009). 

These triazole fungicides have three major active ingredients: epoxiconazole, prothioconazole and 

tebuconazole (Maciel, Paludo, Silva, Scheeren, & Caierão, 2008). Triazole fungicides belong to the sterol 

demethylation inhibitor (DMI) group, which is characterized by the inhibition of ergosterol biosynthesis, an 

important component of the fungal cell membrane (Snelders, Karawajczyk, Schaftenaar, Verweij, & 

Melchers, 2010). The target of these fungicides is the 14-alpha-demethylase enzyme, which is encoded by 

the CYP51 gene, a member of the cytochrome P450 family (Zhan, Stefanato, & McDonald, 2006).  

The emergence of fungicide resistance could be one of the main causes of the low efficacy of triazole 

(Ceresini et al., 2018). A strong selection pressure resulting from several years of extensive and frequent 

applications of triazoles for disease control may have triggered the emergence of resistant pathogen 
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populations (Lucas, Hawkins, & Fraaije, 2015). This scenario of intensive triazole usage leading to the 

emergence of resistance and reduced fungicide efficacy has been reported in Europe, South America, and 

Asia for many plant pathogens associated with cereal crops such as Erysiphe graminis on barley and wheat 

(Buchenauer & Hellwald, 1985) and Mycosphaerella graminicola (Brunner, Stefanato, & McDonald, 2008) 

and Parastagonospora nodorum on wheat (Pereira, McDonald, & Brunner, 2016).  

Resistance to triazoles may be directly related to (1) mutations in the CYP51 gene that encode the 

target protein resulting in decreased protein affinity for the inhibitors; (2) overexpression of the CYP51 

gene, and (3) increased efflux of toxic compounds out of the fungal cell due to overexpression of the 

gene encoding membrane transport proteins. A combination of these mechanisms is also possible 

(Cools & Fraaije, 2013).  

Mutations in the paralog A of the CYP51 gene (CYP51A) were considered the primary cause for the 

reduction in sensitivity to triazoles in fungi with multiple CYP51 genes, such as the wheat head blight 

pathogen Fusarium graminearum (Jiang, Liu, Yin, & Ma, 2011; Fan et al., 2013), the rice blast pathogen 

Pyricularia oryzae (Yan et al., 2011), and the wheat blast pathogen P. graminis-tritici (Ceresini et al., 

2018). In fact, widespread distribution of resistance to the triazole fungicides epoxiconazole and 

tebuconazole has been reported in populations of P. graminis-tritici from several wheat fields in 

central-southern Brazil (Ceresini et al., 2018).  

Since P. graminis-tritici can also be associated with others poaceous species (Castroagudin et al., 

2016), the main objective of our study was to test whether triazole-resistant isolates of the wheat blast 

pathogen could be recovered from other poaceous hosts that are invasive of triazole-sprayed wheat 

fields. Since three other blast pathogens (P. grisea, P. pennisetigena, and P. urashimae) were obtained 

from the sampling of these invasive poaceous hosts in our study, we tested the additional hypothesis 

that triazole spraying on wheat fields has contributed to and selected for resistance in non -target 

Pyricularia species.  

Up until now, there has been no report of the occurrence of triazole resistance in populations of 

blast pathogens associated with other poaceous hosts that are invasive of wheat fields in Brazil. 

Thereby, we evaluated the levels of sensitivity of the blast pathogens P. graminis tritici, P. grisea, P. 

pennisetigena, and P. urashimae to the triazole fungicides epoxiconazole and tebuconazole. The levels 

of triazole sensitivity were determined based on the individual EC 50 values (the effective concentration 

that inhibits 50% of mycelial growth). We also analyzed the CYP51A gene for the presence of particular 

mutations that could be correlated with triazole resistance. Finally, a reticulate phylogeny of the 

CYP51A gene was built and examined to describe the evolutionary relationships among haplotypes of 

the Pyricularia species.  

Material and methods 

Thirty-two isolates of Pyricularia ssp. were used in this study, of which 28 were from blast-diseased 

poaceous species that are invasive to wheat fields and four from wheat blast. These isolates comprised 

four Pyricularia species: P. grisea (Pg, N = 4), P. pennisetigena (Pp, N = 4), P. urashimae (Pu, N = 4) and P. 

graminis-tritici (Pygt, N = 20). These isolates were obtained in 2012 by sampling diseased plants using 

transect system in Paraná (PR) and Mato Grosso do Sul (MS) and later identified at the specie s level 

(Castroagudin et al., 2016; Crous et al., 2016; Reges et al., 2016). In addition, seven isolates of P. oryzae 

(Po), sampled from rice fields in Goiás (GO) and Tocantins (TO) in 2007, were included as sensitive 

standards (Table 1).  

Two fungicides labeled for managing wheat blast disease in Brazil were selected to assess the resistance 

of Pyricularia spp. to triazoles: Folicur 200 EC (tebuconazole 200 g L-1, Bayer S.A., Belford Roxo, Brasil) and 

Tango Cash (epoxiconazole 75 g L-1, BASF S.A., Guaratinguetá, Brasil). For Pg, Pp, Pu, and Pygt, fungicide 

resistance screening was performed using a dose-response curve that contained the following seven final 

concentrations: 0.0, 0.0, 0.3, 0.75, 0.9, 1.8, 4.1, and 6.8 µg mL-1 tebuconazole and 0.0, 0.04, 0.10, 0.30, 0.675, 

1.0, and 2.0 µg mL-1 epoxiconazole. Dose-response curves for the triazole-sensitive isolates from Po were 

determined using the following nine final concentrations: 0, 0.003, 0.005, 0,01, 0.02, 0.04, 0.075, 0.150, and 

0.3 µg mL-1 tebuconazole and 0.0, 0.0015, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.075, and 0.1 µg mL-1 

epoxiconazole.  
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Table 1. Description of isolates of Pyricularia species associated with blast disease on invasive poaceous species from wheat fields that 

were used for assessing DMI fungicide resistance a. 

Species, isolates Host Origin 

Pyricularia grisea (Pg) 
 

12.0.082 Crabgrass (Digitaria sanguinalis) Amambai, MS 

12.0.264 Crabgrass (D. sanguinalis) Aral M., MS 

12.0.713 Jamaican Crabgrass (Digitaria horizontalis) Londrina, PR 

12.0.733 Jamaican Crabgrass (D. horizontalis) Londrina, PR 

Pyricularia pennisetigena (Pp) 
 

12.0.046 Sandbur (Cenchrus echinatus) Aral M., MS 

12.0.102 Sandbur (C. echinatus) Amambai, MS 

12.0.358 Guinea grass (Panicum maximum) Aral M., MS 

12.0.408 Sandbur (C. echinatus) Aral M., MS 

Pyricularia urashimae (Pu) 
 

12.0.212 Guinea grass (P. maximum) Aral M., MS 

12.0.224 Oat (Avena sativa) Aral M., MS 

12.0.561i Guinea grass (P. maximum) Londrina, PR 

12.0.595i Weeping finger grass (Chloris distichophylla) Londrina, PR 

Pyricularia graminis-tritici (Pygt) 
 

12.1.127 Wheat (Triticum aestivum) Amambai, MS 

12.1.130 Wheat (T. aestivum) Amambai, MS 

12.1.146 Wheat (T. aestivum) Amambai, MS 

12.1.150 Wheat (T. aestivum) Amambai, MS 

12.0.045 Barnyard grass (Echinochloa crusgalli) Amambai, MS 

12.0.046 Signal grass (Urochloa brizantha) Amambai, MS 

12.0.231 Signal grass (U. brizantha) Aral Moreira, MS 

12.0.232 Signal grass (U. brizantha) Aral M., MS 

12.0.322 Oats (A. sativa) Aral M., MS 

12.0.347 Oats (A. sativa) Aral M., MS 

12.0.368 Signal grass (U. brizantha) Aral M., MS 

12.0.534i Indian goosegrass (Eleusine indica) Londrina, PR 

12.0.535i Sandbur (C. echinatus) Londrina, PR 

12.0.555i Jamaican Crabgrass (D. horizontalis) Londrina, PR 

12.0.572i Guinea grass (P. maximum) Londrina, PR 

12.0.578i Star grass (Cynodon spp.) Londrina, PR 

12.0.594i Oat (A. sativa) Londrina, PR 

12.0.607i Weeping finger grass (C. distichophylla) Londrina, PR 

12.0.613i Weeping finger grass (C. distichophylla) Londrina, PR 

12.0.625i Crabgrass (D. sanguinalis) Londrina, PR 

Pyricularia oryzae (Po)  

662 Rice (Oryza sativa) Formoso, GO 

364 Rice (O. sativa) Lagoa Impacto, TO 

623 Rice (O. sativa) Lagoa Impacto, TO 

630 Rice (O. sativa) no data 

656 Rice (O. sativa) Formoso, GO 

662 Rice (O. sativa) Lagoa D. Carolina, TO 

704 Rice (O. sativa) Lagoa Arco Iris, TO 

aSeven isolates of the rice blast pathogen (Po) were included as DMI-sensitive references, while four Pygt isolates from wheat blast were included as DMI-

resistant isolates. 

The fungal inoculum consisted of 5 mm discs obtained from 5-day-old cultures of Pyricularia spp. that 

were grown on potato-dextrose-agar (PDA) [18 g L-1 of potato-dextrose (Himedia, Mumbai, MA, India) and 

15 g L-1 of agar (Himedia), supplemented with chloramphenicol and streptomycin (50 µg mL-1 each)]. The 

inoculum was transferred to PDA medium supplemented with different concentrations of tebuconazole and 

epoxiconazole. The fungal mycelial growth was determined after 5 days incubation at 25°C and 12 hours of 

light, measuring the colony diameters. The EC50 values (effective fungicide concentration, in µg mL-1, 

capable of inhibiting 50% of mycelial growth) were determined with the program ED50plus v1.0 (Vargas, 

2000), according to the procedures described by Ma, Yoshimura, Holtz, and Michailides (2005) with 

modifications and using the fungicide concentrations converted into log and fungal relative growth data. 

The experimental design was completely randomized with six repetitions per treatment, and the experiment 

was replicated once. Analysis of variance and the test for comparisons of means (Scott-Knott at p ≤ 0.05) 

were performed using the software R and the statistical package Agricolae (R Development Core Team, 

2011). 
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For fungal DNA extraction, the mycelial mass of thirty-nine isolates of Pyricularia spp. was obtained 

by cultivation in PD broth (potato-dextrose, Himedia, Mumbai, MA, India) for seven days at 24°C and 

150 rpm. The DNA was extracted with the GenElute Plant Genomic DNA Miniprep kit (Sigma -Aldrich, 

USA) according to the manufacturer’s recommendations and quantified using a spectrophotometer 

NanoDrop® 2000c (Thermo Fisher Scientific, USA).  

Seven primers were designed to ensure amplification of the CYP51A gene for all five Pyricularia 

species that were included in our study (Table 2). For each species, three distinct primer combinations 

were used in PCR reactions for complete coverage of the CYP51A gene (Additional file 1, Table 2). 

Table 2. Description of primers used for amplification and sequencing of CYP51A genes from Pyricularia species associated with 

invasive plants and rice in Brazil. 

Primer Sense Sequence (5’- 3’) Species a 

CYP51A_-278F Forward CTTTTGTCACTTGTTCTCTGCC Pg*, Pgt*, Pp*, Pu*, Po* 

CYP51A_1F Forward ATGGCTTTCTTCTTCCCATC Pgt, Pp, Pu 

CYP51A_-242F Forward TAAATCCCTCTGGCTTAATCGC Pg, Po 

CYP51A_662F Forward GCCCCATCAACTTCCTAG Pg*, Pgt, Pu, Po 

CYP51A_757R Reverse TGAGGTCCATGTAAACATCG Pg, Pgt, Pp, Pu, Po 

CYP51A_1345R Reverse CAAAGGGCAGGTAAGGACTC Pg, Pgt*, Pp*, Pu*, Po* 

CYP51A_1749R Reverse AGAGATATGCCTCATTGCTAAA Pg*, Pgt*, Pp*, Pu*, Po* 

a * Indicates primer used for polymerase chain reaction amplification. 

Polymerase chain reaction (PCR) was performed in a ProFlex thermal cycler (Applied Biosystems, 

USA) with a final volume of reaction of 25 µL containing ultrapure distilled water, 50 ng of total fungal 

DNA, 0.3 µM each primer, 0.2 mM dNTP, 2 mM MgCl2, 2.5 µL of 10X buffer and 1 U of Taq DNA 

polymerase (Sigma-Aldrich, USA). The following cycling conditions were used: initial denaturation at 

95°C for 7 min.; 35 cycles of 95°C for 1 min., 52°C as annealing temperature for 1 min., and 72°C for 1 

min.; and final extension at 72°C for 7 min. for Pg, Pp, Pu, and Pygt, while for Po, the annealing 

temperature was set at 55°C. Amplifications of the DNA fragments were checked on a 1% agarose gel. 

The sequencing reactions were performed at Macrogen Inc., Seoul, South Korea, using an ABI 3700 DNA 

analyzer. To obtain total coverage of the CYP51A gene (1551 bp), three sequencing reactions using 

primers described in Additional file 1 and Table 2 were performed for each isolate, and the fragments 

obtained were aligned to generate a consensus sequence. The consensus DNA sequences for each 

isolate were aligned and analyzed using the software Geneious R v. 9.0.5 (Biomatters, Auckland, New 

Zealand). The complete sequence of CYP51A for Pp, Pu, Pygt, and Po was 1551 bp in length, while for 

Pg, it was 1420 bp (~92% of gene coverage).  

Haplotype frequencies were determined using the program DnaSP version 5.10.1 (Rozas, 2009). The 

CYP51A gene sequences were checked for synonymous and non-synonymous mutations using as 

reference the CYP51A gene sequence from Po isolate 622 (with sensitive phenotype for both 

tebuconazole and epoxiconazole).  

The phylogenetic relationships among distinct CYP51A haplotypes were determined by 

reconstructing a reticulate phylogeny using the parsimonious statistical method implemented in the 

program TCS version 1.21 (Clement, Posada, & Crandall, 2000). We also build an UPGMA phylogenetic 

tree using the Geneious R tool Tree Builder, assuming the evolutionary model HKY. The internode 

support for the branches was tested by bootstrap with 1,000 data resampling.  

Results and discussion 

Increasing concentrations of the DMI fungicides tebuconazole and epoxiconazole resulted in 

mycelial growth reduction for all isolates of Pyricularia spp. from different poaceous species (Figure 1; 

Additional file 2). There were also differences among isolates within species, allowing for the 

discrimination between extreme DMI-resistant and DMI-sensitive phenotypes in four out of the five 

Pyricularia spp. examined (Pg, Pp, Pu, and Pygt; Additional file 2). The mean species effect was 

significant at p ≤ 0.001 for both tebuconazole and epoxiconazole, and the EC50 values were significantly 

different among Pyricularia species (Scott-Knott at p ≤ 0.05) (Figure 2).  
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Figure 1. Mycelial growth of isolates from Pyricularia grisea (Pg), P. pennisetigena (Pp), P. urashimae (Pu), P. graminis-tritici (Pygt) and P. 

oryzae (Po) in potato-dextrose-agar medium (PDA) without fungicide or with 0.3 μg mL-1 tebuconazole or 0.1 μg mL-1 epoxiconazole. 

 
Figure 2. Boxplot representing the variation in EC50 values to DMI fungicides by isolates of Pyricularia spp. The mean EC50 values for isolates of each 

Pyricularia species with the CYP51A gene sequenced were indicated by a red line a. a A complete randomized experimental design with six repetitions per 

fungal isolate of each species was used. The experiment was replicated once. Data from the two experiments were combined for the variance analyses 

because there were no significant differences between experiments (Ftebuconazole experiments = 1.945NS, p = 0.1639; Fepoxiconazole experiments = 3.166 NS, p = 

0.0759) and the ranking of species based on their EC50 values was consistent across experiments, indicating no significant interaction. The species effect 

was significant for both fungicides (Ftebuconazole species = 255.27***, p < 0.001; Fepoxiconazole species = 159.42***, p < 0.001). Five Pyricularia species were compared: 

P. grisea (Pg, N = 4 isolates), P. pennisetigena (Pp, N = 4) P. urashimae (Pu, N =4), P. graminis-tritici (Pygt, N = 20) and P. oryzae (Po, N = 7). Boxplots 

followed by the same capital letters indicated no significant differences between species in EC50 values (Scott-Knott test at p < 0.05). 
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Pygt and Pp were highly resistant to tebuconazole, showing the highest EC50 values (EC50 = 1.438 

and = 1.421 µg mL-1, respectively), and significantly different from the other species (p ≤ 0.05). Pu 

and Pg where also resistant to tebuconazole, but with intermediate EC 50 values varying from  0.771 to 

1.074 µg mL-1, respectively. In contrast, Po was highly sensitive to tebuconazole, with a very low 

mean EC50 = 0.036 µg mL-1, which was significantly lower than that of all the other Pyricularia species 

examined (Figure 2).  

For epoxiconazole, Pygt and Pg were highly resistant, with EC50 values varying from 0.357 to 0.445 

µg mL-1, respectively, and significantly different from one another (p ≤ 0.05). Pp and Pu showed 

intermediate EC50 values  (= 0.284 and 0.233 µg mL-1, respectively), whereas Po presented the lowest 

EC50 (= 0.026 µg mL-1), significantly lower than all the other species (p ≤ 0.05) (Figure 2).  

From a total of 13 mutations detected along the CYP51A gene from Pp, Pu and Pygt, one was 

nonsynonymous, while 12 were synonymous. The single nonsynonymous mutation was found at 

residue 158 of the CYP51A gene with a resulting amino acid change from arginine to lysine R158K 

(Table 3). 

Table 3. Description of mutations found in the sequences of the CYP51A gene of Pyricularia spp. 

Haplotype Species a Frequency 

Tebuconazole 

Mean EC50 (µg 

mL-1) 

Epoxiconazole 

Mean EC50 (µg 

mL-1) 

Position (bp) b 

            1 

  4 4 4 4 5 6 7 9 9 9 0 

4 7 0 6 7 9 3 7 5 0 2 4 8 

2 8 8 2 3 8 4 5 6 6 7 5 3 

H6 Po 7 0.0357 0.0265 Reference  A A A C G C A C C T T G G 

     Nonsynonymous     *         

     Type of mutation c t v t t t V t t T v t T T 

      Replacement of aa d S I Q P R158K S V F L L S A T 

      Mutations 

H1 Pygt 16 1.4381 0.3572  G C G T A G G T  G C A A 

 Pp 1 1.4210 0.2849  G C G T A G G T  G C A A 

 Pu 1 0.7716 0.2326  G C G T A G G T  G C A A 

H7 Pygt 1 1.4381 0.3572  G C G T A G G T T G C A A 

H8e Pg 1 1.0742 0.2849  G C G G A  G  T G C A  

aSpecies analyzed in this study: Pyricularia grisea (Pg) (MF381155), P. pennisetigena (Pp) (MF381153), P. oryzae (Po) (MF381150), P. urashimae (Pu) 

(MF381152) and P. graminis-tritici (Pygt) H1: (MF381151) and H7 (MF381154). b Position according to the sequence deposited in the GenBank/NCBI used as 

reference for the alignment (from the isolate 622 of P. oryzae (Po) (MF381150) represented by the haplotype H6). c t = transitions and v = transversions d aa 

= amino acids  e For simplification, only the most common mutations with other haplotypes were described for the isolate H8 of P. grisea. A total of 52 non-

synonymous mutations were detected for H8. 

For Pg, in contrast, in addition to the mutation resulting in the R158K substitution, another 51 

nonsynonymous mutations were detected. The occurrence of these 52 mutations was possibly related to the 

phylogenetic distance between Pg and the group that includes the sister species Pp, Pu, and Pygt (Figure 3). 

In fact, the phylogenetic tree for the CYP51A gene evidenced that the species Pp, Pu, and Pygt shared the 

identical haplotype H1, which was closely related to H7 but distinct from Po, all with high bootstrap 

support. In contrast, the clade containing Pp, Pu, Pygt, and Po was only 80.9% similar to Pg (Additional file 

3). The reconstruction of a reticulate phylogeny also allowed for the depiction of nucleotide variation within 

the CYP51A gene, the frequency of occurrence of the haplotypes detected, and their relationships (Figure 4). 

Four distinct haplotypes were detected: H6 – DMI sensitive, associated exclusively with Po (MF381150) (N = 

7); H1 – DMI resistant, which was the most frequent among the haplotypes (N = 18), associated with Pp 

(MF381153), Pu (MF381152) and Pygt (MF381151), and distinct from H6 by eleven mutational steps; H7 – 

DMI resistant, which was found only once (i.e., a singleton) in the Pygt isolate 12.0.145 (MF381154); and the 

haplotype H8 – DMI resistant, also detected only once in Pg (MF381155), which was separated from H6 by 

48 mutational steps (Figure 4). The most frequent haplotype, H1, and haplotype H7 were differentiated by 

only one synonymous mutation (C756T).  

The major outcome of our study was the evidence that invasive poaceous species from wheat fields 

could be an important DMI-resistant fungal inoculum source for the initial phases of a wheat blast 

epidemic (Urashima & Kato, 1998). Additionally, the invasive poaceous species that is closer to the 

fungicide-sprayed wheat fields could have an important role as a DMI-resistant inoculum reservoir 

between cropping seasons. 
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Figure 3. Alignment of amino acid sequences translated from the CYP51A gene nucleotide sequences obtained from the isolates 

12.0.264 (P. grisea), 12.0.625i (P. graminis-tritici), 12.0.358 (P. pennisetigena) and 12.0.224 (P. urashimae), to identify non-synonymous 

mutations by comparing with the reference sequence of the sensitive isolate 622 (P. oryzae). Haplotypes (H) were represented for each 

species. 

 
Figure 4. Network of haplotypes of the CYP51A gene from Pyricularia spp. The area of each circle is proportional to the number of 

isolates sampled from each haplotype. The lines between one circle and another represent the mutational steps between haplotypes. 

Three CYP51A haplotypes (H1, H7 and H8) associated with resistance to DMI fungicides were detected 

among the Pyricularia species that were sampled from several invasive plant species in wheat fields. 

Castroagudin et al. (2015), who surveyed Pyricularia spp. associated with invasive plants from wheat fields, 

also detected two of the most common cytB haplotypes (H1 and H3) containing the G143A mutation that 

confers resistance to the QoI fungicide azoxystrobin. The H1-QoI resistant haplotype was detected in 48% of 

the isolates from invasive plant species, mostly from signal grass (Urochloa spp.) and weeping finger grass 

(Chloris distichophylla). 

In our study, the number of host plant species harboring DMI-resistant isolates of Pyricularia spp. was high. 

We detected triazol fungicide-resistant Pyricularia spp. associated with oats (Avena sativa), sandbur (Cenchrus 

echinatus), weeping finger grass (Chloris distichophylla), star grass (Cynodon spp.), Jamaican crabgrass (D. 

horizontalis), crabgrass (Digitaria sanguinalis), barnyard grass (Echinochloa crusgalli), Indian goosegrass (Eleusine 

indica), Guinea grass (Panicum maximum), and signal grass (Urochloa brizantha). 

In terms of levels of resistance, with the exception of the rice blast fungus P. oryzae, which was used as our 

sensitive standard, all of the other four Pyricularia species (Pygt, Pg, Pp, and Pu) associated with invasive Poaceae 

were resistant to DMI fungicides. 
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For tebuconazole, the mean EC50 for the four species was 1.18 µg mL-1 (ranging from a minimum of 0.69 to a 

maximum of 3.56 µg mL-1). These EC50 values for tebuconazole were either similar or lower than the values 

described in the literature for resistant fungi associated with diseases on wheat or other cereals, which were 

heavily sprayed with DMI fungicides. Such examples included Mycosphaerella graminicola [maximum EC50 = 0.91 

µg mL-1 (Stammler & Semar, 2011)], Rhynchosporium commune [maximum EC50 = 2.00 µg mL-1 (Hawkins et al., 

2014) and Zymoseptoria tritici [maximum EC50 = 10.00 µg mL-1 (Cools & Fraaije, 2013). 

For epoxiconazole, the mean EC50 for the four Pyricularia species was 0.33 µg mL-1 (with a minimum of 
0.10 and a maximum of 0.95 µg mL-1). In comparison with the same wheat or other cereals’ pathogens, the 
following epoxiconazole EC50 were described: Mycosphaerella graminicola [maximum EC50 = 0.05 µg mL-1 

(Stammler & Semar, 2011), Rhynchosporium commune [maximum EC50 = 0.23 µg mL-1 (Hawkins et al., 2014)] 
and Zymoseptoria tritici [maximum EC50 = 0.48 µg mL-1 (Cools & Fraaije, 2013). Based on the labeled doses of 
75 g epoxiconazole ha-1 and 150 g tebuconazole ha-1 recommended for fungicide sprays in Brazilian wheat 
fields by the Brazilian Ministry of Agriculture, Livestock and Food Supply – MAPA 
(http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons), and using the method proposed by 
Castroagudin et al. (2015) considering the average wheat plant height at heading stage of approximately 0.82 
meters, we estimated that epoxiconazole and tebuconazole are sprayed at the concentrations of 0.0055 µg mL-1 
and 0.0180 µg mL-1 per hectare of wheat fields, respectively. Comparing these resulting field concentrations with 
the mean EC50 values that were estimated, we concluded that, on average, all four Pyricularia species from 
invasive grasses resisted at 60 to 65 times higher field doses of epoxiconazole or tebuconazole, respectively. 

An R158K point mutation in the CYP51A gene that was conserved in four Pyricularia species (Pg, Pp, Pu, and 
Pygt) but absent in the reference species for DMI sensitivity (Po) may be related to resistance to tebuconazole and 
epoxiconazole. 

In a countrywide population-based study in which 178 Pygt isolates were sampled from seven wheat fields in 

Brazil, Ceresini et al. (2018) also described the predominance of the R158K mutation in all four DMI-resistant 

haplotypes detected (H1, H2, H3, and H4). The predominant CYP51A haplotype associated with Pp, Pu and Pygt 

from invasive species was identical to the H1 haplotype described by (Ceresini et al. 2018), which was the most 

commonly found in all seven wheat blast populations (N = 175). 

However, as reported for few other fungal plant pathogens, in addition to target site mutations found in the 

CYP51A gene of Pg, Pp, Pu, and Pygt, resistance to DMI fungicides could also be related to other mechanisms of 

quantitative nature, such as increase in ABC transporter efflux (Nakaune et al., 1998) and overexpression of the 

CYP51A gene (Ma et al., 2005; Coleman & Mylonakis, 2009; Abou Ammar et al., 2013).  

Due to the quantitative and polygenic nature of the resistance attributed to DMI fungicides, the resistance to 
DMI fungicides found in all four Pyricularia spp. from Poaceae species that are invasive to wheat fields may be a 
result of slow and gradual selective pressure exerted on the pathogen populations due to long-term use of 
DMI fungicides at high dosages (Deising, Reimann, & Pascholati, 2008; Lucas et al., 2015). 

To avoid the intensification of this scenario over the next few years, the adoption of anti-resistance 
management strategies is urgently needed. To decrease the selective pressure towards resistant pathogen 
populations, such strategies would include rotations of fungicides with different modes of action (Milgroom 
& Fry, 1988) and adoption of mixtures of single-target-site, high-risk fungicides with multiple-target-site, 
low-risk fungicides (Lucas et al., 2015). 

Conclusion 

All four Pyricularia species (Pygt, Pg, Pp, and Pu) associated with invasive Poaceae were resistant to DMI 

fungicides.  

Several invasive poaceous species adjacent to sprayed wheat fields constitute an important inoculum 

reservoir of DMI-resistant Pyricularia spp. for the initial phases of the blast epidemic, especially for wheat blast. 
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