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Abstract: Water resources have been increasingly impacted due to the growth of water demand
associated with environmental degradation. In this context, the mapping of groundwater recharge
potential has become attractive to water managers as it can be used to direct public policies and
conserve this natural asset. The present study modifies (improves) a spatially explicit model to
determine groundwater recharge potential at the catchment scale, testing it in the Pandeiros River
basin located in the state of Minas Gerais, Brazil. The model is generally based on the water balance
approach and the input variables were compiled from institutional sources and processed in a
Geographic Information System. The novelty brought by the aforementioned modification relates to
the coupling of physical variables (conventional way) and land management practices (introduced
here) in the estimation of a percolation factor. The role of land management practices for percolation
was assessed by the so-called Conservative Use Potential (PUC) method, which classifies the areas
of a river basin in terms of their potential for sustainable use. The results were validated by an
independent method, namely the recession curve method based on the interpretation of hydrographs.
In general, the groundwater recharge potential is favored in flat to gently undulating areas and
forested regions, as well as where the landscape is characterized by well-structured soils, good
drainage conditions and large hydraulic conductivity. The map of groundwater recharge potential
produced in this study can be used by planners and decision makers in the Pandeiros River basin as a
tool to achieve sustainable use of groundwater resources and the protection of recharge areas.

Keywords: groundwater recharge; water resources management; Conservative Use Potential; river
basin; geographic information system; water balance

1. Introduction

Clean water resources are becoming scarcer due to the increasing demand for its use and to
environmental degradation [1]. It has been estimated that 1/3 of all countries will have to adapt
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their productive processes by 2025 because water is lacking, and more than 3 billion people might
be living in regions under chronic draughts or water stress [2–6]. Owing to its great importance
for society, economy and the environment, it is necessary to properly manage water resources. The
increasing degradation of surface water resources not only in Brazil but all over the world [7], makes
the sustainable management of groundwater become an even more essential activity. In this context, a
precise evaluation of groundwater distribution entails the understanding of aquifer refilling processes
and the quantification of groundwater inputs. This quantification is called groundwater recharge
estimation. In light of this challenge, studies and maps related to the provision of water resources
are needed, with the purpose of indicating priority areas for conservation or restoration and to direct
public policies to protect this natural resource. In Brazil, groundwater recharge studies that exist are
predominantly focused on the river basin scale [8].

The incorrect management of river basins can generate serious threats to water availability,
hindering surface and groundwater, because the dynamic of hydrologic systems is vulnerable to
human actions [9,10]. An example is the reduced capacity for water infiltration into the soil observed
in areas that are occupied with civil constructions or impermeable pavements [10,11]. Other problems,
such as the intensification of erosion or floods, can occur in the development of soil permeability
declines. In rural catchments, the inadequate uses of the land, among other factors, can amplify the
risk of flood occurrence [12] reducing the levels of recharge.

Changes in the dynamics of hydrologic systems are particularly worrying in aquifer recharge
zones, which are regions that enable water infiltration and percolation toward an aquifer system,
which is defined as the geological system capable of storing and distributing a significant amount
of water [13–15]. Moreover, recharge zones can be defined as areas where the soil surface favors the
water infiltration and percolation [16,17]. Water can also be retained in the soil and slowly recharge the
aquifer [13,18,19].

Some recharge zones are more efficient than others and for that reason are called preferential
groundwater recharge zones [20]. The environmental protection of these special areas is important to
conserve the quality and quantity of water resources. Thus, detailed information on the groundwater
recharge process can aid better land use and cover distribution, and indicate the best areas for
agricultural activities with the lowest groundwater contamination risks caused by the release of
substances with high polluting potential, such as pesticides.

Despite the importance of sustainable management of aquifer recharge zones [7,21–23], in the state
of Minas Gerais, Brazil, this topic has not yet been properly studied. Therefore, a better comprehension
about the factors that affect groundwater recharge is necessary, as well as the mapping of recharge
areas that consider the sustainable management potential of the basin. These evaluations should be
robust and contain physical–environmental factors [10], such as soil characteristics, geology, vegetation
cover, climate, and topography. When all these data are evaluated together, they allow for sustainable
water use, meaning a use without compromising groundwater recharge [10]. Besides, under these
circumstances the volume of water withdrawn from the aquifer system can be defined according to its
natural capacity [24].

Numerous groundwater recharge estimation methods exist. However, they all entail some level
of uncertainty [25]. In general, the practical and conceptual limitations of recharge estimation models
occur because the available hydrological and hydrogeological data are sparse or fragmented, and
because the spatial and temporal variations in recharge are significant [26]. This difficulty is significant
for semi-arid areas [27], causing recharge estimations in these areas to be even more challenging.
There are direct and indirect methods to evaluate the groundwater recharge potential. The direct
methods include geological and geophysical explorations, gravimetrical and magnetic models, and
perforation tests [10]. The indirect methods include hydrological and hydrogeological models [28,29],
using geographical information systems (GIS) combined with field work [30,31]. Other studies have
employed different methods to estimate groundwater recharge, which are comprised of tracer methods,
water table fluctuation models, lysimeter methods and simple water balance techniques. Some of
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these studies have used numerical groundwater models or dynamically linked them to hydrological
models to estimate recharge variations under different climate and land cover conditions [32–36]. For
example, Döll (2008) modeled global groundwater recharge using the WaterGAP Global Hydrological
Model (WGHM), which has failed to reliably estimate recharge in semi-arid regions [37]. In that
study, the influence of vegetation was not taken into account, even though many studies have
showed the importance of this variable for estimating the groundwater recharge [32,38–42]. Moreover,
Chowdhury et al. (2010) delineated groundwater recharge zones in West Medinipur district, India,
using a GIS approach mixed with remote sensing and multi-criteria decision making techniques [22].
The input variables considered in that study were geomorphology, geology, drainage density, slope
and aquifer transmissivity. In general, the choice of a method should consider the precision level
needed, the project execution viability, and the available financial resources.

Among methods available in the literature, Costa et al. (2019) proposed one for the evaluation of
groundwater recharge potential based on the water balance approach that considers climatic variables,
water runoff, and the percolation of water into the soil profile [10]. The authors obtained results for
mean annual recharge similar to those calculated by the hydrograph recession curve analysis, which
has been used as a validation method. Furthermore, they identified areas with larger recharge potential
and suggested management practices to improve groundwater recharge in those areas, making their
study a valuable tool for the sustainable use of groundwater and protection of recharge areas [10].

Despite the positive results obtained by Costa et al. (2019), it is worth noting that the land
management practices were a consequence of groundwater recharge assessments, not a contributing
factor to groundwater recharge included in the model. Indeed, all parameters included in Costa’s
water balance model were physical, while land management practices had no role, regardless of their
potential to dynamically affect groundwater recharge [10]. Thus, the coupling of physical factors and
land management practices in a recharge estimation model could be a motivation (and a novelty) for a
subsequent study. Before the publication of Costa et al. (2019), Costa et al. (2017) [43] conducted a
study in Minas Gerais and developed a method based on multi criteria analysis, which was efficient to
map a so-called Conservative Use Potential (PUC). The PUC method weights a considerably large
number of variables considering their importance for sustainable land use, including several variables
linked to land management practices, such as drainage, soil depth and fertility, erosion potential,
and land capability. Hence, one possible route to realize our research motivation would encompass
including the PUC, as determined by Costa et al. (2017) [43], within the framework of the Costa et al.
(2019) groundwater recharge method [10].

The general purpose of this study is therefore to take that step forward and embed the concept of
PUC in the groundwater recharge method of Costa et al. (2019) [10]. In that method, a parameter is
defined to measure water percolation based on the soil’s effective porosity and hydraulic conductivity.
The method presented in this work replaces porosity by three parameters strongly influenced by
management practices, which are soil texture, drainage, and profile depth. The replacement has the
specific purpose to check whether this set of variables responds more effectively to land use changes
than the original variable (porosity). The model was tested in the Pandeiros River Basin (PRB), Brazil,
to generate a spatially explicit map of groundwater recharge potential, at regional scale (1:100.000).
This map has the potential to subsidize indications of preferred areas for restoration, recovery, and
protection, ensuring a more sustainable water resources management in this basin.

2. Materials and Methods

2.1. Study Area

The Pandeiros River basin (PRB) is located in the northern state of Minas Gerais, Brazil, and has
an area of 396,028 ha, which encompasses part of Januária, Bonito de Minas, and Cônego Marinho
municipalities (Figure 1). The climate of the region is predominantly dry with mean annual temperature
of 24.6 ◦C, which occasionally reaches a maximum of 33 ◦C in October, and a minimum of 14 ◦C in
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July [44]. Rainfall is concentrated in April to September, since the climate is semiarid, with mean
annual rainfall of approximately 1,050 mm year [45–47]. The longest and largest tributaries of the
Pandeiros River are the Catolé, Suçuarana, Borrachudo and Macaúbas streams.
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According to the Brazilian Institute for Geography and Statistics (2018), the municipalities
comprising the PRB have a total population of 86,311 inhabitants, most of them living in Januária. The
largest part of this population live in rural areas, especially in the municipalities of Bonito de Minas
and Cônego Marinho (Table 1) [48].
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Table 1. Area and population living in the municipalities of Pandeiros River basin. Source: Brazilian
Institute for Geography and Statistics. The population numbers refer to 2018.

Municipality Total Area (ha) Urban Population
(2018)

Rural Population
(2018)

Total Population
(2018)

Januária 665,700 41,322 24,141 67,628
Bonito de Minas 390,200 2209 7464 11,088
Cônego Marinho 164,100 1915 5186 7595

Total 1,220,000 45,446 36,791 86,311

The PRB is in an area with transitional vegetation, presenting phytophysionomies of Cerrado
and Caatinga biomes [49]. This ecotone is characterized by swamp regions that contain the springs of
the São Francisco River. These springs are responsible for the reproduction of most fishes that live
between the Três Marias (MG) and Sobradinho (BA) dams [50].

The relief is predominantly flat. The plain was formed by the filling of the São Francisco Depression
with sediments that were sourced from the erosion of rocks from the São Francisco Plateau [51]. This
process is also responsible for a small proportion of steep slope areas in the basin, as shown in Figure 2
and quantified in Table 2 [52].
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Figure 2. Slope map of the Pandeiros River basin.

Table 2. Area of slope classes in the Pandeiros River basin.

Slope (%) Relief Type Area (ha) %

0 to 3 Plain 122.048,53 30.83
3 to 8 Slightly wavy 206.106,85 52.04
8 to 20 Wavy 59.179,5 14.94

20 to 45 Strongly wavy 7.806,56 1.97
Above 45 Mountainous to scarped 886,85 0.22

Total 396,028.29 100 100

As regards the local geology, there is the presence of alluvial deposits over the main drains in
the area and in wetland regions (Veredas), which are the results of natural and anthropogenic erosion



Water 2020, 12, 1001 6 of 24

processes with consequent transport and deposition of sediments. Figure 3 and Table 3 show the
spatial distribution and proportion of lithotypes in the studied basin, respectively.
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Table 3. Spatial distribution and proportion of lithotypes in the Pandeiros River basin.

Lithotype Area (ha) %

Sand 70,886.74 17.90
Sandstone 290,804.78 73.43
Calcarenite 27,570.98 6.96

Gneiss 6,765.81 1.71

Total 396,028.29 100

The Soil Map of Minas Gerais [53] presents an area predominantly composed of red–yellow
latosols, which cover more than 87% of the hydrographic basin, followed by fluvic neosols (5.48%).
The occurrence of quartzarenic neosols, litolic neosols, cambisols and melanic gleysols are related to
much smaller areas (Figure 4 and Table 4).
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Table 4. Spatial distribution and proportion of soil classes in the Pandeiros River basin.

Soil Classes Area (ha) %

Haplic cambisols 2,810.25 0.71
Melanic gleysols 11,856.63 2.99

Red–yellow latosols 346,549.01 87.51
Fluvic neosol 21,706.62 5.48
Litolic neosol 176.09 0.04

Quartzarenic neosol 12,929.70 3.26

Total 396,028.29 100

The spatial distribution of the land use and cover classes in the basin (Figure 5) shows the
predominance of a typical Cerrado vegetation (savanna) of low to medium size [54], which is usually
associated with the occurrence of latosols and sandstone regions. These are found mainly in the central
part, towards the northern and northeast of the Pandeiros River basin. This phytophysiognomy covers
183,719.88 ha in the basin, representing 46.3% of its area (Table 5). The second most significant land use
and cover class in the study area is the dense Cerrado (21.5%), followed by the sparse Cerrado (10.42%).
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Table 5. Spatial distribution and proportion of the land use and cover classes in the Pandeiros
River basin.

Class Area %

Cultivated soil 33,138.21 8.37
Urban area 121.19 0.03

Dense Cerrado vegetation 85,203.09 21.51
Sparse Cerrado vegetation 41,246.36 10.42
Typical Cerrado vegetation 183,719.88 46.39

Surface water 70.08 0.02
Dry forest 1,102.50 0.28
Bare soil 18,351.75 4.63

Wetland regions (Veredas) 33,075.23 8.35

Total 396,028.29 100

2.2. Material

The materials used in this study (Table 6) consisted of (i) a digital elevation model (ALOS PALSAR),
with a spatial resolution of 12.5 meters; (ii) a land use and cover map (scale of 1: 25.000); (iii) the
soil map of Minas Gerais state (scale of 1: 600.000); (iv) values of groundwater recharge calculated
by the PUC method and the hydraulic conductivity of each soil class in the basin; (v) rainfall and
evapotranspiration data from meteorological stations located in municipalities near the basin; and vi)
flow data records from the station code 45,250,000 located near the mouth of the Pandeiros River.

Table 6. Material used in the groundwater recharge evaluations.

Data Type Use in the Work Web Site Page

Digital elevation model Calculation of slope length and steepness factor https://www.asf.alaska.edu
Land use and cover map Calculation of RF, the runoff factor https://www.earthexplorer.usgs.gov/

Soil map Calculation of PF, the percolation factor https://www.dps.ufv.br
Rainfall and evapotranspiration data Calculation of recharge potential https://www.inmet.gov.br

Streamflow data Validation of recharge potential data (analysis of
hydrograph recession curve) https://www.snirh.gov.br/hidroweb

https://www.asf.alaska.edu
https://www.earthexplorer.usgs.gov/
https://www.dps.ufv.br
https://www.inmet.gov.br
https://www.snirh.gov.br/hidroweb
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2.3. Methodology

The spatially explicit groundwater recharge potential in the Pandeiros River basin was evaluated
using the methodology proposed by Costa et al. (2019) [10], with the adjustments described below.
The workflow was divided into 5 main steps: (i) acquisition of a land use and cover map, digital
elevation model, soil type map, and climate data (rainfall and evapotranspiration); (ii) calculation
of surface runoff using the slope length and steepness factor, and runoff coefficients for the land use
and cover types; (iii) calculation of water percolation based on the PUC method [43] (replacing the
effective porosity of Costa’s approach and representing the proposed methodological improvement)
and adapted hydraulic conductivity values with fuzzy logic [55,56]; (iv) calculation of groundwater
recharge in different points of the basin and a mean value for the whole basin, using a geographical
information system; (v) validation of results by comparing the previously calculated mean groundwater
recharge with the value estimated by the hydrograph recession curve analysis (Figure 6).
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Figure 6. Flowchart for the groundwater recharge potential calculation and model validation. Adapted
from Costa et al. (2019) [10]. Abbreviations: LS—slope length and steepness factor [57]; C—runoff

coefficient (Table 7); RF—runoff factor (Equation (1)); PUC—Conservative Use Potential [43]; Ks—soils’
hydraulic conductivity (Table 8); PF—water percolation factor (Equation (2)).

In the first step, the mean annual rainfall and evapotranspiration of municipalities near the study
area were estimated using data from the Brazilian Institute for Meteorology (INMET) relative to the
2009–2018 period, which were obtained from meteorological stations in Arinos (MG), Januária (MG),
Montes Claros (MG), Salinas (MG), Cariranha (BA), Espinosa (MG), Formoso (MG), Posses (GO), and
Brasília (DF). Longer temporal series would be more adequate for estimating groundwater recharge.
However, these records were not available. The flaws in the temporal series were resolved by using the
regional weighting method, and the information was interpolated through inverse distance weighting
(IDW) raised to the power of two [58]. This method was used because it raises the importance of closer
stations in the interpolation. The data were spatialized and trimmed up to the study area limits.

In the second step, the land use and cover map and the topographical information from the digital
elevation model (slope length and steepness factor—LS factor) were used to calculate the surface
runoff factor, based on the method proposed by Böhner and Selige (2002) [59]. The runoff factor was
calculated according to Equation (1), reproduced from Costa et al. 2019 [10].

RF = 1− (C + LSFUZZY) (1)
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where RF is the runoff factor (dimensionless); C is the runoff coefficient (dimensionless values adopted
from Table 7); LSFUZZY is the slope length and steepness factor estimated using the method of Desmet
and Govers (1996) [57], but recast to the 0–1 range using a fuzzy logic algorithm (the steeper the slope
the closer to 1).

Table 7. Runoff coefficients for each land use and cover class in the Pandeiros River basin. Adapted
from the ASCE—American Society of Civil Engineers, 1969, and Costa et al., 2019 [10,60].

Land and Cover Class Runoff Coefficient

Anthropized areas 0.50
Urban areas 0.85

Forest formation 0.10
Exposed soil and ground vegetation 0.60

Wetland regions (“Veredas”) 0.09

In the third step, the water percolation was calculated considering the soil classes in the basin [53].
A systematic literature review was performed to set up hydraulic conductivity values for each soil
class, at the second category level of Brazilian soil classification system (SiBCS) [61]. The hydraulic
conductivity values were established according to Freire et al. (2003), Costa et al. (2019), Pedron (2011)
and Amaral (2017) [10,55,56,62].

Table 8. Soil classes and respective KsFuzzy values. The scores of groundwater recharge parameter were
set up by the PUC method in the Pandeiros River basin [10,55,56,62].

Soil Class PUC Score Ksfuzzy

Haplic cambisols 0.4 0.3
Melanic gleysols 0.1 0.01

Red–yellow latosols 0.7 1
Fluvic neosols 0.3 0.02
Litolic neosols 0.3 0.06

Quartzarenic neosols 0.3 0.61

Different from the method proposed by Costa et al. (2019) [10], the water percolation factor in
this model was calculated using the groundwater recharge category of the PUC method, developed
by Costa et al. (2017) [43]. The PUC is a method that allows for mapping areas of a basin based on
their limitations and potentialities for conservationist land use, through the combined assessment and
weighting of several environmental variables (soils, geology, and geomorphology) [43].

The PUC assigns values from 1 to 5 to the different classes of lithology, slope and soil in the
watersheds from the state of Minas Gerais, Brazil. The analyses are focused on groundwater recharge,
agricultural use potential and soil resistance to erosion in the catchments [43]. For the identification of
lithologies, slopes and soil classes existing in Minas Gerais, the available official databases are used.

The attribution of grades for the different types of lithologies took into consideration their potential
to provide nutrients (greater weight for rocks with higher absolute content of essential macro elements
to plants) and their susceptibility to weathering processes (considering the main mineral constituents
and scored according to their resistance to weathering, based on Goldish’s stability [63]). Regarding the
slope parameter, the same weights were attributed for groundwater recharge potential for agricultural
use and resistance to erosion. For groundwater recharge, it was considered that the slope has a direct
relationship with the flow velocity and the opportunity time for water infiltration. The higher the
slope, the higher the water velocity and the shorter the time for water infiltration. In this context, the
mountainous relief received a weight 1 and the flat relief a weight 5.

For the attribution of grades to different soils, the variables texture, drainage, effective depth and
fertility were considered. For groundwater recharge, the attribute fertility was disregarded and the
classes of soils characterized as favorable to water infiltration and percolation received greater weight.
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The recharging potential for each soil type was obtained by the simple average of the values of texture,
drainage and effective depth, normalized so that the final scale was in the range of 1 to 5.

In this work, only the soil parameter of groundwater recharge was used, which assigns the basin´s
soil classes a score from 1 to 5. This parameter takes into account the effective depth, texture and
drainage of each soil class at the first category level of SiBCS [61]. Thus, to the soil that presents
considerable effective depth, satisfactory drainage and texture favorable to infiltration, a higher score
regarding groundwater recharge is attributed.

However, in order to adapt the PUC method to the recharge model, a rescaling process was
implemented, whereby the ratings from 1 to 5 were recast to the range 0 to 1. The values used in the
model are represented in Table 8. The percolation factor was evaluated using Equation (2), reproduced
from Costa et al. 2019 [10]:

PF = PUC×KsFUZZY (2)

where PF is the water percolation factor (dimensionless); KsFUZZY (dimensionless) is the soil’s hydraulic
conductivity fitted to the 0 to 1 range by the fuzzy logic algorithm (the higher the soil’s hydraulic
conductivity in the class the closer to 1); PUC are the scores of groundwater recharge set up by the
PUC method but fitted to the 0 to 1 range.

In the fourth step, the groundwater recharge potential was calculated for each point in the basin,
using Equation (3), according to Costa et al. 2019 [10]:

RPot = [(P− ETR) ×RF× PF] × 10 (3)

where RPot is the groundwater recharge potential (m3 ha−1 year−1); P is the mean annual rainfall depth
(mm year−1); ETR is the mean evapotranspiration (mm year−1); RF is the surface runoff factor; and PF
is the water percolation factor.

The results were validated in the fifth step through comparison of the calculated mean groundwater
recharge with a homologous median value estimated by the hydrograph recession method based on
the Maillet equation [64,65]. The hydrograph for the Pandeiros River was drawn from daily average
stream flow data measured at the hydrometric station nº 4425000 located in the Pandeiros River mouth
(Pandeiros River Dam), compiled from the Hidroweb portal [66]. Streamflow data from 2013 to 2018
were the most recent and more continuous in the historical series, showing no flaws or absent data.
Thus, these data were used to calculate the Maillet equation (Equation (4)). To separate and analyze
the recession curve and the recession days, the methodology proposed by Barnes (1939), Dewandel et
al. (2003) and Kovacs et al. (2005) was used [64,65,67–69]:

QT = Q0 × e−αt (4)

where QT is the flow at time t (m3 s−1); Q0 is the flow at the beginning of a recession (m3 s−1); α is the
coefficient of recession; t is the time (days); and e is the basis of Neperian logarithm (2.71828).

Thus, the coefficient of recession can be determined numerically, based on the logarithmic form of
Equation (4), represented and rearranged in Equation (5):

α =
LogQ0 − LogQt

0.4343t
(5)

Subsequently, the groundwater recharge volume was calculated using Equation (6):

V =
Q0 × t′

α
(6)

where V is the recharge volume (m3); Q0 is the flow at the beginning of recession (m3 s−1); t’ is the
converter of the t unit (days into seconds; 86,400); α is the coefficient of recession (dimensionless).
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The constant of recession (α; Equation (5)) is dependent on the aquifer characteristics and therefore
should not vary significantly from year to year. On a Q versus t plot (hydrograph), where the Q values
are represented in logarithmic scale and the values are in linear scale, the baseflow within a hydrologic
year (from the recharge period to the end of recession) should define as a straight line, the slope to
which is related in terms of α. If tcycle is the time of a log cycle for discharge, meaning the time for
discharge to change from 1 to 10 m3/s, from 10 to 100 m3/s, and so forth, then LogQ0 − LogQt = 1 and
α = 1/(0.4343tcycle). This simplified representation of Equation (5) is frequently used in the calculation
of α and will be adopted in the present study. Conversely, the values of Q0 can vary in response to the
annual variations of precipitation. In this case, a value of Q0 should be calculated for each hydrologic
year, while mean ± standard deviation values are derived therefrom.

3. Results

The interpolation of precipitation data from 2009 to 2018, obtained from climatologic stations
close to the Pandeiros River basin, showed mean rainfall depths ranging from 904.7 to 1056.3 mm
year−1 (Figure 7).
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The evapotranspiration ranged from 729.6 to 856.5 mm year−1 (Figure 8). The spatial distribution
of this variable was similar to rainfall; the lowest values were found in the southeast, east, and northeast
regions, whereas the highest values were found in the northwest region of Pandeiros River basins.
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The evaluation of the runoff factor exposes a strong effect of runoff coefficients on the RF, as
observed when the land use and cover map (Figure 5) is compared with the runoff map (Figure 9). The
map of Figure 9 showed a lower groundwater recharge in urban areas, which have a higher runoff. In
contrast, higher potential for groundwater recharge takes place in dense vegetation areas, indicating
that the presence of vegetation decreases surface runoff.Water 2020, 12, x FOR PEER REVIEW 14 of 24 
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The water percolation factor ranged from 0.001 to 0.7 (dimensionless), expressing the combined
variation of hydraulic conductivity values and PUC scores fitted to the 0–1 range (Figure 10 and
Table 8). Areas with melanic gleysols and fluvic neosols presented the lowest water percolation factors,
decreasing the groundwater recharge in these areas because of their low hydraulic conductivity.Water 2020, 12, x FOR PEER REVIEW 15 of 24 
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Figure 10. Spatial distribution of water percolation in the Pandeiros River basin.

The map of Figure 11 shows the groundwater recharge potential of the Pandeiros River basin
ranging from 0 to 122.7 mm year−1, with a mean value of 93.99 mm year−1. The areas with higher
groundwater recharge potential are located in regions with dense tree vegetation cover, areas with flat
or slightly wavy relief, and areas with developed and structured soils, where the porosity and hydraulic
conductivity allow water percolation to the water table. These areas are distributed throughout the
basin and are found in the three municipalities that encompass the basin.

The areas with lowest groundwater recharge potential are represented in Figure 11 with a red color
and are located in the urban area and in areas with the presence of melanic gleysols and fluvic neosols.
The reduced potential is due to the soil sealing process occurring in urban areas, and to low hydraulic
conductivities that decrease water percolation and consequently recharge in the aforementioned
soil types.

The validation of PUC-based recharge estimates is depicted in Table 9. The mean groundwater
recharge is 93.99 mm year−1 which is close to the median value obtained with the hydrograph recession
method (87.2 mm year−1). The difference between the two values is just 6.6 mm year−1 or 7.3%.
The hydrograph used to calculate groundwater recharge based on base flows is shown in Figure 12.
Hydrographs describe the succession of peaks representing the watershed response to a precipitation
event, which are separated by baseflow segments that describe the aquifer response to drainage.
Hydrograph recession curves are usually separated in the quick flow stage, which depicts the runoff

and water infiltration towards the saturated zone, and the baseflow stage when only the saturated
zone discharges [68]. The baseflow discharge is the most representative feature of an aquifer’s global
response because it is less influenced by the temporal and spatial variations on infiltration [69].
Generally, hydrographs are analyzed together with rainfall data. The peak of a hydrograph rising
curve shows the highest values of stream flows, which take place in the months when rainfall values
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are the highest. In these periods the superficial runoff also reaches its highest values and it decreases
during the recession time, marked by the red segments in Figure 12.
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Figure 12. Hydrograph of Pandeiros River basin, state of Minas Gerais, Brazil, used to calculate the
recession constant value.
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Table 9. Groundwater recharge in the Pandeiros River basin, estimated by the spatially distributed
PUC-based and hydrograph recession analysis methods.

Method
Mean Groundwater

Recharge
(mm year−1)

Average Difference
(mm year−1)

Average
Difference (%)

Spatialization 93.99 ± 36.92
4.8 5.2%Hydrograph recession

curve analysis 98.77 ± 20.32

In the assessment of recharge using the method of hydrograph recession analysis, we looked
for straight line segments corresponding to base lows. These segments allowed us to draw the
corresponding fitting lines (dashed red lines). As would be expected, the lines are all virtually parallel
because the line slope is solely dependent on the aquifer characteristics and dimension, which are
invariant at the timescale of a few years (present case). For all years, the point in the graph where
the fitting line intercepted the hydrograph at the upper flows (left edge point) was defined as the
Q0,t0 point, i.e., the point where the recession period began. On average Q0 = 10.8 ± 1.8 m3 s−1. The
coefficient of recession was estimated by the simplified version of Equation (5), α = 1/(0.4343tcycle). In
the Pandeiros River basin, the estimated tcycle is 789 days, and therefore α = 0,002918. Using Q0 and α
in Equation (6) results in the recharge value of V =98.8 ± 20.3 mm year−1.

Figure 13 shows the spatialization of groundwater recharge within the municipalities that
constitute the studied basin. Although the municipality of Januária encompasses a large area of the
Pandeiros River basin, approximately 212,956.8 ha, this municipality presents a higher proportion of
melanic gleysols, fluvic neosols, and litolic neosols, which are soils with the lowest water percolation
factor (PF) assessed by the model. Moreover, it presents a considerable proportion of exposed soil,
sparse Cerrado vegetation, and cultivated soils in the northwest region of the basin, which increases the
runoff potential. For these reasons, this municipality presented a mean annual groundwater recharge
of 90.30 mm year−1.

The municipality of Cônego Marinho presented the highest mean annual groundwater recharge
(105 mm year−1). This municipality occupies a smaller area of the basin (approximately 26,083.86 ha)
than the other municipalities, but it is in a region where soil and topography favor groundwater recharge.

Bonito de Minas presented mean annual groundwater recharge of 97.18 mm year−1. The area of
the basin within this municipality is approximately 156,987.95 ha. Despite the considerable presence of
fluvic neosols and melanic gleysols in this region of the basin, the proportion is lower than that of
Januária. The urban area of Bonito de Minas within the basin is small, representing 0.03% of the total
area of the basin, which does not significantly affect the mean annual groundwater recharge.

The land use and cover map (Figure 5) and the groundwater recharge map (Figure 11) showed
that the areas with forest cover presented the best recharge values. This type of land use and cover
combined with flat or slightly wavy relief and areas overlaid with red–yellow latosols proved preferable
for groundwater recharge.

Contrastingly, regions presenting such land use and cover as urban areas, exposed soil, ground
vegetation, poorly structured soils and low hydraulic conductivity (fluvic neosols, litolic neosols, haplic
cambisols, melanic gleysols), combined with steeper areas, presented lower recharges.
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4. Discussion

The rainfall depths (Figure 7) are consistent with Neves (2011), who evaluated a historical series
(1931–1990) in the same region and reported a mean rainfall depth of 1050 mm year−1 [45]. However,
the Brazilian Institute for Geography and Statistics (2014) considers values below 800 mm year−1

to define the semiarid region of Brazil [70], denoting that the rainfall depths of the study area were
relatively high for a semiarid region.

Yang et al. (2016) showed that the rainfall depth can be a determinant for evapotranspiration and
temperature values [71]. Therefore, practically all water that leaves the system (output) in regions with
dry climate and low rainfall, such as the Brazilian semiarid regions, is due to evapotranspiration [72].
According to Loos, Gayler, and Priesack (2007), evapotranspiration is one of the most critical variables,
with a high impact on water loss in similar regions [73].

The spatial distribution of runoff factor showed that cover plants are essential to maintaining
the water cycle and to protect the soil against the impacts of raindrops. Moreover, the presence of
vegetation increases soil porosity and permeability by the action of roots, thereby reducing runoff, and
keeping soil moisture in the vicinity of organic colloids [74].

Soils under forest are characterized by expressive plant residue layers (litter fall) and by an A
horizon rich in organic matter, which enables a higher soil aggregation, preserving its porosity [75].
Soils under forest usually present significant porosity, mainly macropores due to dead roots and animal
holes, which are important to facilitate water infiltration and recharge. Therefore, water infiltration
capacity is usually more expressive in areas with forest vegetation [75,76] than in pastureland or
cropland, as found in the present work, resulting in a lower surface runoff.
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Costa et al. (2019) [10] used a groundwater recharge model and reported a higher surface runoff

in urban areas than in vegetated areas. Urban areas have drainage systems, street pavements, and
infrastructures that hinder infiltration of rainwater into the soil, decreasing the recharge potential [10].

Comparing the first model employed by Costa et al. (2019) with the present application, it is
interesting to see how including the groundwater recharge parameter from the PUC method improved
the spatialization of groundwater recharge, mainly because the first model [10] used solely total
porosity values for each soil class in the Jequitiba River basin [10]. This parameter is not the best to
assess drainage and water percolation, because according to Silva et al. (2013), the micro and macro
porosity better reflect the movement of water through the soil profile [77]. Moreover, the PUC method
uses a management approach that was not taken into consideration in the PF in the first model. Another
important difference from the first model to the present one is the separation until the second category
level of the neosols class, which has shown more reliable spatialization and values for the different
category levels of this soil class. The differences between the physical characteristics (structure, texture
and effective depth) of fluvic neosols, litolic neosols and quartzarenic neosols) make it questionable to
give the same values of hydraulic conductivity and porosity to this soil class.

Regarding the validation stage of the work, the higher the slope of the recession curve, the faster
the depletion of the water table reserves and the higher the demand of this system to regulate the
surface system; whereas the lower the slope, the lower the time of depletion of water resources. The
surface and groundwater form a system with mutual contribution, thus, any change in one will affect
the other in the short or long term.

The comparison of the methods (spatialization; recession curve analysis) showed a small difference
(5.2%) because of their particularities, since each method has inherent and inevitably uncertainty
levels [78]. The spatialization method probably has a higher uncertainty in groundwater recharge
values because the number of parameters involved with the calculations is much larger [10]. However,
the recession curve analysis provides only an average groundwater recharge estimate (mean) for the
entire basin, whereas the spatialization method provides one estimate for each point in the basin.

The small difference between the results obtained with the spatially distributed PUC-based and
hydrograph recession methods attributes to geology a limited role in the estimation of recharge in the
Pandeiros River basin, and that this process is predominantly controlled by the infiltration capacity
and profile depth of the soil. The effect of vadose zone thickness on the recharge was recently reported
in China [79]. Information on the characteristics of a river basin and its potentialities and limitations
are essential to an adequate management of water resources [10,80,81].

The potentialities found for the municipality of Cônego Marinho include the prevalence of
red–yellow latosols, which are soils that favor groundwater recharge because of their structural
characteristics, such as the occurrence of macropores that increase hydraulic conductivity [43].
Moreover, the region has few cultivated areas and has a predominance of typical Cerrado vegetation,
which also favor groundwater recharge, according to the model. Thus, the mean annual groundwater
recharge was higher in this municipality than in the other two in the basin.

The considerable overlay of fluvic neosols and melanic gleysols in Bonito de Minas is compensated
for by a high proportion of typical Cerrado and dense Cerrado vegetation and by the presence of few
cultivated areas, which decreased the runoff potential: Consequently, the mean annual water recharge
in this municipality was higher than that in Januária. The presence of native vegetation favors the
groundwater recharge, because the forest reduces the surface runoff, favors water percolation, and
maintains the soil physical and mechanical stability, assisting in the storage of water and the supply
of groundwater [10]. Several studies evaluated the effect of land use and cover and the benefits of
forested areas to groundwater recharge [42,82–88].

Considering these results, the method used in the present work provides aid in the better
management of river basins by considering their potentialities and limitations, not generalizing a mean
value for the whole area evaluated. Therefore, preferred areas can be identified for recharge, thus
directing public policies and conservationist actions for each area, according to their needs.
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5. Conclusions

The groundwater recharge potential was higher in areas covered with forests, located in plains or
slightly wavy relief areas, or overlaid with red–yellow latosol. These are the areas to protect in the
watershed management plan if recharge is to be favored or restored. The soil classes and their structural
attributes, as well as the land use and cover types were considered as key factors for groundwater
recharge. The results showed that areas with higher groundwater recharge potential were concentrated
in the municipality of Cônego Marinho, followed by Bonito de Minas, and Januária. Areas with a
presence of melanic gleysols and fluvic neosols presented the worst responses in the model.

As made evident from the results, this study should be used as a tool for the management of water
resources in the Pandeiros River basin, because the preferred recharge areas could be successfully
identified. It is urgent therefore that public policies and conservationist actions are enforced in these
areas to improve natural groundwater recharge, and hence increase the accessible water volume to
the local population. The adjustment of irrigation methods, adoption of soil preservation practices to
improve water infiltration, seasonal storage of surface water in areas of low recharge potential and
the preservation of forest vegetation, are examples of feasible actions. Moreover, this work provided
subsidies for further studies that seek methods for the spatialization of groundwater recharge potential
in river basins with a key role assigned to management practices.
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Nomenclature

The list of mathematical symbols and their measurement units as used in the present article are listed below in
alphabetical order:
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A recession coefficient;
C runoff coefficient (dimensionless);
E basis of Neperian logarithm (2.71828)
ETR mean evapotranspiration (mm year−1);
KsFUZZY (dimensionless) soil hydraulic conductivity fitted to the 0 to 1 range by the fuzzy logic algorithm;
LSFUZZY slope length and steepness factor;
P mean annual rainfall depth (mm year−1);
PF water percolation factor (dimensionless);
PUC Conservative Use Potential;
QT stream flow discharge at time t (m3 s−1);
Q0 stream flow discharge at the beginning of a recession (m3 s−1);
RF runoff factor (dimensionless);
RPot groundwater recharge potential (m3 ha−1 year−1);
T time (day);
t’ converter of t measurement unit (days into seconds; 86,400)
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